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Abstract. In this paper, we show for the first time the stability of the inverse source problem for
the three-dimensional Helmholtz equation in an inhomogeneous background medium. The stability
estimate consists of the Lipschitz type data discrepancy and the high frequency tail of the source
function, where the latter decreases as the upper bound of the frequency increases. The analysis
employs scattering theory to obtain the holomorphic domain and an upper bound for the resolvent
of the elliptic operator.
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1. Introduction. The inverse source scattering problems arise in diverse scien-
tific and industrial areas such as antenna design and synthesis, medical imaging [26].
Due to the significant applications, these problems have continuously attracted much
attention by many researchers. Consequently, a great number of numerical and math-
ematical results are available [1, 3, 5, 8--12, 16, 20, 25, 29, 30, 37]. In general, it is
known that there is no uniqueness for the inverse source problems at a fixed frequency
due to the existence of nonradiating sources [7, 21, 28]. Computationally, a more se-
rious issue is the lack of stability, i.e., a small variation of the data might lead to
a huge error in the reconstruction. Hence it is crucial to study the stability of the
inverse source problems. The first stability result was obtained in [14] for the inverse
source problem of the Helmholtz equation by using multifrequency data. Later on,
the increasing stability was studied for the inverse source problems of the acoustic,
elastic, and electromagnetic wave equations [15, 18, 23, 24, 31]. A topic review can
be found in [13] on the general inverse scattering problems with multifrequencies.

In many practical situations, the source, which needs to be identified, is usually
embedded in an inhomogeneous background medium. For instance, in the photo-
acoustic imaging of the brain, it is important to incorporate the sudden change of
sound speed across the skull [33, 35]. Moreover, it is possible to achieve some speci-
fied radiation pattern that would otherwise not be realistically possible for a source
embedded in free space. This possibility has attracted research from time to time
in the antenna community in designing antenna embedding materials or substrates,
including plasmas, nonmagnetic dielectrics, magneto-dielectrics, and double negative
meta-materials, to achieve specified electromagnetic radiation patterns. However,
there are few works on the inverse source problems in inhomogeneous media and the
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2548 PEIJUN LI, JIAN ZHAI, AND YUE ZHAO

available results are mainly focused on uniqueness and numerics [1, 20, 29]. The
stability issue is wide open to be investigated for the inverse source problems in inho-
mogeneous media.

In this paper, we consider the mathematical study on the stability of the acoustic
inverse source problem in an inhomogeneous medium. Consider the three-dimensional
Helmholtz equation

\Delta u(x, \kappa ) +
\kappa 2

c2(x)
u(x, \kappa ) = f(x), x \in \BbbR 3,(1.1)

where \kappa > 0 is the wavenumber, c(x) > 0 is known as the wave speed, and the source
f stands for the electric current density and is assumed to have a compact support
contained in BR = \{ x \in \BbbR 3 : | x| \leq R\} , where R > 0 is a constant. Let \partial BR be
the boundary of BR. The Sommerfeld radiation condition is imposed to ensure the
well-posedness of the problem

lim
r\rightarrow \infty 

r(\partial ru - i\kappa u) = 0, r = | x| (1.2)

uniformly in all directions \^x = x/| x| . The inverse source problem is to determine
f from the boundary measurements u(x, \kappa )| \partial BR corresponding to the wavenumber \kappa 
given in a finite interval.

The above inverse source problem is closely related to the problem of identifying
the initial value of the hyperbolic wave equation, which arises from the photoacoustic
tomography (PAT) and thermoacoustic tomography (TAT). The uniqueness and sta-
bility for the hyperbolic problem have been well studied by using the boundary control
methods (cf. [2] and reference therein). The inverse source problems for the hyper-
bolic equations are also motivated partially by studying the recovery of the velocity
c(x) from boundary measurements. Such problems have been examined by using the
Carleman estimates from the ideas of Bukhgeim and Klibanov (cf. [6, Chapter 5]).

Following [29], we consider an eigenvalue problem for the Helmholtz equation in an
inhomogeneous medium and deduce integral equations, which connect the scattering
data u| \partial BR and the unknown source function f . To overcome the absence of the
explicit Green function for the inhomogeneous Helmholtz equation, we adopt methods
and techniques from the scattering theory (e.g., [22]) and study the corresponding
resolvent of the elliptic operator to obtain a holomorphic domain of the data with
respect to the complex wavenumber \kappa and the bound of the analytic continuation of
the data from the given data to the higher frequency data. The stability estimate
consists of the Lipschitz type of data discrepancy and the high frequency tail of the
source function. The latter decreases as the frequency of the data increases, which
implies that the inverse problem is more stable when the higher frequency data is
used. We also mention that only the Dirichlet data is required for the analysis. This
paper focuses on the three-dimensional problem due to the practical significance. We
believe that the arguments should work in all odd dimensions.

The paper is organized as follows. In section 2, we briefly discuss the direct
problem. Resolvent is introduced for the elliptic operator with a variable wave speed,
and its holomorphic domain and upper bound are obtained. Section 3 is devoted to the
stability analysis of the inverse source problem by using discrete multifrequency data.

2. Direct scattering problem. Given f \in L2(BR) and c - 2(x) \in L\infty (BR),
the scattering problem (1.1)--(1.2) is equivalent to the Lippmann--Schwinger integral
equation
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STABILITY FOR THE ACOUSTIC INVERSE SOURCE PROBLEM 2549

u(x, \kappa ) = \kappa 2
\int 
BR

G(x, y, \kappa )(c - 2(y) - 1)u(y, \kappa )dx+

\int 
BR

G(x, y, \kappa )f(y)dy,

where G is the Green function of the three-dimensional Helmholtz equation and is
given by

G(x, y, \kappa ) =
1

4\pi 

ei\kappa | x - y| 

| x - y| 
.

It is known that the scattering problem (1.1)--(1.2) has a unique solution for all
the wavenumbers, which can be stated in the following result. The proof may be
found in many references (e.g., [13, Theorem 2.2]).

Theorem 2.1. For any \kappa > 0, the scattering problem (1.1)--(1.2) admits a unique
weak solution u \in H1(BR).

Hereafter, the notation a \lesssim b stands for a \leq Cb, where C > 0 is a generic constant
which may change step by step in the proofs.

We further assume that c - 2(x)  - 1 \in C\infty 
c (\BbbR 3) has a compact support satisfying

supp(c - 2(x) - 1) \subset BR. Denote P =  - c2\Delta ; it is easy to see that P is self-adjoint in
the Hilbert space \scrH , where the inner product is given by

\langle u, v\rangle \scrH =

\int 
\BbbR 3

c - 2(x)u(x)\=v(x)dx.

Introduce the Hilbert space \scrD with norm characterized by

\| u\| 2\scrD := \| (P + I)u\| 2\scrH ,

where I is the identity operator. More generally, for any \alpha \in \BbbR , we introduce the
space \scrD \alpha with norm defined as

\| u\| \scrD \alpha := \| (P + I)\alpha u\| \scrH .

Let Hp be the Hamiltonian vector field of p(x, \xi ) = c2(x)| \xi | 2. Explicitly, we have

Hp =

3\sum 
j=1

\partial p

\partial \xi j

\partial 

\partial xj
 - \partial p

\partial xj

\partial 

\partial \xi j
.

The Hamiltonian flow associated with Hp is defined by

exp(tHp) : T
\ast \BbbR 3 \rightarrow T \ast \BbbR 3.

We make the following assumption on the wave speed.

Assumption 1. The metric c - 2ds2 is nontrapping; i.e., for any (x, \xi ) \in T \ast \BbbR 3 \setminus \{ 0\} 

\pi (exp tHp(x, \xi )) \rightarrow \infty , t\rightarrow \pm \infty ,

where \pi : T \ast \BbbR 3 \rightarrow \BbbR 3 is the natural projection.

The assumption implies that for any a > 0 and | x| < a, p(x, \xi ) = 1, there exists
Ta such that

| \pi (exp tHp(x, \xi ))| > a \forall | t| > Ta.

We note that P =  - c2\Delta can be viewed as a black box operator in the sense of [32]. We
refer to [22, Chapter 4] for a detailed study of the resolvent of black box operators. For
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2550 PEIJUN LI, JIAN ZHAI, AND YUE ZHAO

convenience, some important properties of P are summarized below. For Im\kappa > 0,
denote by R(\kappa ) the resolvent of P given by

R(\kappa ) := (P  - \kappa 2) - 1.

By [22, Theorem 4.4], R(\kappa ) : \scrH \rightarrow \scrD is meromorphic for Im\kappa > 0 and can be extended
to a meromorphic family

R(\kappa ) : \scrH comp \rightarrow \scrD loc, \kappa \in \BbbC ,

where

\scrH comp := \{ u \in \scrH : u| \BbbR 3\setminus BR \in L2
comp(\BbbR 3 \setminus BR)\} ,

\scrD loc := \{ u \in L2
loc(\BbbR 3) : \chi \in C\infty 

c (\BbbR 3), \chi | BR = 1 \Rightarrow \chi u \in \scrD \} .

The following lemma is a direct consequence of [22, Theorem 4.43].

Lemma 2.2. For any M > 0, there exits C0 such that R(\kappa ) is holomorphic in the
domain

\Omega M = \{ \kappa \in \BbbC : Im\kappa \geq  - M log | \kappa | , | \kappa | \geq C0\} .
Moreover, the following estimate holds:

\| R(\kappa )h\| H1(BR) \leq CeT (Im\kappa ) - \| h\| L2(BR)(2.1)

for \kappa \in \Omega M , and C and T are positive constants.

Proof. Take \chi \in C\infty 
c (\BbbR 3) such that \chi = 1 near BR. By [22, Theorem 4.43] and

the related remarks, the following estimates hold:

\| \chi R(\kappa )\chi \| \scrH \rightarrow \scrD \alpha \leq C| \kappa | 2\alpha  - 1eT (Im\kappa ) - , \alpha = 0,
1

2
, 1,(2.2)

for \kappa \in \Omega M , where C, T are positive constants and (Im\kappa ) - := max(0, - Im\kappa ). Con-
sequently, by a direct application of (2.2) and letting \alpha = 1

2 we obtain that

\| R(\kappa )h\| H1(BR) \leq CeT (Im\kappa ) - \| h\| L2(BR),

which completes the proof.

Lemma 2.3. The meromorphically continued resolvent R(\kappa ) has no poles on \BbbR \setminus 
\{ 0\} 

Proof. We follow the lines in the proof of [19, Lemma 4.1]. Suppose by contradic-
tion that \kappa 0 \in \BbbR \setminus \{ 0\} is a pole of R(\kappa ); then by [34, Theorem 5.3], \kappa 20 is an eigenvalue
of P , and there exists a compactly supported eigenfunction u0 associated to the eigen-
value \kappa 20. Then c

2\Delta u0+\kappa 
2
0u0 = 0, where u0 is not identically zero. However, since u0

is compactly supported, it must vanish by unique continuation principle. This leads
to a contradiction and proves the lemma.

Therefore, for \kappa \in \BbbR \setminus \{ 0\} , it follows from [22, Theorem 3.37] which may be
modified for the operator P (see the remark above [22, Definition 4.16]), the solution
to the problem (1.1)--(1.2) can be expressed as

u(\cdot , \kappa ) = R(\kappa )( - c2f).(2.3)

Then we can let u(\cdot , \kappa ) be defined by (2.3) for \kappa in all of \BbbC except at the poles of
R(\kappa ). By Lemma 2.2, we have

\| u(\cdot , \kappa )\| H1(BR) \leq CeT (Im\kappa ) - \| f\| L2(BR)(2.4)

for \kappa \in \Omega M .
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STABILITY FOR THE ACOUSTIC INVERSE SOURCE PROBLEM 2551

3. Inverse scattering problem. In this section, we discuss the uniqueness and
stability of the inverse problem. Firstly, we study the the spectrum of the operator
P with the Dirichlet boundary condition. Let \{ \mu j , \phi j\} \infty j=1 be the increasing Dirichlet
eigenvalues and eigenfunctions of P in BR, where \phi j and \mu j satisfy\Biggl\{ 

 - c2(x)\Delta \phi j(x) = \mu j\phi j(x) in BR,

\phi j(x) = 0 on \partial BR.

Let \mu j = \kappa 2j such that \kappa j > 0, and assume that \phi j is normalized such that\int 
BR

c - 2(x)| \phi j(x)| 2dx = 1.

We obtain the spectral decomposition of c2f :

c2(x)f(x) =
\infty \sum 
j=1

fj\phi j(x),

where

fj = \langle c2f, \phi j\rangle \scrH =

\int 
BR

f(x)\=\phi j(x)dx.

It is clear that
c1
\sum 
j

| fj | 2 \leq \| f\| 2L2(BR) \leq c2
\sum 
j

| fj | 2,

where c1, c2 are two positive constants. Denote \kappa 2j = \mu j . Let u(x, \kappa j) be the solution
to (1.1)--(1.2) with \kappa = \kappa j .

Lemma 3.1. The following estimate holds:

| fj | 2 \lesssim \kappa 2j\| u(x, \kappa j)\| 2L2(\partial BR)

for j = 1, 2, 3, . . ..

Proof. Multiplying both sides of (1.1) by \=\phi j and using the integration by parts
yield \int 

BR

f(x)\=\phi j(x)dx =  - 
\int 
\partial BR

u(x, \kappa j)\partial \nu \=\phi j(x)ds.(3.1)

The proof is completed by using Lemma A.2 and the Schwartz inequality.

Lemma 3.2. Let f be a real-valued function and \| f\| L2(BR) \leq Q. Then there exist
positive constants d and A,A1 satisfying C0 < A < A1, which do not depend on f
and Q, such that

\kappa 2\| u(x, \kappa )\| 2L2(\partial BR) \lesssim Q2ec\kappa \epsilon 
2\mu (\kappa )
1 \forall \kappa \in (A1,+\infty ),

where C0 is specified in Lemma 2.2, c is any positive constant, and

\epsilon 21 := sup\kappa \in (A,A1)\kappa 
2\| u\| 2L2(\partial BR), \mu (\kappa ) \geq 64ad

3\pi 2(a2 + 4d2)
e
\pi 
2d (

a
2 - \kappa ).

Here a = A1  - A.
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2552 PEIJUN LI, JIAN ZHAI, AND YUE ZHAO

Proof. Let

I(\kappa ) := \kappa 2
\int 
\partial BR

u(x, \kappa )u(x, - \kappa )ds, \kappa \in \BbbC .

Since f(x) is a real-valued function, we have u(x, \kappa ) = u(x, - \kappa ) for \kappa \in \BbbR , which gives

I(\kappa ) = \kappa 2\| u(x, \kappa )\| 2L2(\partial BR), \kappa \in \BbbR .

It follows from Lemma 2.2 that I(\kappa ) is analytic in the domain

\widetilde \Omega M = \{ \kappa \in \BbbC :  - M log | \kappa | \leq Im\kappa \leq M log | \kappa | , | \kappa | \geq C0\} ,

which is symmetric with respect to the origin. Hence, there exists d > 0 such that
\scrR = (A,+\infty )\times ( - d, d) \subset \widetilde \Omega M . The geometry of domain \scrR is shown in Figure 1. By
(2.4) we have for \kappa \in \scrR that

| \kappa | \| u(x,\pm \kappa )\| L2(\partial BR) \lesssim | \kappa | \| u(x,\pm \kappa )\| H1/2(BR) \lesssim | \kappa | \| u(x,\pm \kappa )\| H1(BR)

\lesssim | \kappa | eT (Im(\pm \kappa )) - \| f\| L2(BR) \lesssim | \kappa | eTd\| f\| L2(BR),

which shows that

| \kappa | \| u(x,\pm \kappa )\| L2(\partial BR) \lesssim | \kappa | \| f\| L2(BR), \kappa \in \scrR .

Since

| I(\kappa )| \leq | \kappa | \| u(x, \kappa )\| L2(\partial BR)| \kappa | \| u(x, - \kappa )\| L2(\partial BR) \lesssim | \kappa | 2\| f\| 2L2(BR), \kappa \in \scrR ,

we have
| e - c\kappa I(\kappa )| \lesssim Q2, \kappa \in \scrR ,

for any positive constant c. An application of Lemma A.1 leads to\bigm| \bigm| e - c\kappa I(\kappa )
\bigm| \bigm| \lesssim Q2\epsilon 

2\mu (\kappa )
1 \forall \kappa \in (A1,+\infty ),

where

\mu (\kappa ) \geq 64ad

3\pi 2(a2 + 4d2)
e
\pi 
2d (

a
2 - \kappa ),

which completes the proof.

Imκ

Reκ

R

Imκ = −M log |κ|

Imκ = M log |κ|

Fig. 1. The region \scrR .
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Here we state a simple uniqueness result for the inverse problem.

Theorem 3.3. Let f \in L2(BR) and I := (C0, C0 + \delta ) \subset \BbbR + be an open interval,

where C0 is the constant given in the definition of \widetilde \Omega M in Lemma 3.2 and \delta is any
positive constant. Then the source term f can be uniquely determined by the multiple-
frequency data \{ u(x, \kappa ) : x \in \partial BR, \kappa \in I\} \cup \{ u(x, \kappa j) : x \in \partial BR, \kappa j \in (0, C0]\} .

Proof. Let u(x, \kappa ) = 0 for x \in \partial BR and \kappa \in I \cup \{ \kappa j : \kappa j \in (0, C0])\} . It suffices

to show that f(x) = 0. Since u(x, \kappa ) is analytic in \widetilde \Omega M for x \in \partial BR, it holds that
u(x, \kappa ) = 0 for all eigenvalues \kappa > C0. Then we have that u(x, \kappa j) = 0 for all
\kappa j , j = 1, 2, 3, . . .. Hence, it follows from (3.1) that\int 

BR

f(x)\=\phi j(x)dx = 0, j = 1, 2, 3, . . . ,

which implies f = 0.

The following lemma is important in the stability analysis.

Lemma 3.4. Let f \in Hn+1(BR) and \| f\| Hn+1(BR) \leq Q. It holds that\sum 
j\geq s

| fj | 2 \lesssim 
Q2

s
2
3 (n+1)

.

Proof. A simple calculation yields\sum 
j\geq s

| fj | 2 \leq 
\sum 
j\geq s

\kappa 2n+2
j

\kappa 2n+2
s

| fj | 2 \leq 1

\kappa 2n+2
s

\sum 
j\geq s

\kappa 2n+2
j | fj | 2 \lesssim 

M2

\kappa 2n+2
s

.

Noting

\| f\| 2Hs(BR)
\sim =

\infty \sum 
j=1

(\kappa 2j + 1)s| fj | 2,

and using the Weyl-type inequality in Lemma A.2, we have \kappa 2s \geq E2s
2
3 and complete

the proof.

Define a real-valued functional space

\scrC Q = \{ f \in Hn+1(BR) : \| f\| Hn+1(BR) \leq Q, suppf \subset BR, f : BR \rightarrow \BbbR \} .

Now we are in the position to discuss the inverse source problem. Let f \in \scrC Q. The
inverse source problem is to determine f from the boundary data u(x, \kappa ), x \in \partial BR,
\kappa \in (A,A1) \cup \cup N

j=1\kappa j , where 1 \leq N \in \BbbN and \kappa N > A1. Here A and A1 are the
constants specified in Lemma 3.2.

The following stability estimate is the main result of this paper.

Theorem 3.5. Let u(x, \kappa ) be the solution of the scattering problem (1.1)--(1.2)
corresponding to the source f \in \scrC Q. Then for \epsilon 1 sufficiently small,

\| f\| 2L2(BR) \lesssim \epsilon 2 +
Q2

N
1
3 (n+1)(ln | ln \epsilon 1| )

1
3 (n+1)

,(3.2)

where

\epsilon 2 =

N\sum 
j=1

\kappa 2j\| u(x, \kappa j)\| 2L2(\partial BR), \epsilon 21 = sup\kappa \in (A,A1)\kappa 
2\| u(x, \kappa )\| 2L2(\partial BR).
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Proof. We can assume that \epsilon 1 \leq e - 1, otherwise the estimate is obvious.
First, we link the data \kappa 2\| u(x, \kappa )\| 2L2(\partial BR) for large wavenumber \kappa satisfying \kappa \leq L

with the given data \epsilon 1 of small wavenumber by using the analytic continuation in
Lemma 3.2, where L is some large positive integer to be determined later. By Lemma
3.2, we obtain

\kappa 2\| u(x, \kappa )\| 2L2(\partial BR)

\lesssim Q2ec| \kappa | \epsilon 
\mu (\kappa )
1

\lesssim Q2exp

\biggl\{ 
c\kappa  - c2a

a2 + c3
ec1(

a
2 - \kappa )| ln\epsilon 1| 

\biggr\} 
\lesssim Q2exp

\biggl\{ 
 - c2a

a2 + c3
ec1(

a
2 - \kappa )| ln\epsilon 1| 

\biggl( 
1 - c4\kappa (a

2 + c3)

a
ec1(\kappa  - 

a
2 )| ln\epsilon 1|  - 1

\biggr) \biggr\} 
\lesssim Q2exp

\biggl\{ 
 - c2a

a2 + c3
ec1(

a
2 - L)| ln\epsilon 1| 

\biggl( 
1 - c4L(a

2 + c3)

a
ec1(L - a

2 )| ln\epsilon 1|  - 1

\biggr) \biggr\} 
\lesssim Q2exp

\bigl\{ 
 - b0e - c1L| ln\epsilon 1| 

\bigl( 
1 - b1Le

c1L| ln\epsilon 1|  - 1
\bigr) \bigr\} 
,

where c, ci, i = 1, 2 and b0, b1 are constants. Let

L =

\Biggl\{ \Bigl[ 
1

2c1
ln | ln \epsilon 1| 

\Bigr] 
, N \leq 1

2c1
ln | ln \epsilon 1| ,

N, N > 1
2c1

ln | ln \epsilon 1| .

If N \leq 1
2c1

ln | ln \epsilon 1| , we obtain for \epsilon 1 sufficiently small that

\kappa 2\| u(x, \kappa )\| 2L2(\partial BR) \lesssim Q2exp
\bigl\{ 
 - b0e - c1L| ln\epsilon 1| 

\bigl( 
1 - b1Le

c1L| ln\epsilon 1|  - 1
\bigr) \bigr\} 

\lesssim Q2 exp

\biggl\{ 
 - 1

2
b0e

 - c1L| ln \epsilon 1| 
\biggr\} 
.

Noting e - x \leq (2n+3)!
x2n+3 for x > 0, we obtain

L\sum 
j=N+1

\kappa 2j\| u(x, \kappa j)\| 2L2(\partial BR) \lesssim Q2Le(2n+3)c1L| ln \epsilon 1|  - (2n+3).

Taking L = 1
2c1

ln | ln \epsilon 1| , combining the above estimates and Lemma 3.4, we get

\| f\| 2L2(BR)

\lesssim 
N\sum 

j=1

| fj | 2 +
L\sum 

j=N+1

| fj | 2 +
+\infty \sum 

j=L+1

| fj | 2

\lesssim 
N\sum 

j=1

\kappa 2
j\| u(x, \kappa j)\| 2L2(\partial BR) +

L\sum 
j=N+1

\kappa 2
j\| u(x, \kappa j)\| 2L2(\partial BR) +

1

L
2
3
(n+1)

\| f\| 2Hn+1(BR)

\lesssim \epsilon 2 + LQ2e(2n+3)c1L| ln \epsilon 1|  - (2n+3) +
Q2

L
2
3
(n+1)

\lesssim \epsilon 2 +Q2
\Bigl( 
(ln | ln \epsilon 1| )| ln \epsilon 1| 

2n+3
2 | ln \epsilon 1|  - (2n+3) + (ln | ln \epsilon 1| ) - 

2
3
(n+1)

\Bigr) 
\lesssim \epsilon 2 +Q2

\Bigl( 
(ln | ln \epsilon 1| )| ln \epsilon 1|  - 

2n+3
2 + (ln | ln \epsilon 1| ) - 

2
3
(n+1)

\Bigr) 
\lesssim \epsilon 2 +Q2(ln | ln \epsilon 1| ) - 

2
3
(n+1)

\lesssim \epsilon 2 +
Q2

N
1
3
(n+1)(ln | ln \epsilon 1| )

1
3
(n+1)

,

where we have used | ln \epsilon 1| 1/2 \geq ln | ln \epsilon 1| for sufficiently small \epsilon 1.
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If N > 1
2c1

ln | ln \epsilon 1| , we have from Lemma 3.4 that

\| f\| 2L2(BR) \lesssim 
N\sum 
j=1

| fj | 2 +
+\infty \sum 

j=N+1

| fj | 2

\lesssim \epsilon 2 +
Q2

N
2
3 (n+1)

\lesssim \epsilon 2 +
Q2

N
1
3 (n+1)(ln | ln \epsilon 1| )

1
3 (n+1)

,

which completes the proof.

The stability (3.2) consists of two parts: the data discrepancy and the high fre-
quency tail. The former is of the Lipschitz type. The latter decreases as N increases
which makes the problem have an almost Lipschitz stability. The result reveals that
the problem becomes more stable when higher frequency data is used.

4. Conclusion. We have presented a stability result for the inverse source prob-
lem of time-harmonic acoustic waves in inhomogeneous background media. The analy-
sis requires the Dirichlet data only at multiple discrete frequencies without resorting
to the Dirichlet-to-Neumann map which was considered in [15, 31]. The increasing
stability is achieved to reconstruct the source term, and it consists of the data dis-
crepancy and the high frequency tail of the source function. The result shows that
the ill-posedness of the inverse source problem decreases as the frequency increases
for the data. A possible continuation of this work is to extend the stability to the
two-dimensional case. Due to the absence of the Huygens principle, the scattering
theory is not so obvious as that for the three-dimensional Helmholtz equation. An-
other interesting direction is to study the stability of the inverse source problems
for elastic and electromagnetic waves in inhomogeneous media, where the properties
of the corresponding resolvent need to be analyzed for the associated second order
operators. For the Maxwell system, additional difficulties arise from their spectral
analysis, and the present method may not be directly applicable. A related but more
challenging problem is to study the stability of the inverse medium problem which is
to determine the scatterer q. A recent progress can be found in [17] on a stability
result of the inverse medium problem for the one-dimensional Helmholtz equation.

Appendix A. Two useful lemmas. The following lemma gives a link between
the values of an analytical function for small and large arguments.

Lemma A.1. Let p(z) be analytic in the infinite rectangular slab

R = \{ z \in \BbbC : (A,+\infty )\times ( - d, d)\} ,

where A is a positive constant, and continuous in R satisfying\Biggl\{ 
| p(z)| \leq \epsilon , z \in (A,A1],

| p(z)| \leq M, z \in R,

where A,A1, \epsilon and M are positive constants. Then there exists a function \mu (z) with
z \in (A1,+\infty ) satisfying

\mu (z) \geq 64ad

3\pi 2(a2 + 4d2)
e
\pi 
2d (

a
2 - z),(A.1)
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where a = A1  - A, such that

| p(z)| \leq M\epsilon \mu (z) \forall z \in (A1,+\infty ).(A.2)

Proof. By applying [4, Lemma 3.1] to the domain

\scrR \setminus \gamma := \{ (A, b+A)\times ( - d, d)\} \setminus \{ (A,A1)\times \{ 0\} \} 

for any b > A1  - A, we obtain that there exists a harmonic measure \mu (z) of \gamma with
respect to \scrR \setminus \gamma such that

\mu (x, 0) \geq C sinh

\Biggl[ 
\pi a

2d

\Biggl( 
x - \~b

a

\Biggr) \Biggr] 
, A1 < x < \~b := b+A,(A.3)

where

C =
64ad coth

\Bigl[ 
\pi d
a

\Bigr] 
3\pi 2(a2 + 4d2) sinh

\Bigl[ 
\pi a
2d

\Bigl( 
a - 2\~b
2a

\Bigr) \Bigr] .
Noting the following asymptotics as b\rightarrow +\infty , which means \~b\rightarrow +\infty ,

sinh

\Biggl[ 
\pi a

2d

\Biggl( 
x - \~b

2a

\Biggr) \Biggr] 
\sim  - e

\pi 
2d (

\~b - x)

2
, sinh

\Biggl[ 
\pi a

2d

\Biggl( 
a - 2\~b

2a

\Biggr) \Biggr] 
\sim  - e

\pi 
2d (

\~b - a
2 )

2
,

and the inequality coth[\pi da ] \geq 1, we obtain (A.1) by letting \~b\rightarrow +\infty in (A.3).
Finally, by fundamental application of the harmonic measure for stability esti-

mates of holomorphic continuation [4, Theorem 2.4] we obtain (A.2)

Lemma A.2. The following estimate holds:

\| \partial \nu \phi j\| L2(\partial BR) \leq C\kappa j ,(A.4)

where the positive constant C is independent of j. Moreover, we have the following
Weyl-type inequality for the Dirichlet eigenvalues \{ \mu n\} \infty n=1:

E1n
2/3 \leq \mu n \leq E2n

2/3,(A.5)

where E1 and E2 are two positive constants independent of n.

Proof. We begin with the estimate (A.4) for the eigenfunctions on the boundary.
Let u be a Dirichlet eigenfunction of P =  - c2\Delta in BR. For any differential operator
A, by [27, Lemma 2.1], we have the Rellich-type identity\int 

BR

c - 2u[P,A]udx =

\int 
\partial BR

\partial \nu uAuds,(A.6)

where [P,A] = PA  - AP . In fact, let \lambda be the eigenvalue corresponding to the
eigenfunction u. We have [P,A] = [P  - \lambda ,A] and (P  - \lambda )u = 0. A simple calculation
yields
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BR

c - 2u[P,A]udx

=

\int 
BR

\bigl[ 
u( - \Delta Au) - \lambda c - 2uAu

\bigr] 
dx

=

\int 
BR

\bigl[ 
 - \Delta uAu - \lambda c - 2uAu

\bigr] 
dx+

\int 
\partial BR

\partial \nu uAuds

=

\int 
BR

c - 2(P  - \lambda )uAudx+

\int 
\partial BR

\partial \nu uAuds

=

\int 
\partial BR

\partial \nu uAuds.

Now let u be a normalized Dirichlet eigenfunction with eigenvalue \lambda . Choose local
coordinates (r, y) near the boundary \partial BR such that r is the distance to the boundary.
Assume that there is a small number \delta such that c2 = 1 for r \leq \delta . Take \chi \in C\infty 

c (\BbbR )
such that \chi \equiv 1 near 0 and vanishes for r \geq \delta . Choose A = \chi (r)\partial r. It is clear that
the right-hand side of (A.6) is exactly \| \partial \nu u\| L2(\partial BR). It follows from the integration
by parts that the left-hand side of (A.6) can be written as\int 

BR

c - 2(B1u)(B2u)dx,

where B1 and B2 are two first order differential operators. Using the Poincar\'e in-
equality, we obtain\int 

BR

c - 2(B1u)(B2u)dx \leq C\| u\| 2H1(BR) \leq C

\int 
BR

\nabla u \cdot \nabla udx = C\lambda ,

where the positive constant C does not depend on \lambda .
Next, we prove the Weyl-type inequality (A.5). Assume \mu 1 < \mu 2 < \cdot \cdot \cdot are

the Dirichlet eigenvalues of the operator  - c2(x)\Delta . Then we have following min-max
principle:

\mu n = sup
\varphi 1,...,\varphi n - 1

inf
\psi \in [\varphi 1,...,\varphi n - 1]\bot 

\psi \in H1
0(BR)

\int 
BR

| \nabla \psi | 2dx\int 
BR

c - 2\psi 2dx
.

Assume C1 < c2(x) < C2 on BR, where C1, C2 are two constants. Assume \mu 
(j)
1 <

\mu 
(j)
2 < \cdot \cdot \cdot are the eigenvalues for the operator  - Cj\Delta for j = 1, 2. By the min-max

principle, we have
\mu (2)
n < \mu n < \mu (1)

n , n = 1, 2, . . . .

We have from Weyl's law [36] for  - Cj\Delta that

lim
n\rightarrow +\infty 

\mu 
(j)
n

n2/3
= Dj ,

where Dj is a constant. Therefore there exist two constants E1 and E2 such that

E1n
2/3 \leq \mu n \leq E2n

2/3,

which completes the proof.
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