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AN ADAPTIVE FINITE ELEMENT DTN METHOD FOR THE ELASTIC WAVE
SCATTERING BY BIPERIODIC STRUCTURES

Gang Bao1, Xue Jiang2, Peijun Li3,˚ and Xiaokai Yuan1,4

Abstract. Consider the scattering of a time-harmonic elastic plane wave by a bi-periodic rigid surface.
The displacement of elastic wave motion is modeled by the three-dimensional Navier equation in an
unbounded domain above the surface. Based on the Dirichlet-to-Neumann (DtN) operator, which is
given as an infinite series, an exact transparent boundary condition is introduced and the scattering
problem is formulated equivalently into a boundary value problem in a bounded domain. An a posteriori
error estimate based adaptive finite element DtN method is proposed to solve the discrete variational
problem where the DtN operator is truncated into a finite number of terms. The a posteriori error
estimate takes account of the finite element approximation error and the truncation error of the DtN
operator which is shown to decay exponentially with respect to the truncation parameter. Numerical
experiments are presented to illustrate the effectiveness of the proposed method.
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1. Introduction

This paper concerns the scattering of a time-harmonic elastic plane wave by a bi-periodic surface in three
dimensions. Due to the wide and significant applications in seismology and geophysics, the elastic wave scattering
problems have received ever increasing attention in both mathematical and engineering communities [1, 2, 33].
Compared with the acoustic and electromagnetic wave scattering problems, the elastic wave scattering problems
are less studied due to the fact that the elastic wave consists of coupled compressional and shear wave components
with different wavenumbers, which makes the analysis of the problems more complicated. In addition, there are
two challenges for the elastic surface scattering problem: the solution may have singularity due to a possible
non-smooth surface; the problem is imposed in an unbounded domain. In this paper, we intend to address both
of these two issues by proposing an a posteriori error estimate based adaptive finite element method with the
transparent boundary condition.

The a posteriori error estimates are computable quantities from numerical solutions. They can be used to
measure the solution errors of discrete problems without requiring any a priori information of exact solutions
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[4,34]. Since the a posteriori error estimate based adaptive finite element method has the ability to control the
error and to asymptotically optimize the approximation, it is crucial for mesh modification such as refinement
and coarsening [19, 35, 38]. The method has become an important numerical tool for solving boundary value
problems of partial differential equations, especially for those where the solutions have singularity or multiscale
phenomena.

The key of overcoming the second issue is to reformulate the unbounded domain problem into a boundary
value problem in a bounded domain without generating artificial wave reflection. One possible approach is to
make use of the perfectly matched layer (PML) techniques. The basic idea of the PML is to surround the
domain of interest by a layer of finite thickness of fictitious medium that may attenuate the waves propagating
from inside of the computational domain. When the waves reach the outer boundary of the PML region,
their amplitudes are so small that the homogeneous Dirichlet boundary condition can be imposed. Due to the
effectiveness and simplicity, since Bérenger proposed the technique to solve the time domain Maxwell equations
[7], it has undergone a tremendous development of designing various PML methods to solving a wide range of
unbounded domain scattering problems [5,8,9,16–18,22,23,30]. Combined with adaptive finite element methods,
the PML method has been investigated to solve the two- and three-dimensional obstacle scattering problems
[12, 13, 15] and the two- and three-dimensional diffraction grating problems [6, 14, 26]. The a posteriori error
estimates based adaptive finite element PML methods take account of the finite element discretization errors
and the PML truncation errors which decay exponentially with respect to the PML parameters.

Alternatively, another effective approach to truncate the unbounded domain is to construct the Dirichlet-to-
Neumann (DtN) map and introduce the transparent boundary condition to enclose the domain of interest [21].
Since the DtN operator is exact, the transparent boundary condition can be imposed on the boundary which
is chosen as close as possible to the scattering structure. Compared to the PML method, the DtN method can
reduce the size of the computational domain. As a viable alternative to the PML method, the adaptive finite
element DtN methods have also been developed recently to solve many two- and three-dimensional scattering
problems, such as the acoustic scattering problems [25,27,39], the three-dimensional electromagnetic scattering
problem [29], and the two-dimensional elastic wave scattering problems [31,32].

It is worth mentioning that the scattering problems by unbounded surfaces can also be solved by using integral
equation based methods such as the boundary variation method [10,11] and the integral equation method [40].
One of the advantages of these methods is that the radiation condition is satisfied automatically in the integral
formulation. But it may be difficult to handle the problem with a nonsmooth boundary or an inhomogenous
medium.

This paper concerns the numerical solution of the elastic wave scattering by biperiodic structures in three
dimensions. It is a non-trivial extension of the elastic wave scattering by periodic structures in two dimensions
[32]. There are two challenges for the three-dimensional problem. First, the Helmholtz decomposition of the
elastic wave equation gives two two-dimensional Helmholtz equations in the two-dimensional case; however, for
the Helmholtz decomposition in the three-dimensional case, we have to consider a three-dimensional Helmholtz
equation and a three-dimensional Maxwell equation, which makes the analysis much more complicated. Second,
from the computational point of view, it is much more time-consuming to solve the three-dimensional problem
than to solve the two-dimensional problem.

Specifically, we consider the scattering of a time-harmonic plane elastic wave by a biperiodic rigid surface.
The elastic wave propagation is modeled by the three-dimensional Navier equation in the unbounded domain
above the scattering surface. By the Helmholtz decomposition, a DtN operator is constructed in terms of
Fourier series expansions for the compressional and shear wave components, then an exact transparent boundary
condition is introduced to reduce the unbounded domain problem into an equivalent boundary value problem
in a bounded domain. The nonlocal DtN operator needs to be truncated into a sum of finitely many terms in
actual computation. However, it is known that the convergence of the truncated DtN operator could be arbitrary
slow to the original DtN operator in the operator norm [24]. By carefully examining the properties of the exact
solution, we observe that the truncated DtN operator converges exponentially to the original DtN operator when
acting on the solution of the elastic wave equation, which enables the analysis of exponential convergence for this
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Figure 1. Problem geometry of the elastic scattering by a biperiodic surface.

work. Combined with the truncated DtN operator and finite element method, the discrete problem is studied.
We develop a new duality argument to deduce the a posteriori error estimate. The a posteriori error estimate
takes account of the finite element approximation error and the DtN operator truncation error which is shown
to decay exponentially with respect to the truncation parameter 𝑁 . Moreover, an a posteriori error estimate
based adaptive finite element algorithm is presented to solve the discrete problem, where the estimate is used
to design the algorithm to choose elements for refinements and to determine the truncation parameter 𝑁 . Due
to the exponential convergence of the truncated DtN operator, the choice of the truncation parameter 𝑁 turns
out not to be sensitive to the given tolerance of accuracy. Numerical examples are presented to demonstrate the
effectiveness of the proposed method.

The paper is organized as follows. In Section 2, the model equation is introduced for the scattering problem.
Section 3 concerns the variational problem. By the Helmholtz decomposition, the DtN operator is constructed
and the transparent boundary condition is introduced to reformulate the scattering problem into a boundary
value problem in a bounded domain, and the corresponding weak formulation is presented. In Section 4, the
discrete problem is studied by using the finite element method with the truncated DtN operator. Section 5 is
devoted to the a posteriori error analysis for the discrete problem and the exponential convergence is proved
for the truncated DtN operator. In Section 6, an adaptive finite element algorithm is described and numeri-
cal experiments are carried out to illustrate the competitive behavior of the proposed method. The paper is
concluded with some general remarks and directions for future work in Section 7.

2. Problem formulation

Consider the scattering of a time-harmonic plane elastic wave by a rigid biperiodic surface. Due to the
biperiodic structure, the scattering problem can be restricted into a single biperiodic cell, as shown in Figure 1.
Let

𝑆 “
!

𝑥 “ p𝑥1, 𝑥2, 𝑥3q
J
P R3 : p𝑥1, 𝑥2q P p0,Λ1q ˆ p0,Λ2q, 𝑥3 “ 𝑓p𝑥1, 𝑥2q

)

be the scattering surface, where 𝑓 is a Lipschitz continuous biperiodic function with periods Λ1 and Λ2 in the
𝑥1 and 𝑥2 directions, respectively. Denote the open space above 𝑆 by

Ω𝑓 “
 

𝑥 P R3 : p𝑥1, 𝑥2q P p0,Λ1q ˆ p0,Λ2q, 𝑥3 ą 𝑓p𝑥1, 𝑥2q
(

,

which is assumed to be filled with an isotropic and homogeneous elastic medium. The medium can be char-
acterized by the Lamé parameters 𝜆, 𝜇 and the mass density 𝜌 which is assumed to be unit for simplicity.
Furthermore, we assume that the Lamé constants satisfy 𝜇 ą 0, 𝜆` 𝜇 ą 0. Define

Γℎ “
 

𝑥 P R3 : p𝑥1, 𝑥2q P p0,Λ1q ˆ p0,Λ2q, 𝑥3 “ ℎ
(

,
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where ℎ is a constant satisfying ℎ ą maxp𝑥1,𝑥2qPp0,Λ1qˆp0,Λ2q 𝑓p𝑥1, 𝑥2q. Denote by Ω the bounded domain enclosed
by 𝑆 and Γℎ, i.e.,

Ω “
 

𝑥 P R3 : p𝑥1, 𝑥2q P p0,Λ1q ˆ p0,Λ2q, 𝑓p𝑥1, 𝑥2q ă 𝑥3 ă ℎ
(

.

Let a compressional plane wave
𝑢incp𝑥q “ 𝑞𝑒i𝜅1𝑞¨𝑥

be sent from the above to impinge the surface, where

𝑞 “ psin 𝜃1 cos 𝜃2, sin 𝜃1 sin 𝜃2,´ cos 𝜃1q
J
,

𝜃1 P r0, 𝜋{2q and 𝜃2 P r0, 2𝜋s are the incident angles, and 𝜅1 “ 𝜔{
?
𝜆` 2𝜇 is the compressional wavenumber

with the angular frequency 𝜔. We mention that the results obtained in the paper are same for the incidence of
a shear plane wave 𝑢incp𝑥q “ 𝑝𝑒i𝜅2𝑞¨𝑥, where 𝑝 is a unit vector satisfying 𝑝 ¨ 𝑞 “ 0 and 𝜅2 “ 𝜔{

?
𝜇 is the shear

wavenumber, or a linear combination of the shear and compressional plane waves.
Denote the displacement of the scattered wave by 𝑢, which satisfies the Navier wave equation

𝜇∆𝑢` p𝜆` 𝜇q∇∇ ¨ 𝑢` 𝜔2𝑢 “ 0 in Ω𝑓 . (2.1)

Since the surface is assumed to be elastically rigid, we have

𝑢 “ ´𝑢inc on 𝑆. (2.2)

In addition, the scattered wave 𝑢 is assumed to satisfy the bounded outgoing wave condition as 𝑥3 Ñ 8.
Motivated by uniqueness, we seek the so-called quasi-periodic solutions of (2.1) and (2.2), i.e., 𝑢p𝑥q𝑒´i𝛼¨𝑟 is
a biperiodic function of 𝑟 “ p𝑥1, 𝑥2q

J with periods Λ1 and Λ2 in the 𝑥1 and 𝑥2 directions, respectively, where
𝛼 “ p𝛼1, 𝛼2q

J, 𝛼1 “ 𝜅1 sin 𝜃1 cos 𝜃2, 𝛼2 “ 𝜅1 sin 𝜃1 sin 𝜃2.
Define a quasi-periodic function space

𝐻1
qppΩq “

 

𝑢 P 𝐻1pΩq : 𝑒i𝛼1Λ1𝑢p0, 𝑥2, 𝑥3q “ 𝑢pΛ1, 𝑥2, 𝑥3q, 𝑒i𝛼2Λ2𝑢p𝑥1, 0, 𝑥3q “ 𝑢p𝑥1,Λ2, 𝑥3q
(

and its subspace
𝐻1

𝑆,qppΩq “
 

𝑢 P 𝐻1
qppΩq : 𝑢 “ 0 on 𝑆

(

.

Let

𝐿2
qppΓℎq “

 

𝑢 P 𝐿2pΓℎq : 𝑒i𝛼1Λ1𝑢p0, 𝑥2, ℎq “ 𝑢pΛ1, 𝑥2, ℎq, 𝑒i𝛼2Λ2𝑢p𝑥1, 0, ℎq “ 𝑢p𝑥1,Λ2, ℎq
(

.

For any 𝑢 P 𝐿2
qppΓℎq, it has the Fourier series expansion

𝑢p𝑟, ℎq “
ÿ

𝑛PZ2

𝑢𝑛pℎq𝑒
i𝛼𝑛¨𝑟, 𝑢𝑛pℎq “

1
Λ1Λ2

ż Λ1

0

ż Λ2

0

𝑢p𝑟, ℎq𝑒´i𝛼𝑛¨𝑟d𝑟,

where 𝑛 “ p𝑛1, 𝑛2q
J P Z2, 𝛼𝑛 “ p𝛼1𝑛, 𝛼2𝑛q

J, 𝛼𝑗𝑛 “ 𝛼𝑗 ` 2𝜋𝑛𝑗{Λ𝑗 , 𝑗 “ 1, 2.
Define a trace function space 𝐻𝑠pΓℎq, 𝑠 P R` by

𝐻𝑠pΓℎq “
 

𝑢 P 𝐿2pΓℎq : }𝑢}𝐻𝑠pΓℎq ă 8
(

,

where the norm is given by
}𝑢}2𝐻𝑠pΓℎq

“ Λ1Λ2

ÿ

𝑛PZ2

`

1` |𝛼𝑛|
2
˘𝑠
|𝑢𝑛pℎq|

2
.

It is clear that the dual space of 𝐻𝑠pΓℎq is 𝐻´𝑠pΓℎq with respect to the scalar product in 𝐿2pΓℎq given by

x𝑢, 𝑣yΓℎ
“

ż

Γℎ

𝑢𝑣 d𝑠.

Let 𝐻1
qppΩq,𝐻

1
𝑆,qppΩq and 𝐻𝑠

pΓℎq be the Cartesian product spaces equipped with the corresponding 2-
norms of 𝐻1

qppΩq, 𝐻
1
𝑆,qppΩq and 𝐻𝑠pΓℎq, respectively. Throughout the paper, the notation 𝑎 À 𝑏 stands for

𝑎 ď 𝐶𝑏, where 𝐶 is a positive constant whose value is not required but should be clear from the context.
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3. The boundary value problem

In this section, we introduce the DtN operator to reduce the problem (2.1) and (2.2) into a boundary value
problem in the bounded domain Ω and present the well-posedness of its variational formulation.

Consider the Helmholtz decomposition

𝑢 “ ∇𝜑`∇ˆ𝜓, ∇ ¨𝜓 “ 0 in Ω, (3.1)

where 𝜑 is a scalar potential function and 𝜓 “ p𝜓1, 𝜓2, 𝜓3q is a vector potential function. Substituting (3.1) into
the Navier wave equation (2.1), we may verify that 𝜑 and 𝜓 satisfy the following Helmholtz equation and the
Maxwell equation, respectively:

∆𝜑` 𝜅2
1𝜑 “ 0, ∇ˆ p∇ˆ𝜓q ´ 𝜅2

2𝜓 “ 0. (3.2)

It is easy to verify from the Helmholtz decomposition (3.1) and the boundary condition (2.2) that 𝜑 and 𝜓
satisfy the following coupled boundary conditions on 𝑆:

B𝜈𝜑` p∇ˆ𝜓q ¨ 𝜈 “ ´𝑢inc ¨ 𝜈, p∇ˆ𝜓q ˆ 𝜈 `∇𝜑ˆ 𝜈 “ ´𝑢inc ˆ 𝜈, (3.3)

where 𝜈 is the unit normal vector on 𝑆.
The potential functions 𝜑 and 𝜓 are required to be quasi-periodic in 𝑥1 and 𝑥2 directions with periods Λ1

and Λ2. Hence they have the Fourier series expansions

𝜑p𝑥q “
ÿ

𝑛PZ2

𝜑𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟, 𝜓p𝑥q “

ÿ

𝑛PZ2

𝜓𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟. (3.4)

Plugging (3.4) into (3.2) and using the bounded outgoing wave condition, we have from a straight forward
calculation that 𝜑 and 𝜓 admit the following expansions for 𝑥3 ą ℎ:

𝜑p𝑥q “
ÿ

𝑛PZ2

𝜑𝑛pℎq𝑒
ip𝛼𝑛¨𝑟`𝛽1𝑛p𝑥3´ℎqq, 𝜓p𝑥q “

ÿ

𝑛PZ2

𝜓𝑛pℎq𝑒
ip𝛼𝑛¨𝑟`𝛽2𝑛p𝑥3´ℎqq, (3.5)

where

𝛽𝑗𝑛 “

#

`

𝜅2
𝑗 ´ |𝛼𝑛|

2
˘1{2 if |𝛼𝑛| ă 𝜅𝑗 ,

i
`

|𝛼𝑛|
2 ´ 𝜅2

𝑗

˘1{2 if |𝛼𝑛| ą 𝜅𝑗 .
(3.6)

It follows from (3.4) and (3.5) that

𝜑𝑛p𝑥3q “ 𝜑𝑛pℎq𝑒
i𝛽1𝑛p𝑥3´ℎq, 𝜓𝑗𝑛p𝑥3q “ 𝜓𝑗𝑛pℎq𝑒

i𝛽2𝑛p𝑥3´ℎq, 𝑗 “ 1, 2, 3. (3.7)

We observe from (3.5) and (3.6) that 𝛽𝑗𝑛 is a pure imaginary number and thus 𝜑𝑛 and 𝜓𝑛 are known as surface
wave modes when |𝛼𝑛| ą 𝜅𝑗 .

Substituting (3.5) into (3.1), we obtain the representation of the scattered field 𝑢 in terms of the Fourier
coefficients of the potential functions 𝜑 and 𝜓:

𝑢p𝑥q “ i
ÿ

𝑛PZ2

$

’

&

’

%

»

—

–

𝛼1𝑛

𝛼2𝑛

𝛽1𝑛

fi

ffi

fl

𝜑𝑛pℎq𝑒
i𝛽1𝑛p𝑥3´ℎq `

»

—

–

𝛼2𝑛𝜓3𝑛pℎq ´ 𝛽2𝑛𝜓2𝑛pℎq

𝛽2𝑛𝜓1𝑛pℎq ´ 𝛼1𝑛𝜓3𝑛pℎq

𝛼1𝑛𝜓2𝑛pℎq ´ 𝛼2𝑛𝜓1𝑛pℎq

fi

ffi

fl

𝑒i𝛽2𝑛p𝑥3´ℎq

,

/

.

/

-

𝑒i𝛼𝑛¨𝑟. (3.8)

Noting ∇ ¨ 𝜓 “ 0, we may represent conversely the coefficients of the potential functions of 𝜑 and 𝜓 by the
coefficients of the scattered field 𝑢 “ p𝑢1, 𝑢2, 𝑢3q

J:

𝜑𝑛pℎq “ ´
i
𝜒𝑛
p𝛼1𝑛𝑢1𝑛pℎq ` 𝛼2𝑛𝑢2𝑛pℎq ` 𝛽2𝑛𝑢3𝑛pℎqq, (3.9)
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𝜓1𝑛pℎq “ ´
i
𝜒𝑛

ˆ

1
𝜅2

2

𝛼1𝑛𝛼2𝑛p𝛽1𝑛 ´ 𝛽2𝑛q𝑢1𝑛pℎq ´ 𝛼2𝑛𝑢3𝑛pℎq `
1
𝜅2

2

“

𝛼2
1𝑛𝛽2𝑛 ` 𝛼

2
2𝑛𝛽1𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

‰

𝑢2𝑛pℎq

˙

, (3.10)

𝜓2𝑛pℎq “ ´
i
𝜒𝑛

ˆ

´
1
𝜅2

2

“

𝛼2
1𝑛𝛽1𝑛 ` 𝛼

2
2𝑛𝛽2𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

‰

𝑢1𝑛pℎq ´
1
𝜅2

2

𝛼1𝑛𝛼2𝑛p𝛽1𝑛 ´ 𝛽2𝑛q𝑢2𝑛pℎq ` 𝛼1𝑛𝑢3𝑛pℎq

˙

,

(3.11)

𝜓3𝑛pℎq “ ´
i
𝜅2

2

p𝛼2𝑛𝑢1𝑛pℎq ´ 𝛼1𝑛𝑢2𝑛pℎqq, (3.12)

where 𝜒𝑛 “ |𝛼𝑛|
2
` 𝛽1𝑛𝛽2𝑛. It is easy to verify that 𝜒𝑛 ‰ 0 for 𝑛 P Z2.

Define a differential operator

𝐷𝑢 “ 𝜇B𝑥3𝑢` p𝜆` 𝜇qp∇ ¨ 𝑢q𝑒3 on Γℎ, (3.13)

where 𝑒3 “ p0, 0, 1qJ. Substituting (3.8)–(3.12) into the differential operator 𝐷, we may deduce the DtN operator

𝑇𝑢 “
ÿ

𝑛PZ2

𝑀𝑛𝑢𝑛pℎq𝑒
i𝛼𝑛¨𝑟, (3.14)

where the matrix 𝑀𝑛 is defined as

𝑀𝑛 “
i𝜇
𝜒𝑛

»

—

—

–

𝛼2
1𝑛𝛽

p𝑛q
12 ` 𝛽2𝑛𝜒𝑛 𝛼1𝑛𝛼2𝑛𝛽

p𝑛q
12 𝛼1𝑛𝛽2𝑛𝛽

p𝑛q
12

𝛼1𝑛𝛼2𝑛𝛽
p𝑛q
12 𝛼2

2𝑛𝛽
p𝑛q
12 ` 𝛽2𝑛𝜒𝑛 𝛼2𝑛𝛽2𝑛𝛽

p𝑛q
12

´𝛼1𝑛𝛽2𝑛𝛽
p𝑛q
12 ´𝛼2𝑛𝛽2𝑛𝛽

p𝑛q
12 𝜅2

2𝛽2𝑛

fi

ffi

ffi

fl

. (3.15)

Here 𝛽p𝑛q12 “ 𝛽1𝑛 ´ 𝛽2𝑛. The details can be found in [28] for the derivation.
Based on the DtN operator (3.14), the scattering problem (2.1) and (2.2) can be equivalently reduced to the

following boundary value problem:
$

’

&

’

%

𝜇∆𝑢` p𝜆` 𝜇q∇∇ ¨ 𝑢` 𝜔2𝑢 “ 0 in Ω,
𝐷𝑢 “ 𝑇𝑢 on Γℎ,

𝑢 “ ´𝑢inc on 𝑆.

(3.16)

The variational problem of (3.16) is to find 𝑢 P𝐻1
qppΩq with 𝑢 “ ´𝑢inc on 𝑆 such that

𝑎p𝑢,𝑣q “ 0 @𝑣 P𝐻1
𝑆,qppΩq, (3.17)

where the sesquilinear form 𝑎 : 𝐻1
qppΩq ˆ𝐻

1
qppΩq Ñ C is

𝑎p𝑢,𝑣q “ 𝜇

ż

Ω

∇𝑢 : ∇𝑣 d𝑥` p𝜆` 𝜇q
ż

Ω

p∇ ¨ 𝑢qp∇ ¨ 𝑣qd𝑥´ 𝜔2

ż

Ω

𝑢 ¨ 𝑣 d𝑥´
ż

Γℎ

𝑇𝑢 ¨ 𝑣 d𝑠.

Here 𝐴 : 𝐵 “ trp𝐴𝐵Jq is the Frobenius inner product of two square matrices 𝐴 and 𝐵.
The well-posedness of the variational problem (3.17) was discussed in [20]. It was shown that the variational

problem has a unique weak solution for all incident waves. Thus, the solution satisfies the estimates

}𝑢}𝐻1pΩq À }𝑢
inc}𝐻1{2p𝑆q À }𝑢

inc}𝐻1pΩq.

By the general theory of Babuška and Aziz [3], there exists a 𝛾 ą 0 such that the following inf-sup condition
holds:

sup
0‰𝑣P𝐻1

qppΩq

|𝑎p𝑢,𝑣q|

}𝑣}𝐻1pΩq

ě 𝛾}𝑢}𝐻1pΩq @𝑢 P𝐻1
qppΩq.
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4. The finite element approximation

Since the non-local DtN operator (3.14) is given as an infinite series, in practice, it needs to be truncated
into a sum of finitely many terms

𝑇𝑁𝑢 “
ÿ

|𝑛1|,|𝑛2|ď𝑁

𝑀𝑛𝑢𝑛pℎq𝑒
i𝛼𝑛¨𝑟 on Γℎ, (4.1)

where 𝑁 ą 0 is a sufficiently large integer. Using (4.1), we arrive at the truncated finite element approximation:
find 𝑢𝑁 P𝐻1

𝑞𝑝pΩq with 𝑢𝑁 “ ´𝑢inc on 𝑆 such that

𝑎𝑁 p𝑢𝑁 ,𝑣q “ 0 @𝑣 P𝐻1
𝑆,𝑞𝑝, (4.2)

where the sesquilinear form 𝑎𝑁 : 𝐻1
pΩq ˆ𝐻1

pΩq Ñ C is

𝑎𝑁 p𝑢,𝑣q “ 𝜇

ż

Ω

∇𝑢 : ∇𝑣 d𝑥` p𝜆` 𝜇q
ż

Ω

p∇ ¨ 𝑢qp∇ ¨ 𝑣qd𝑥´ 𝜔2

ż

Ω

𝑢 ¨ 𝑣 d𝑥´
ż

Γℎ

𝑇𝑁𝑢 ¨ 𝑣 d𝑠.

Let ℳℎ be a regular tetrahedral mesh of the domain Ω, where ℎ denotes the maximum diameter of all the
elements in ℳℎ. To handle the quasi-periodic solution, we assume that the mesh is periodic in both 𝑥1 and
𝑥2 directions, i.e., the surface meshes on the planes 𝑥1 “ 0 and 𝑥2 “ 0 coincide with the surface meshes on
the planes 𝑥1 “ Λ1 and 𝑥2 “ Λ2, respectively. We also assume for simplicity that 𝑆 is polygonal to keep from
using the isoparametric finite element space and deriving the approximation error of the boundary 𝑆 in order
to avoid being distracted from the main focus of the a posteriori error analysis.

Let 𝑉ℎ Ă𝐻
1
qppΩq be a conforming finite element space, i.e.

𝑉ℎ “
 

𝑣 P 𝐶qppΩq3 : 𝑣|𝐾 P 𝑃𝑚p𝐾q
3 @𝐾 Pℳℎ

(

,

where 𝐶qppΩq is the set of all continuous functions satisfying the quasi-periodic boundary condition, 𝑚 is a
positive integer, and 𝑃𝑚 denotes the set of all polynomials with degree no more than 𝑚.

Then the finite element approximation to the variational problem (4.2) is to find 𝑢ℎ
𝑁 P 𝑉ℎ such that 𝑢ℎ

𝑁 “ ´𝑔ℎ

on 𝑆 and satisfies the variational problem

𝑎𝑁

`

𝑢ℎ
𝑁 ,𝑣

ℎ
˘

“ 0 @𝑣ℎ P 𝑉ℎ,𝑆 , (4.3)

where 𝑉ℎ,𝑆 “ t𝑣 P 𝑉ℎ : 𝑣 “ 0 on𝑆u and 𝑔ℎ is the finite element approximation of 𝑢inc.
Following the argument in [24], it can be shown that for sufficiently large 𝑁 the variational problem (4.2) is

well-posed. And for sufficient large 𝑁 and small enough ℎ, the discrete inf-sup condition of the sesquilinear form
𝑎𝑁 can be established by following the approach in [37]. Based on the general theory in [3], it can be shown
that the discrete variational problem (4.3) has a unique solution 𝑢ℎ

𝑁 P 𝑉ℎ. The details are omitted for brevity
since our focus is on the a posteriori error estimate.

5. The a posteriori error analysis

For any tetrahedral element 𝐾 Pℳℎ, denote by ℎ𝐾 its diameter. Define the operator residual in 𝐾 as

𝑅𝐾𝑢
ℎ
𝑁 “

`

𝜇∆𝑢ℎ
𝑁 ` p𝜆` 𝜇q∇∇ ¨ 𝑢ℎ

𝑁 ` 𝜔
2𝑢ℎ

𝑁

˘
ˇ

ˇ

𝐾
.

Let ℱℎ be the set of all the faces on ℳℎ. Given any interior face 𝐹 P ℱℎ, which is the common face of tetrahedral
element 𝐾1 and 𝐾2, we define the jump residual across 𝐹 as

𝐽𝐹𝑢
ℎ
𝑁 “

““

𝜇∇𝑢ℎ
𝑁 |𝐾𝑗

¨ 𝜈1 ` p𝜆` 𝜇q
`

∇ ¨ 𝑢ℎ
𝑁 |𝐾𝑗

˘

𝜈1
‰‰

,
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where 𝜈𝑗 , 𝑗 “ 1, 2 is the unit outward normal vector on the face of 𝐾𝑗 . For any boundary face 𝐹 P ℱℎ X Γℎ,
define the jump residual as

𝐽𝐹𝑢
ℎ
𝑁 “ 2

`

𝑇𝑁𝑢
ℎ
𝑁 ´𝐷𝑢

ℎ
𝑁

˘

.

Denote the four lateral boundary surfaces by

Γ10 “
 

𝑥 P R3 : 𝑥1 “ 0, 0 ă 𝑥2 ă Λ2, 𝑓p0, 𝑥2q ă 𝑥3 ă ℎ
(

,

Γ11 “
 

𝑥 P R3 : 𝑥1 “ Λ1, 0 ă 𝑥2 ă Λ2, 𝑓pΛ1, 𝑥2q ă 𝑥3 ă ℎ
(

,

Γ20 “
 

𝑥 P R3 : 0 ă 𝑥1 ă Λ1, 𝑥2 “ 0, 𝑓p𝑥1, 0q ă 𝑥3 ă ℎ
(

,

Γ21 “
 

𝑥 P R3 : 0 ă 𝑥1 ă Λ1, 𝑥2 “ Λ2, 𝑓p𝑥1,Λ2q ă 𝑥3 ă ℎ
(

.

For any boundary face 𝐹 P Γ10 and the corresponding face 𝐹 1 P Γ11, if 𝐹 P 𝐾1 and 𝐹 1 P 𝐾2, then the jump
residual is defined as

𝐽
p1q
𝐹 𝑢ℎ

𝑁 “

”

𝜇B𝑥1𝑢
ℎ
𝑁

ˇ

ˇ

𝐾1
` p𝜆` 𝜇q

`

∇ ¨ 𝑢ℎ
𝑁 |𝐾1

˘

𝑒1

ı

´ 𝑒´i𝛼1Λ1

”

𝜇B𝑥1𝑢
ℎ
𝑁

ˇ

ˇ

𝐾2
` p𝜆` 𝜇q

`

∇ ¨ 𝑢ℎ
𝑁 |𝐾2

˘

𝑒1

ı

,

𝐽
p1q
𝐹 1 𝑢

ℎ
𝑁 “ 𝑒i𝛼1Λ1

“

𝜇B𝑥1𝑢
ℎ
𝑁 |𝐾1 ` p𝜆` 𝜇q

`

∇ ¨ 𝑢ℎ
𝑁 |𝐾1

˘

𝑒1

‰

´

”

𝜇B𝑥1𝑢
ℎ
𝑁

ˇ

ˇ

𝐾2
` p𝜆` 𝜇q

`

∇ ¨ 𝑢ℎ
𝑁 |𝐾2

˘

𝑒1

ı

,

where 𝑒1 “ p1, 0, 0qJ. Similarly, for any face 𝐹 P Γ20 and its corresponding face 𝐹 1 P Γ21, the jump residual is
defined as

𝐽
p2q
𝐹 𝑢ℎ

𝑁 “

”

𝜇B𝑥2𝑢
ℎ
𝑁

ˇ

ˇ

𝐾1
` p𝜆` 𝜇q

`

∇ ¨ 𝑢ℎ
𝑁 |𝐾1

˘

𝑒2

ı

´ 𝑒´i𝛼2Λ2

”

𝜇B𝑥2𝑢
ℎ
𝑁

ˇ

ˇ

𝐾2
` p𝜆` 𝜇q

`

∇ ¨ 𝑢ℎ
𝑁 |𝐾2

˘

𝑒2

ı

,

𝐽
p2q
𝐹 1 𝑢

ℎ
𝑁 “ 𝑒i𝛼2Λ2

”

𝜇B𝑥2𝑢
ℎ
𝑁

ˇ

ˇ

𝐾1
` p𝜆` 𝜇q

`

∇ ¨ 𝑢ℎ
𝑁 |𝐾1

˘

𝑒2

ı

´
“

𝜇B𝑥2𝑢|𝐾2 ` p𝜆` 𝜇q
`

∇ ¨ 𝑢ℎ
𝑁 |𝐾2

˘

𝑒2

‰

,

where 𝑒2 “ p0, 1, 0qJ.
For any tetrahedral element 𝐾 Pℳℎ, denote by 𝜂𝐾 the local error estimator as follows:

𝜂2
𝐾 “ ℎ2

𝐾}𝑅𝐾𝑢
ℎ
𝑁 }

2
𝐿2p𝐾q ` ℎ𝐾

ÿ

𝐹ĂB𝐾

´

}𝐽
p1q
𝐹 𝑢ℎ

𝑁 }
2
𝐿2p𝐹 q ` }𝐽

p2q
𝐹 𝑢ℎ

𝑁 }
2
𝐿2p𝐹 q

¯

.

For convenience, we introduce a weighted 𝐻1
pΩq norm

~𝑢~2
𝐻1pΩq “ 𝜇

ż

Ω

|∇𝑢|2 d𝑥` p𝜆` 𝜇q
ż

Ω

|∇ ¨ 𝑢|2 d𝑥` 𝜔2

ż

Ω

|𝑢|2 d𝑥. (5.1)

Since 𝜇 and 𝜆` 𝜇 are positive, it is easy to check that

min
`

𝜇, 𝜔2
˘

}𝑢}2𝐻1pΩq ď ~𝑢~
2
𝐻1pΩq ď max

`

2𝜆` 3𝜇, 𝜔2
˘

}𝑢}2𝐻1pΩq @𝑢 P𝐻1
pΩq,

which implies that the weighted 𝐻1
pΩq norm (5.1) is equivalent to the standard 𝐻1

pΩq norm.
The following theorem is the main result of the paper. It presents the a posteriori error estimate between

the solutions of the original scattering problem (3.17) and the truncated finite element approximation (4.3).

Theorem 5.1. Let 𝑢 and 𝑢ℎ
𝑁 be the solutions of the variational problems (3.17) and (4.3), respectively. Then

for any ℎ̂ such that max𝑟PR2 𝑓p𝑟q ă ℎ̂ ă ℎ and for sufficiently large 𝑁 , the following a posteriori error estimate
holds:

�

�𝑢´ 𝑢ℎ
𝑁

�

�

𝐻1pΩq
À

˜

ÿ

𝐾Pℳℎ

𝜂2
𝐾

¸1{2

`
›

›𝑢inc ´ 𝑔ℎ
›

›

𝐻1{2p𝑆q
` max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq, (5.2)

where |𝑛|min “ minp|𝑛1|, |𝑛2|q and |𝑛|max “ maxp|𝑛1|, |𝑛2|q.
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The a posteriori error (5.2) contains three parts: the first two parts arise from the finite element discretization
error; the third part accounts for the truncation error of the DtN operator. Since ℎ̂ ă ℎ, the latter is almost
exponentially decaying. Hence the DtN truncated error can be controlled to be small enough so that it does not
contaminate the finite element discretization error.

To prove Theorem 5.1, let us begin with the following trace result in 𝐻1
qppΩq. The proof can be found in

Lemma 3.3 of [28].

Lemma 5.2. Let 𝑎 “ min𝑟PR2 𝑓p𝑟q. Then for any 𝑢 P𝐻1
qppΩq the following estimate holds:

}𝑢}𝐻1{2pΓℎq
ď 𝐶}𝑢}𝐻1pΩq,

where 𝐶 “ p1` pℎ´ 𝑎q´1q1{2.

Denote by 𝜉 “ 𝑢´ 𝑢ℎ
𝑁 the error between the solutions of (3.17) and (4.3), then a simple calculation yields

~𝜉~
2
𝐻1pΩq “ 𝜇

ż

Ω

∇𝜉 : ∇𝜉 d𝑥` p𝜆` 𝜇q
ż

Ω

p∇ ¨ 𝜉q
`

∇ ¨ 𝜉
˘

d𝑥` 𝜔2

ż

Ω

𝜉 ¨ 𝜉 d𝑥

“ ℜ𝑎p𝜉, 𝜉q ` 2𝜔2

ż

Ω

𝜉 ¨ 𝜉 d𝑥` ℜ
ż

Γℎ

𝑇𝜉 ¨ 𝜉 d𝑠

“ ℜ𝑎p𝜉, 𝜉q ` ℜ
ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝜉 ¨ 𝜉 d𝑠` 2𝜔2

ż

Ω

𝜉 ¨ 𝜉 d𝑥` ℜ
ż

Γℎ

𝑇𝑁𝜉 ¨ 𝜉 d𝑠. (5.3)

Due to the equivalence of the weighted norm ~ ¨ ~𝐻1pΩq to the standard norm } ¨ }𝐻1pΩq, it suffices to estimate
the four terms on the right hand side of (5.3) one by one. The estimates of the first two terms are given in
Lemmas 5.3 and 5.4.

Lemma 5.3. Let 𝑢 P 𝐻1
qppΩq be the solution of variational problem (3.17). For any 𝑣 P 𝐻1

qppΩq and a
sufficiently large 𝑁 , the following estimate holds:

ˇ

ˇ

ˇ

ˇ

ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝑢 ¨ 𝑣 d𝑠
ˇ

ˇ

ˇ

ˇ

À max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq}𝑣}𝐻1pΩq.

Proof. It follows from (3.7) that we have

𝜑𝑛pℎq “ 𝜑𝑛

´

ℎ̂
¯

𝑒i𝛽1𝑛pℎ´ℎ̂q, 𝜓𝑗𝑛pℎq “ 𝜓𝑗𝑛

´

ℎ̂
¯

𝑒i𝛽2𝑛pℎ´ℎ̂q, 𝑗 “ 1, 2, 3. (5.4)

Substituting (5.4) into (3.8), we obtain the Fourier coefficients of 𝑢 at 𝑥3 “ ℎ in terms of the Fourier coefficients
of 𝜑 and 𝜓 at 𝑥3 “ ℎ̂:

»

—

—

—

–

𝑢1𝑛pℎq

𝑢2𝑛pℎq

𝑢3𝑛pℎq

0

fi

ffi

ffi

ffi

fl

“ i

»

—

—

—

–

𝛼1𝑛 0 ´𝛽2𝑛 𝛼2𝑛

𝛼2𝑛 𝛽2𝑛 0 ´𝛼1𝑛

𝛽1𝑛 ´𝛼2𝑛 𝛼1𝑛 0
0 𝛼1𝑛 𝛼2𝑛 𝛽2𝑛

fi

ffi

ffi

ffi

fl

»

—

—

—

–

𝜑𝑛pℎq

𝜓1𝑛pℎq

𝜓2𝑛pℎq

𝜓3𝑛pℎq

fi

ffi

ffi

ffi

fl

“ i

»

—

—

—

–

𝛼1𝑛 0 ´𝛽2𝑛 𝛼2𝑛

𝛼2𝑛 𝛽2𝑛 0 ´𝛼1𝑛

𝛽1𝑛 ´𝛼2𝑛 𝛼1𝑛 0
0 𝛼1𝑛 𝛼2𝑛 𝛽2𝑛

fi

ffi

ffi

ffi

fl

diag

¨

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

–

𝑒i𝛽1𝑛pℎ´ℎ̂q

𝑒i𝛽2𝑛pℎ´ℎ̂q

𝑒i𝛽2𝑛pℎ´ℎ̂q

𝑒i𝛽2𝑛pℎ´ℎ̂q

fi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‚

»

—

—

—

—

—

—

—

–

𝜑𝑛

´

ℎ̂
¯

𝜓1𝑛

´

ℎ̂
¯

𝜓2𝑛

´

ℎ̂
¯

𝜓3𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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:“ i𝐴𝑛

´

𝜑𝑛

´

ℎ̂
¯

, 𝜓1𝑛

´

ℎ̂
¯

, 𝜓2𝑛

´

ℎ̂
¯

, 𝜓3𝑛

´

ℎ̂
¯¯J

. (5.5)

Replacing ℎ by ℎ̂ in (3.9)–(3.12), we may equivalently have the matrix form

”

𝜑𝑛

´

ℎ̂
¯

,𝜓𝑛

´

ℎ̂
¯ı

“ ´
i
𝜒𝑛

𝐵𝑛𝑢𝑛

´

ℎ̂
¯

, (5.6)

where the entries of the 4ˆ 3 matrix 𝐵𝑛 are

𝐵
p𝑛q
11 “ 𝛼1𝑛, 𝐵

p𝑛q
12 “ 𝛼2𝑛, 𝐵

p𝑛q
13 “ 𝛽2𝑛, 𝐵

p𝑛q
23 “ ´𝛼2𝑛, 𝐵

p𝑛q
33 “ 𝛼1𝑛, 𝐵

p𝑛q
43 “ 0,

𝐵
p𝑛q
21 “ ´𝐵

p𝑛q
32 “

1
𝜅2

2

𝛼1𝑛𝛼2𝑛p𝛽1𝑛 ´ 𝛽2𝑛q, 𝐵
p𝑛q
41 “

1
𝜅2

2

𝛼2𝑛𝜒𝑛, 𝐵
p𝑛q
42 “ ´

1
𝜅2

2

𝛼1𝑛𝜒𝑛,

𝐵
p𝑛q
22 “

1
𝜅2

2

`

𝛼2
1𝑛𝛽2𝑛 ` 𝛼

2
2𝑛𝛽1𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

˘

, 𝐵
p𝑛q
31 “ ´

1
𝜅2

2

`

𝛼2
1𝑛𝛽1𝑛 ` 𝛼

2
2𝑛𝛽2𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

˘

.

Plugging (5.5) into (5.6) yields

»

—

–

𝑢1𝑛pℎq

𝑢2𝑛pℎq

𝑢3𝑛pℎq

fi

ffi

fl

“
1
𝜒𝑛
p𝐴𝑛𝐵𝑛q|3ˆ3

»

—

—

—

—

–

𝑢1𝑛

´

ℎ̂
¯

𝑢2𝑛

´

ℎ̂
¯

𝑢3𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

:“
1
𝜒𝑛
𝑃𝑛

»

—

—

—

—

–

𝑢1𝑛

´

ℎ̂
¯

𝑢2𝑛

´

ℎ̂
¯

𝑢3𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

, (5.7)

where p𝐴𝑛𝐵𝑛q|3ˆ3 is the leading principal submatrix of order 3 of the matrix 𝐴𝑛𝐵𝑛. A straight forward com-
putation yields that

𝑃
p𝑛q
11 “ 𝛼2

1𝑛𝑒
i𝛽1𝑛pℎ´ℎ̂q `

1
𝜅2

2

𝛼2
2𝑛𝜒𝑛𝑒

i𝛽2𝑛pℎ´ℎ̂q `
1
𝜅2

2

`

𝛼2
1𝑛𝛽1𝑛 ` 𝛼

2
2𝑛𝛽2𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

˘

𝛽2𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q,

𝑃
p𝑛q
12 “ 𝛼1𝑛𝛼2𝑛𝑒

i𝛽1𝑛pℎ´ℎ̂q `
1
𝜅2

2

𝛼1𝑛𝛼2𝑛p𝛽1𝑛 ´ 𝛽2𝑛q𝛽2𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q ´

1
𝜅2

2

𝛼1𝑛𝛼2𝑛𝜒𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q,

𝑃
p𝑛q
13 “ 𝛼1𝑛𝛽2𝑛

´

𝑒i𝛽1𝑛pℎ´ℎ̂q ´ 𝑒i𝛽2𝑛pℎ´ℎ̂q
¯

,

𝑃
p𝑛q
21 “ 𝛼1𝑛𝛼2𝑛𝑒

i𝛽1𝑛pℎ´ℎ̂q `
1
𝜅2

2

𝛼1𝑛𝛼2𝑛p𝛽1𝑛 ´ 𝛽2𝑛q𝛽2𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q ´

1
𝜅2

2

𝛼1𝑛𝛼2𝑛𝜒𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q,

𝑃
p𝑛q
22 “ 𝛼2

2𝑛𝑒
i𝛽1𝑛pℎ´ℎ̂q `

1
𝜅2

2

𝛼2
1𝑛𝜒𝑛𝑒

i𝛽2𝑛pℎ´ℎ̂q `
1
𝜅2

2

`

𝛼2
1𝑛𝛽2𝑛 ` 𝛼

2
2𝑛𝛽1𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

˘

𝛽2𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q,

𝑃
p𝑛q
23 “ 𝛼2𝑛𝛽2𝑛

´

𝑒i𝛽1𝑛pℎ´ℎ̂q ´ 𝑒i𝛽2𝑛pℎ´ℎ̂q
¯

,

𝑃
p𝑛q
31 “ 𝛼1𝑛𝛽1𝑛𝑒

i𝛽1𝑛pℎ´ℎ̂q ´
1
𝜅2

2

𝛼1𝑛𝛼
2
2𝑛p𝛽1𝑛 ´ 𝛽2𝑛q𝑒

i𝛽2𝑛pℎ´ℎ̂q ´
1
𝜅2

2

`

𝛼2
1𝑛𝛽1𝑛 ` 𝛼

2
2𝑛𝛽2𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

˘

𝛼1𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q,

𝑃
p𝑛q
32 “ 𝛼2𝑛𝛽1𝑛𝑒

i𝛽1𝑛pℎ´ℎ̂q ´
1
𝜅2

2

𝛼2𝑛𝛼
2
1𝑛p𝛽1𝑛 ´ 𝛽2𝑛q𝑒

i𝛽2𝑛pℎ´ℎ̂q ´
1
𝜅2

2

`

𝛼2
1𝑛𝛽2𝑛 ` 𝛼

2
2𝑛𝛽1𝑛 ` 𝛽1𝑛𝛽

2
2𝑛

˘

𝛼2𝑛𝑒
i𝛽2𝑛pℎ´ℎ̂q,

𝑃
p𝑛q
33 “ 𝛽1𝑛𝛽2𝑛𝑒

i𝛽1𝑛pℎ´ℎ̂q `
`

𝛼2
1𝑛 ` 𝛼

2
2𝑛

˘

𝑒i𝛽2𝑛pℎ´ℎ̂q.

When |𝛼𝑛|
2 “ 𝛼2

1𝑛 ` 𝛼
2
2𝑛 ą 𝜅2

2, it follows from (3.6) that both 𝛽1𝑛 and 𝛽2𝑛 are pure imaginary numbers. We
may easily show

𝜒𝑛 “ |𝛼𝑛|
2
´
`

|𝛼𝑛|
2 ´ 𝜅2

1

˘1{2`
|𝛼𝑛|

2 ´ 𝜅2
2

˘1{2
ă 𝜅2

1 ` 𝜅
2
2. (5.8)
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and

ip𝛽2𝑛 ´ 𝛽1𝑛q “
`

|𝛼𝑛|
2 ´ 𝜅2

1

˘1{2
´
`

|𝛼𝑛|
2 ´ 𝜅2

2

˘1{2
ă

𝜅2
2 ´ 𝜅

2
1

2p|𝛼𝑛|
2 ´ 𝜅2

2q
1{2
¨ (5.9)

Plugging (3.6) and (5.8), (5.9) into 𝑃𝑛, we obtain

𝑃
p𝑛q
11 “ 𝛼2

1𝑛𝑒
i𝛽1𝑛pℎ´ℎ̂q `

1
𝜅2

2

𝑒i𝛽2𝑛pℎ´ℎ̂q
!

|𝛼𝑛|
2
𝛽1𝑛𝛽2𝑛 ´ 𝛼

2
2𝑛

´

|𝛼𝑛|
2
´ 𝜅2

2

¯

´ 𝛽1𝑛𝛽2𝑛

´

|𝛼𝑛|
2
´ 𝜅2

2

¯

` 𝛼2
2𝑛|𝛼𝑛|

2
)

“ 𝛼2
1𝑛𝑒

i𝛽1𝑛pℎ´ℎ̂q ` 𝑒i𝛽2𝑛pℎ´ℎ̂q
`

𝛼2
2𝑛 ` 𝛽1𝑛𝛽2𝑛

˘

“ 𝛼2
1𝑛

´

𝑒i𝛽1𝑛pℎ´ℎ̂q ´ 𝑒i𝛽2𝑛pℎ´ℎ̂q
¯

` 𝑒i𝛽2𝑛pℎ´ℎ̂q𝜒𝑛,

which gives

|𝑃
p𝑛q
11 | À |𝑛|max𝑒

´|𝛽2𝑛|pℎ´ℎ̂q.

Similarly, we may show that all the entries of the matrix 𝑃𝑛 have the estimates

|𝑃
p𝑛q
𝑖𝑗 | À |𝑛|max𝑒

´|𝛽2𝑛|pℎ´ℎ̂q, 𝑖, 𝑗 “ 1, 2, 3. (5.10)

Substituting (5.8) and (5.10) into (5.7) gives

|𝑢𝑛pℎq|
2 À |𝑛|2max𝑒

´2|𝛽2𝑛|pℎ´ℎ̂q|𝑢𝑛

´

ℎ̂
¯

|2. (5.11)

By (3.15), it can be verified from |𝛼𝑛|
2
ą 𝜅2

2 that
ˇ

ˇ

ˇ
𝑀
p𝑛q
11

ˇ

ˇ

ˇ
“
ˇ

ˇ𝛼2
1𝑛p𝛽1𝑛 ´ 𝛽2𝑛q ` 𝛽2𝑛𝜒𝑛

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

𝛼2
1𝑛i

ˆ

´

|𝛼𝑛|
2
´ 𝜅2

1

¯1{2

´

´

|𝛼𝑛|
2
´ 𝜅2

2

¯1{2
˙

` 𝛽2𝑛𝜒𝑛

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|𝛼1𝑛|
2 i

`

𝜅2
2 ´ 𝜅

2
1

˘

´

|𝛼𝑛|
2
´ 𝜅2

1

¯1{2

`

´

|𝛼𝑛|
2
´ 𝜅2

2

¯1{2
` 𝛽2𝑛𝜒𝑛

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À |𝑛|max. (5.12)

Following the same argument, we may show that

|𝑀
p𝑛q
𝑖𝑗 | À |𝑛|max, 𝑖, 𝑗 “ 1, 2, 3.

Substituting (5.11), (5.12) into (3.14), we obtain
ˇ

ˇ

ˇ

ˇ

ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝑢 ¨ 𝑣 d𝑠
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Λ1Λ2

ÿ

|𝑛|miną𝑁

p𝑀𝑛𝑢𝑛pℎqq ¨ 𝑣𝑛pℎq

ˇ

ˇ

ˇ

ˇ

À

˜

ÿ

|𝑛|miną𝑁

|𝑛|max|𝑢𝑛pℎq|
2

¸1{2˜
ÿ

|𝑛|miną𝑁

|𝑛|max|𝑣𝑛pℎq|
2

¸1{2

À

˜

ÿ

|𝑛|miną𝑁

|𝑛|3max𝑒
´2|𝛽2𝑛|pℎ´ℎ̂q|𝑢𝑛

´

ℎ̂
¯

|2

¸1{2

}𝑣}𝐻1{2pΓℎq
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À max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢}𝐻1pΩq}𝑣}𝐻1pΩq

À max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq}𝑣}𝐻1pΩq,

which completes the proof. �

Lemma 5.4. Let 𝑣 be any function in 𝐻1
𝑆,qppΩq, the following estimate holds:

ˇ

ˇ

ˇ

ˇ

𝑎p𝜉,𝑣q `

ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝜉 ¨ 𝑣 d𝑠
ˇ

ˇ

ˇ

ˇ

À

¨

˝

˜

ÿ

𝐾Pℳℎ

𝜂2
𝐾

¸1{2

` max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq

˛

‚}𝑣}𝐻1pΩq,

which gives by taking 𝑣 “ 𝜉 that

ˇ

ˇ

ˇ

ˇ

𝑎p𝜉, 𝜉q `

ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝜉 ¨ 𝜉 d𝑠
ˇ

ˇ

ˇ

ˇ

À

˜

ˆ

ÿ

𝐾Pℳℎ

𝜂2
𝐾

˙1{2

` }𝑢inc ´ 𝑔ℎ}𝐻1{2p𝑆q

` max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq

¸

}𝜉}𝐻1pΩq.

Since the proof of Lemma 5.4 is essentially the same as that for Lemma 5.4 of [32], we omit it for brevity.
The following two lemmas are to estimate the last term in (5.3).

Let �̂�𝑛 “ ´
1
2 p𝑀𝑛 `𝑀

˚
𝑛 q. Note that �̂�𝑛 “ ℜp´i𝑊𝑛q which is defined in (3.13) of [20]. By Lemma 2 of [20],

we have the following lemma.

Lemma 5.5. �̂�𝑛 is positive definite for |𝛼𝑛| ą 𝜅2.

Lemma 5.6. Let Ω1 “
!

𝑥 P R3 : p𝑥1, 𝑥2q P p0,Λ1q ˆ p0,Λ2q, ℎ̂ ă 𝑥3 ă ℎ
)

. Then for any 𝛿 ą 0, there exists a
positive constant 𝐶p𝛿q independent of 𝑁 such that

ℜ
ż

Γℎ

𝑇𝑁𝜉 ¨ 𝜉 d𝑠 ď 𝐶p𝛿q}𝜉}2𝐿2pΩ1q ` 𝛿}𝜉}
2
𝐻1pΩ1q.

Proof. It follows from the definition of the DtN operator (3.14) that we have

ℜ
ż

Γℎ

𝑇𝑁𝜉 ¨ 𝜉 d𝑠 “ Λ1Λ2ℜ
ÿ

|𝑛1|,|𝑛2|ď𝑁

p𝑀𝑛𝜉𝑛q ¨ 𝜉𝑛

“ ´Λ1Λ2

ÿ

|𝑛1|,|𝑛2|ď𝑁

p�̂�𝑛𝜉𝑛q ¨ 𝜉𝑛.

By Lemma 5.5, �̂�𝑛 is positive definite for sufficiently large |𝑛|max. Hence for fixed 𝜔, 𝜆, 𝜇, there exists a positive
integer 𝑁˚ such that

ℜ
ż

Γℎ

𝑇𝑁𝜉 ¨ 𝜉 d𝑠 ď ´Λ1Λ2

ÿ

|𝑛|maxďminp𝑁,𝑁˚q

´

�̂�𝑛𝜉𝑛

¯

¨ 𝜉𝑛 @ |𝑛|max ą 𝑁˚.

On the other hand, there exists a constant 𝐶 depending only on 𝜔, 𝜇, 𝜆 such that
ˇ

ˇ

ˇ

´

�̂�𝑛𝜉𝑛

¯

¨ 𝜉𝑛

ˇ

ˇ

ˇ
ď 𝐶|𝜉𝑛|

2
@ |𝑛|max ď minp𝑁˚, 𝑁q.
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For any 𝛿 ą 0, it follows from Young’s inequality that

´

ℎ´ ℎ̂
¯

|𝜑pℎq|
2
“

ż ℎ

ℎ̂

|𝜑p𝑥3q|
2 d𝑥3 `

ż ℎ

ℎ̂

ż ℎ

𝑥3

´

|𝜑p𝑠q|
2
¯1

d𝑠d𝑥3

ď

ż ℎ

ℎ̂

|𝜑p𝑥3q|
2 d𝑥3 `

˜

ℎ´ ℎ̂

𝛿

¸

ż ℎ

ℎ̂

|𝜑p𝑥3q|
2 d𝑥3 ` 𝛿

´

ℎ´ ℎ̂
¯

ż ℎ

ℎ̂

ˇ

ˇ𝜑1p𝑥3q
ˇ

ˇ

2 d𝑥3,

which gives that

|𝜑pℎq|
2
ď

„

𝛿´1 `

´

ℎ´ ℎ̂
¯´1


ż ℎ

ℎ̂

|𝜑p𝑥3q|
2 d𝑥3 ` 𝛿

ż ℎ

ℎ̂

ˇ

ˇ𝜑1p𝑥3q
ˇ

ˇ

2 d𝑥3.

Let 𝜑p𝑥q “
ř

𝑛PZ2 𝜑𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟. It is easy to get

}∇𝜑}2𝐿2pΩ1q “ Λ1Λ2

ÿ

𝑛PZ2

ż ℎ

ℎ̂

´

ˇ

ˇ𝜑1𝑛p𝑥3q
ˇ

ˇ

2
` |𝛼𝑛|

2
|𝜑𝑛p𝑥3q|

2
¯

d𝑥3,

}𝜑}
2
𝐿2pΩ1q “ Λ1Λ2

ÿ

𝑛PZ2

ż ℎ

ℎ̂

|𝜑𝑛p𝑥3q|
2 d𝑥3.

Hence, we have for any 𝜑 P𝐻1
pΩ1q that

}𝜑}2𝐿2pΓℎq
“ Λ1Λ2

ÿ

𝑛PZ2

|𝜑𝑛pℎq|
2

ď Λ1Λ2

„

𝛿´1 `

´

ℎ´ ℎ̂
¯´1



ÿ

𝑛PZ2

ż ℎ

ℎ̂

|𝜑𝑛p𝑥3q|
2 d𝑥3 ` Λ1Λ2𝛿

ÿ

𝑛PZ2

ż ℎ

ℎ̂

ˇ

ˇ𝜑1𝑛p𝑥3q
ˇ

ˇ

2 d𝑥3

ď Λ1Λ2

„

1
𝛿
` pℎ1 ´ ℎ2q

´1



ÿ

𝑛PZ2

ż ℎ

ℎ̂

|𝜑𝑛p𝑥3q|
2 d𝑥3 ` Λ1Λ2𝛿

ÿ

𝑛PZ2

ż ℎ

ℎ̂

”

ˇ

ˇ𝜑1𝑛p𝑥3q
ˇ

ˇ

2
` |𝛼𝑛|

2
|𝜑𝑛p𝑥3q|

2
ı

d𝑥3

ď

„

𝛿´1 `

´

ℎ´ ℎ̂
¯´1



}𝜑}2𝐿2pΩ1q ` 𝛿}∇𝜑}
2
𝐿2pΩ1q

ď 𝐶p𝛿q}𝜑}2𝐿2pΩ1q ` 𝛿}∇𝜑}
2
𝐿2pΩ1q.

Combining the above estimates, we obtain

ℜ
ż

Γℎ

𝑇𝑁𝜉 ¨ 𝜉 d𝑠 ď 𝐶}𝜉}2𝐿2pΓℎq
ď 𝐶p𝛿q}𝜉}2𝐿2pΩ1q ` 𝛿}𝜉}

2
𝐻1pΩ1q,

which completes the proof. �

To estimate the third term of (5.3), we introduce the dual problem

𝑎p𝑣,𝑝q “

ż

Ω

𝑣 ¨ 𝜉 d𝑥 @𝑣 P 𝐻1
𝑆,qppΩq. (5.13)

It is easy to check that 𝑝 is the weak solution of the boundary value problem
$

’

&

’

%

𝜇∆𝑝` p𝜆` 𝜇q∇∇ ¨ 𝑝` 𝜔2𝑝 “ ´𝜉 in Ω
𝑝 “ 0 on𝑆
𝐷𝑝 “ 𝑇˚𝑝 on Γℎ

(5.14)
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where 𝑇˚ is the adjoint operator to 𝑇 under the scalar product in 𝐿2pΓℎq. Taking 𝑣 “ 𝜉 in (5.13), we have

}𝜉}2𝐿2pΩq “ 𝑎p𝜉,𝑝q ´

ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝜉 ¨ 𝑝 d𝑠`
ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝜉 ¨ 𝑝d𝑠. (5.15)

It is clear that the evaluation of 𝑝 is essential to the error estimate. Lemmas 5.7–5.9 give the asymptotic
analysis of 𝑝. First, we introduce the Helmholtz decomposition of 𝜉 in Ω1:

𝜉 “ ∇𝜁 `∇ˆ𝑍, ∇ ¨𝑍 “ 0, (5.16)

where 𝑍 “ p𝑍1, 𝑍2, 𝑍3q
J and

𝜁p𝑥q “
ÿ

𝑛PZ2

𝜁𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟, 𝑍𝑗p𝑥q “

ÿ

𝑛PZ2

𝑍𝑗𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟.

Substituting the above Fourier series expansions into (5.16) gives

»

—

—

—

–

𝑍 11𝑛p𝑥3q

𝑍 12𝑛p𝑥3q

𝑍 13𝑛p𝑥3q

𝜁 1𝑛p𝑥3q

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0 0 i𝛼1𝑛 ´i𝛼2𝑛

0 0 i𝛼2𝑛 i𝛼1𝑛

´i𝛼1𝑛 ´i𝛼2𝑛 0 0
i𝛼2𝑛 ´i𝛼1𝑛 0 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

𝑍1𝑛p𝑥3q

𝑍2𝑛p𝑥3q

𝑍3𝑛p𝑥3q

𝜁𝑛p𝑥3q

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

𝜉2𝑛p𝑥3q

´𝜉1𝑛p𝑥3q

0
𝜉3𝑛p𝑥3q

fi

ffi

ffi

ffi

fl

. (5.17)

In addition, the homogeneous Dirichlet boundary condition is imposed for the Fourier coefficients at 𝑥3 “ ℎ:

𝑍1𝑛pℎq “ 𝑍2𝑛pℎq “ 𝑍3𝑛pℎq “ 𝜁𝑛pℎq “ 0. (5.18)

Lemma 5.7. The solutions of the problem (5.17) and (5.18) in rℎ̂, ℎs satisfy the following estimates:

|𝜁𝑛p𝑥3q| À }𝜉𝑛}𝐿8prℎ̂,ℎsq

1
|𝛼𝑛|

𝑒|𝛼𝑛|pℎ´𝑥3q,

|𝑍𝑗𝑛p𝑥3q| À }𝜉𝑛}𝐿8prℎ̂,ℎsq

1
|𝛼𝑛|

𝑒|𝛼𝑛|pℎ´𝑥3q, 𝑗 “ 1, 2, 3.

Proof. A straight forward calculation shows that the solution of problem (5.17) and (5.18) is

𝑍1𝑛p𝑥3q “ ´
1
2
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉2𝑛p𝑡qd𝑡´
1
2
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉2𝑛p𝑡qd𝑡

`
i
2
𝛼2𝑛

|𝛼𝑛|
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉3𝑛p𝑡qd𝑡´
i
2
𝛼2𝑛

|𝛼𝑛|
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉3𝑛p𝑡qd𝑡, (5.19)

𝑍2𝑛p𝑥3q “
1
2
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉1𝑛p𝑡qd𝑡`
1
2
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉1𝑛p𝑡qd𝑡

´
i
2
𝛼1𝑛

|𝛼𝑛|
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉3𝑛p𝑡qd𝑡`
i
2
𝛼1𝑛

|𝛼𝑛|
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉3𝑛p𝑡qd𝑡, (5.20)

𝑍3𝑛p𝑥3q “
i
2
𝛼1𝑛

|𝛼𝑛|
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉2𝑛p𝑡qd𝑡´
i
2
𝛼1𝑛

|𝛼𝑛|
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉2𝑛p𝑡qd𝑡

´
i
2
𝛼2𝑛

|𝛼𝑛|
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉1𝑛p𝑡qd𝑡`
i
2
𝛼2𝑛

|𝛼𝑛|
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉1𝑛p𝑡qd𝑡 (5.21)
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and

𝜁𝑛p𝑥3q “ ´
1
2
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉3𝑛p𝑡qd𝑡´
1
2
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉3𝑛p𝑡qd𝑡

´
i
2
𝛼2𝑛

|𝛼𝑛|
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉2𝑛p𝑡qd𝑡`
i
2
𝛼2𝑛

|𝛼𝑛|
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉2𝑛p𝑡qd𝑡

´
i
2
𝛼1𝑛

|𝛼𝑛|
𝑒|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒´|𝛼𝑛|𝑡𝜉1𝑛p𝑡qd𝑡`
i
2
𝛼1𝑛

|𝛼𝑛|
𝑒´|𝛼𝑛|𝑥3

ż ℎ

𝑥3

𝑒|𝛼𝑛|𝑡𝜉1𝑛p𝑡qd𝑡. (5.22)

It is easy to check from (5.19)–(5.22) that

|𝜁𝑛p𝑥3q| À }𝜉𝑛}𝐿8prℎ̂,ℎsq

1
|𝛼𝑛|

𝑒|𝛼𝑛|pℎ´𝑥3q,

|𝑍𝑗𝑛p𝑥3q| À }𝜉𝑛}𝐿8prℎ̂,ℎsq

1
|𝛼𝑛|

𝑒|𝛼𝑛|pℎ´𝑥3q, 𝑗 “ 1, 2, 3,

which complete the proof. �

Consider the following boundary value problem for 𝑝 in Ω1:
$

’

&

’

%

𝜇∆𝑝` p𝜆` 𝜇q∇∇ ¨ 𝑝` 𝜔2𝑝 “ ´𝜉 in Ω1,
𝑝 “ 𝑝 on Γℎ̂,

𝐷𝑝 “ 𝑇˚𝑝 on Γℎ.

(5.23)

Lemma 5.8. Let 𝑞 “ p𝑞1, 𝑞2, 𝑞3qJ and 𝑔 have the Fourier series expansions

𝑞𝑗p𝑥q “
ÿ

𝑛PZ2

𝑞𝑗𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟, 𝑔p𝑥q “

ÿ

𝑛PZ2

𝑔𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟, 𝑥 P Ω1

and satisfy
$

’

&

’

%

p𝜆` 2𝜇q
`

∆𝑔 ` 𝜅2
1𝑔
˘

“ ´𝜁 in Ω1,
𝜇
`

∇ˆ p∇ˆ 𝑞q ´ 𝜅2
2𝑞
˘

“ 𝑍, ∇ ¨ 𝑞 “ 0 in Ω1,
𝑞 “ 𝑞, 𝑔 “ 𝑔 on Γℎ̂.

(5.24)

Moreover, the Fourier coefficients are assumed to satisfy the following boundary conditions on Γℎ:

𝑔1𝑛pℎq “ ´i𝛽1𝑛𝑔𝑛pℎq (5.25)

and

𝑞11𝑛pℎq “ ´i𝛽2𝑛𝑞1𝑛pℎq, 𝑞12𝑛pℎq “ ´i𝛽2𝑛𝑞2𝑛pℎq,

𝑞13𝑛pℎq “ i𝛼1𝑛𝑞1𝑛pℎq ` i𝛼2𝑛𝑞2𝑛pℎq.
(5.26)

Then 𝑝 has Helmholtz decomposition 𝑝 “ ∇𝑔 `∇ˆ 𝑞 and satisfies boundary value problem (5.23).

Proof. Substituting 𝑝 “ ∇𝑔 `∇ˆ 𝑞 into the elastic wave equation, we obtain

𝜇∆p∇𝑔 `∇ˆ 𝑞q ` p𝜆` 𝜇q∇∇ ¨ p∇𝑔 `∇ˆ 𝑞q ` 𝜔2p∇𝑔 `∇ˆ 𝑞q
“ ∇

`

𝜇∆𝑔 ` p𝜆` 𝜇q∆𝑔 ` 𝜔2𝑔
˘

`∇ˆ
`

𝜇∆𝑞 ` 𝜔2𝑞
˘

“ p𝜆` 2𝜇q∇
`

∆𝑔 ` 𝜅2
1𝑔
˘

` 𝜇∇ˆ
`

´∇ˆ p∇ˆ 𝑞q ` 𝜅2
2𝑞
˘

“ ´∇𝜁 ´∇ˆ𝑍 “ ´𝜉.



2936 G. BAO ET AL.

Since 𝑔p𝑥q “
ř

𝑛PZ2 𝑔𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟, we get from taking the second order partial derivatives of 𝑔 that

B2𝑥1
𝑔p𝑥q “ ´

ÿ

𝑛PZ
𝛼2

1𝑛𝑔𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟,

B2𝑥2
𝑔p𝑥q “ ´

ÿ

𝑛PZ
𝛼2

2𝑛𝑔𝑛p𝑥3q𝑒
i𝛼𝑛¨𝑟,

B2𝑥3
𝑔p𝑥q “

ÿ

𝑛PZ
𝑔2𝑛p𝑥3q𝑒

i𝛼𝑛¨𝑟.

Substituting the above three expansions into p𝜆` 2𝜇q
`

∆𝑔 ` 𝜅2
1𝑔
˘

“ ´𝜁 yields

𝑔2𝑛p𝑥3q ´ |𝛼𝑛|
2𝑔𝑛p𝑥3q ` 𝜅

2
1𝑔𝑛p𝑥3q “ ´

1
𝜆` 2𝜇

𝜁𝑛p𝑥3q. (5.27)

Similarly, we may verify that 𝑞𝑗𝑛 satisfies the second ordinary differential equation

𝑞2𝑗𝑛p𝑥3q ´ |𝛼𝑛|
2𝑞𝑗𝑛p𝑥3q ` 𝜅

2
2𝑞𝑗𝑛p𝑥3q “ ´

1
𝜇
𝑍𝑗𝑛p𝑥3q. (5.28)

Letting 𝑝 “
ř

𝑛PZ2
𝑝𝑛p𝑥3q𝑒

i𝛼𝑛¨𝑟 and plugging it into 𝑝 “ ∇𝑔 `∇ˆ 𝑞, we get

»

—

–

𝑝1𝑛p𝑥3q

𝑝2𝑛p𝑥3q

𝑝3𝑛p𝑥3q

fi

ffi

fl

“

»

—

–

i𝛼1𝑛𝑔
p𝑛qp𝑥3q ` i𝛼2𝑛𝑞3𝑛p𝑥3q ´ 𝑞

1
2𝑛p𝑥3q

i𝛼2𝑛𝑔𝑛p𝑥3q ´ i𝛼1𝑛𝑞3𝑛p𝑥3q ` 𝑞
1
1𝑛p𝑥3q

i𝛼1𝑛𝑞2𝑛p𝑥3q ´ i𝛼2𝑛𝑞1𝑛p𝑥3q ` 𝑔
1
𝑛p𝑥3q

fi

ffi

fl

. (5.29)

Substituting the above expressions into the boundary operator (3.13) gives

𝜇B𝑥3𝑝` p𝜆` 𝜇qp0, 0, 1q
J∇ ¨ 𝑝

“
ÿ

𝑛PZ2

𝑒i𝛼𝑛¨𝑟

»

—

–

𝜇𝑝11𝑛

𝜇𝑝12𝑛

𝜇𝑝13𝑛 ` p𝜆` 𝜇qi𝛼1𝑛𝑝1𝑛 ` p𝜆` 𝜇qi𝛼2𝑛𝑝2𝑛 ` p𝜆` 𝜇q𝑝
1
3𝑛

fi

ffi

fl

“
ÿ

𝑛PZ2

𝑒i𝛼𝑛¨𝑟

»

—

–

𝜇pi𝛼1𝑛𝑔
1
𝑛 ` i𝛼2𝑛𝑞

1
3𝑛 ´ 𝑞

2
2𝑛q

𝜇pi𝛼2𝑛𝑔
1
𝑛 ´ i𝛼1𝑛𝑞

1
3𝑛 ` 𝑞

2
1𝑛q

p𝜆` 2𝜇qpi𝛼1𝑛𝑞
1
2𝑛 ´ i𝛼2𝑛𝑞

1
1𝑛 ` 𝑔

2
𝑛q ` p𝜆` 𝜇qpi𝛼1𝑛𝑝1𝑛 ` i𝛼2𝑛𝑝2𝑛q

fi

ffi

fl

“
ÿ

𝑛PZ2

𝑒i𝛼𝑛¨𝑟

»

—

–

i𝜇𝛼1𝑛𝑔
1
𝑛 ` i𝜇𝛼2𝑛𝑞

1
3𝑛 ` 𝑍2𝑛 ` 𝜇

`

𝜅2
2 ´ |𝛼𝑛|

2
˘

𝑞2𝑛

i𝜇𝛼2𝑛𝑔
1
𝑛 ´ i𝜇𝛼1𝑛𝑞

1
3𝑛 ´ 𝑍1𝑛 ´ 𝜇

`

𝜅2
2 ´ |𝛼𝑛|

2
˘

𝑞1𝑛

´𝜁𝑛 ´ p𝜆` 2𝜇q
`

𝜅2
1 ´ |𝛼𝑛|

2
˘

𝑔𝑛 ` i𝜇𝛼1𝑛𝑞
1
2𝑛 ´ i𝜇𝛼2𝑛𝑞

1
1𝑛 ´ p𝜆` 𝜇q|𝛼𝑛|

2𝑔𝑛

fi

ffi

fl

.

Substituting (5.18) and (5.25), (5.26) into the above equation and evaluating it at 𝑥3 “ ℎ, we get

𝐷𝑝 “ 𝜇B𝑥3𝑝` p𝜆` 𝜇qp0, 0, 1q
J∇ ¨ 𝑝

“
ÿ

𝑛PZ2

𝑒i𝛼𝑛¨𝑟

»

—

–

´𝜇𝛼1𝑛𝛼2𝑛 𝜇
`

𝛽2
2𝑛 ´ 𝛼

2
2𝑛

˘

𝜇𝛼1𝑛𝛽1𝑛

´𝜇
`

𝛽2
2𝑛 ´ 𝛼

2
2𝑛

˘

𝜇𝛼1𝑛𝛼2𝑛 𝜇𝛼2𝑛𝛽1𝑛

´𝜇𝛼2𝑛𝛽2𝑛 𝜇𝛼1𝑛𝛽2𝑛 ´𝜇𝜅2
2 ` 𝜇|𝛼𝑛|

2

fi

ffi

fl

»

—

–

𝑞1𝑛pℎq

𝑞2𝑛pℎq

𝑔𝑛pℎq

fi

ffi

fl

.

On the other hand, substituting (5.29) into (3.15) gives

𝑇˚𝑝 “
ÿ

𝑛PZ2

𝑀˚
𝑛𝑝𝑛pℎq𝑒

i𝛼𝑛¨𝑟
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“
ÿ

𝑛PZ2

𝑀˚
𝑛

»

—

–

0 i𝛽2𝑛 i𝛼2𝑛 i𝛼1𝑛

´i𝛽2𝑛 0 ´i𝛼1𝑛 i𝛼2𝑛

´i𝛼2𝑛 i𝛼1𝑛 0 ´i𝛽1𝑛

fi

ffi

fl

»

—

—

—

–

𝑞1𝑛pℎq

𝑞2𝑛pℎq

𝑞3𝑛pℎq

𝑔𝑛pℎq

fi

ffi

ffi

ffi

fl

“
ÿ

𝑛PZ2

𝐾𝑛

»

—

—

—

–

𝑞1𝑛pℎq

𝑞2𝑛pℎq

𝑞3𝑛pℎq

𝑔𝑛pℎq

fi

ffi

ffi

ffi

fl

,

where

𝐾𝑛 “ ´i𝜇

»

—

—

–

0 i𝛽2
2𝑛 i𝛽2𝑛𝛼2𝑛 i𝛽1𝑛𝛼1𝑛

´i𝛽2
2𝑛 0 ´i𝛽2𝑛𝛼1𝑛 i𝛽1𝑛𝛼2𝑛

´i𝛽2𝑛𝛼2𝑛 i𝛽2𝑛𝛼1𝑛 0 ´i𝛽2
2𝑛

fi

ffi

ffi

fl

. (5.30)

It follows from ∇ ¨ 𝑞 “ 0 that

𝑞13𝑛p𝑥3q “ i𝛼1𝑛𝑞1𝑛p𝑥3q ` i𝛼2𝑛𝑞2𝑛p𝑥3q.

Taking the derivative of the above equation and combining the result with (5.28), we get

i𝛼1𝑛𝑞
1
1𝑛p𝑥3q ` i𝛼2𝑛𝑞

1
2𝑛p𝑥3q “ ´

1
𝜇
𝑍3𝑛p𝑥3q ´

`

𝜅2
2 ´ |𝛼𝑛|

2
˘

𝑞3𝑛p𝑥3q. (5.31)

Evaluating 𝑞3𝑛p𝑥3q at 𝑥3 “ ℎ, we have from (5.25) and (5.26) that

´
`

𝜅2
2 ´ |𝛼𝑛|

2
˘

𝑞3𝑛pℎq “ i𝛼1𝑛

`

´i𝛽2𝑛

˘

𝑞1𝑛pℎq ` i𝛼2𝑛

`

´i𝛽2𝑛

˘

𝑞2𝑛pℎq,

which gives

𝑞3𝑛pℎq “ ´
𝛼1𝑛𝛽2𝑛

𝛽2
2𝑛

𝑞1𝑛pℎq ´
𝛼2𝑛𝛽2𝑛

𝛽2
2𝑛

𝑞2𝑛pℎq. (5.32)

Substituting (5.32) into (5.30), we obtain

𝐷𝑝 “ 𝑇˚𝑝 on Γℎ,

which completes the proof. �

Consider the general two-point boundary value problem for the second order ordinary differential equation
#

𝑢2p𝑦q ´ |𝛽|2𝑢p𝑦q “ ´𝑐𝜉, 𝑦 P pℎ̂, ℎq,

𝑢
´

ℎ̂
¯

“ 𝑢
´

ℎ̂
¯

, 𝑢1pℎq “ ´|𝛽|𝑢pℎq,

which has a unique solution given by

𝑢p𝑦q “
1

2|𝛽|

«

´𝑐

ż 𝑦

ℎ

𝑒|𝛽|p𝑦´𝑠q𝜉p𝑠qd𝑠` 𝑐
ż 𝑦

ℎ̂

𝑒|𝛽|p𝑠´𝑦q𝜉p𝑠qd𝑠´ 𝑐
ż ℎ

ℎ̂

𝑒|𝛽|p2ℎ̂´𝑦´𝑠q𝜉p𝑠qd𝑠` 2|𝛽|𝑒|𝛽|pℎ̂´𝑦q𝑢
´

ℎ̂
¯

ff

.

Lemma 5.9. Let 𝑝 “ p𝑝1, 𝑝2, 𝑝3q
J be the solution of (5.23). Then for sufficiently large |𝑛|max, the following

estimate holds:

|𝑝𝑗𝑛pℎq| À |𝑛|max𝑒
|𝛽2𝑛|pℎ̂´ℎq

ÿ

𝑗“1,2,3

|𝑝𝑗𝑛

´

ℎ̂
¯

| `
1

|𝑛|max

ÿ

𝑗“1,2,3

}𝜉𝑗𝑛}𝐿8prℎ̂,ℎsq,

where 𝑝𝑗𝑛 are the Fourier coefficients of 𝑝𝑗 , 𝑗 “ 1, 2, 3.
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Proof. Let 𝑐1 “ 1{p𝜆` 2𝜇q and 𝑐2 “ 1{𝜇. We solve the two-point boundary value problems of (5.27), (5.28)
and get the solutions

𝑔𝑛p𝑥3q “
1

2|𝛽1𝑛|

„

´ 𝑐1

ż 𝑥3

ℎ

𝑒|𝛽1𝑛|p𝑥3´𝑠q𝜁𝑛p𝑠qd𝑠` 𝑐1
ż 𝑥3

ℎ̂

𝑒|𝛽1𝑛|p𝑠´𝑥3q𝜁𝑛p𝑠qd𝑠

´ 𝑐1

ż ℎ

ℎ̂

𝑒|𝛽1𝑛|p2ℎ̂´𝑥3´𝑠q𝜁𝑛p𝑠qd𝑠` 2|𝛽1𝑛|𝑒
|𝛽1𝑛|pℎ̂´𝑥3q𝑔𝑛

´

ℎ̂
¯



, (5.33)

𝑞1𝑛p𝑥3q “
1

2|𝛽2𝑛|

„

´ 𝑐2

ż 𝑥3

ℎ

𝑒|𝛽2𝑛|p𝑥3´𝑠q𝑍1𝑛p𝑠qd𝑠` 𝑐2
ż 𝑥3

ℎ̂

𝑒|𝛽2𝑛|p𝑠´𝑥3q𝑍1𝑛p𝑠qd𝑠

´ 𝑐2

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|p2ℎ̂´𝑥3´𝑠q𝑍1𝑛p𝑠qd𝑠` 2|𝛽2𝑛|𝑒
|𝛽2𝑛|pℎ̂´𝑥3q𝑞1𝑛

´

ℎ̂
¯



, (5.34)

𝑞2𝑛p𝑥3q “
1

2|𝛽2𝑛|

„

´ 𝑐2

ż 𝑥3

ℎ

𝑒|𝛽2𝑛|p𝑥3´𝑠q𝑍2𝑛p𝑠qd𝑠` 𝑐2
ż 𝑥3

ℎ̂

𝑒|𝛽2𝑛|p𝑠´𝑥3q𝑍2𝑛p𝑠qd𝑠

´ 𝑐2

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|p2ℎ̂´𝑥3´𝑠q𝑍2𝑛p𝑠qd𝑠` 2|𝛽2𝑛|𝑒
|𝛽2𝑛|pℎ̂´𝑥3q𝑞2𝑛

´

ℎ̂
¯



. (5.35)

Taking the derivatives of (5.33)–(5.35) and then evaluating at 𝑥3 “ ℎ̂ gives

𝑞11𝑛

´

ℎ̂
¯

“ 𝑐2

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍1𝑛p𝑠qd𝑠´ |𝛽2𝑛|𝑞1𝑛

´

ℎ̂
¯

, (5.36)

𝑞12𝑛

´

ℎ̂
¯

“ 𝑐2

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍2𝑛p𝑠qd𝑠´ |𝛽2𝑛|𝑞2𝑛

´

ℎ̂
¯

, (5.37)

𝑔1𝑛

´

ℎ̂
¯

“ 𝑐1

ż ℎ

ℎ̂

𝑒|𝛽1𝑛|pℎ̂´𝑠q𝜁𝑛p𝑠qd𝑠´ |𝛽1𝑛|𝑔𝑛

´

ℎ̂
¯

. (5.38)

Evaluating (5.31) at 𝑥3 “ ℎ̂ and then using (5.36)–(5.37), we get

𝑞3𝑛

´

ℎ̂
¯

“ ´
i𝛼1𝑛

|𝛽2𝑛|
𝑞1𝑛

´

ℎ̂
¯

´
i𝛼2𝑛

|𝛽2𝑛|
𝑞2𝑛pℎ̂2q `

1
|𝛽2𝑛|

2

1
𝜇
𝑍3𝑛

´

ℎ̂
¯

`
i𝛼1𝑛

|𝛽2𝑛|
2
𝑐2

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍1𝑛p𝑠qd𝑠`
i𝛼2𝑛

|𝛽2𝑛|
2
𝑐2

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍2𝑛p𝑠qd𝑠 (5.39)

Plugging (5.25), (5.26) and (5.31) into (5.29) yields

p𝑝1𝑛pℎq, 𝑝2𝑛pℎq, 𝑝3𝑛pℎqq
J
“

1
|𝛽2𝑛|

𝐾𝑛

´

𝑞1𝑛

´

ℎ̂
¯

, 𝑞2𝑛

´

ℎ̂
¯

, 𝑔𝑛

´

ℎ̂
¯¯J

, (5.40)

where

𝐾𝑛 “

»

—

–

𝛼1𝑛𝛼2𝑛 |𝛽2𝑛|
2 ` 𝛼2

2𝑛 i𝛼1𝑛|𝛽2𝑛|

´|𝛽2𝑛|
2 ´ 𝛼2

1𝑛 ´𝛼1𝑛𝛼2𝑛 i𝛼2𝑛|𝛽2𝑛|

´i𝛼2𝑛|𝛽2𝑛| i𝛼1𝑛|𝛽2𝑛| ´|𝛽1𝑛||𝛽2𝑛|

fi

ffi

fl

.

It follows from a straightforward calculation that the inverse of 𝐾𝑛 is

𝐾´1
𝑛 “

1
|𝛽2𝑛|

2𝜒𝑛p|𝛽2𝑛|
2 ` |𝛼𝑛|

2q
�̂�𝑛, (5.41)

where the entries of the matrix �̂�𝑛 are

�̂�
p𝑛q
11 “ 𝛼1𝑛𝛼2𝑛|𝛽2𝑛|p|𝛽1𝑛| ` |𝛽2𝑛|q, �̂�

p𝑛q
13 “ i𝛼2𝑛|𝛽2𝑛|

`

|𝛽2𝑛|
2 ` |𝛼𝑛|

2
˘

,
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�̂�
p𝑛q
12 “ ´𝛼2

1𝑛|𝛽2𝑛|
2 ` |𝛽1𝑛||𝛽2𝑛|

3 ` 𝛼2
2𝑛|𝛽1𝑛||𝛽2𝑛|,

�̂�
p𝑛q
21 “ 𝛼2

2𝑛|𝛽2𝑛|
2 ´ |𝛽1𝑛||𝛽2𝑛|

3 ´ 𝛼2
1𝑛|𝛽1𝑛||𝛽2𝑛|,

�̂�
p𝑛q
22 “ ´𝛼1𝑛𝛼2𝑛|𝛽2𝑛|p|𝛽1𝑛| ` |𝛽2𝑛|q, �̂�

p𝑛q
23 “ ´i𝛼1𝑛|𝛽2𝑛|

`

|𝛽2𝑛|
2 ` |𝛼𝑛|

2
˘

,

�̂�
p𝑛q
31 “ ´i𝛼1𝑛|𝛽2𝑛|

`

|𝛽2𝑛|
2 ` |𝛼𝑛|

2
˘

, �̂�
p𝑛q
32 “ ´i𝛼2𝑛|𝛽2𝑛|

`

|𝛽2𝑛|
2 ` |𝛼𝑛|

2
˘

,

�̂�
p𝑛q
33 “ |𝛽2𝑛|

2
`

|𝛽2𝑛|
2 ` |𝛼𝑛|

2
˘

.

Evaluating (5.33)–(5.35) at 𝑥3 “ ℎ, we get

»

—

–

𝑞1𝑛pℎq

𝑞2𝑛pℎq

𝑔𝑛pℎq

fi

ffi

fl

“

»

—

—

–

𝑒|𝛽2𝑛|pℎ̂´ℎq 0 0

0 𝑒|𝛽2𝑛|pℎ̂´ℎq 0

0 0 𝑒|𝛽1𝑛|pℎ̂´ℎq

fi

ffi

ffi

fl

»

—

—

—

—

–

𝑞1𝑛

´

ℎ̂
¯

𝑞2𝑛

´

ℎ̂
¯

𝑔𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

`

»

—

–

�̂�1𝑛

�̂�2𝑛

�̂�3𝑛

fi

ffi

fl

, (5.42)

where

�̂�1𝑛 “
𝑐2

2|𝛽2𝑛|

«

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|p𝑠´ℎq𝑍1𝑛p𝑠qd𝑠´
ż ℎ

ℎ̂

𝑒|𝛽2𝑛|p2ℎ̂´ℎ´𝑠q𝑍1𝑛p𝑠qd𝑠

ff

,

�̂�2𝑛 “
𝑐2

2|𝛽2𝑛|

«

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|p𝑠´ℎq𝑍2𝑛p𝑠qd𝑠´
ż ℎ

ℎ̂

𝑒|𝛽2𝑛|p2ℎ̂´ℎ´𝑠q𝑍2𝑛p𝑠qd𝑠

ff

,

�̂�3𝑛 “
𝑐1

2|𝛽1𝑛|

«

ż ℎ

ℎ̂

𝑒|𝛽1𝑛|p𝑠´ℎq𝜁𝑛p𝑠qd𝑠´
ż ℎ

ℎ̂

𝑒|𝛽1𝑛|p2ℎ̂´ℎ´𝑠q𝜁𝑛p𝑠qd𝑠

ff

.

Similarly, we evaluate (5.29) at 𝑥3 “ ℎ̂ and get
»

—

—

—

—

–

𝑝1𝑛

´

ℎ̂
¯

𝑝2𝑛

´

ℎ̂
¯

𝑝3𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

“
1

|𝛽2𝑛|
𝐾𝑛

»

—

—

—

—

–

𝑞1𝑛

´

ℎ̂
¯

𝑞2𝑛

´

ℎ̂
¯

𝑔𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

`

»

—

–

𝑤1𝑛

𝑤2𝑛

𝑤3𝑛

fi

ffi

fl

, (5.43)

where

𝑤1𝑛 “ ´
1

|𝛽2𝑛|
2

ˆ

𝑐2𝛼1𝑛𝛼2𝑛

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍1𝑛p𝑠qd𝑠´ i𝛼2𝑛
1
𝜇
𝑍3𝑛

´

ℎ̂
¯

` 𝑐2
`

|𝛽2𝑛|
2 ` 𝛼2

2𝑛

˘

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍2𝑛p𝑠qd𝑠
˙

,

𝑤2𝑛 “
1

|𝛽2𝑛|
2

ˆ

𝑐2𝛼1𝑛𝛼2𝑛

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍2𝑛p𝑠qd𝑠´ i𝛼1𝑛
1
𝜇
𝑍3𝑛

´

ℎ̂
¯

` 𝑐2
`

|𝛽2𝑛|
2 ` 𝛼2

1𝑛

˘

ż ℎ

ℎ̂

𝑒|𝛽2𝑛|pℎ̂´𝑠q𝑍1𝑛p𝑠qd𝑠
˙

,

𝑤3𝑛 “ 𝑐1

ż ℎ

ℎ̂

𝑒|𝛽1𝑛|pℎ̂´𝑠q𝜁𝑛p𝑠q d𝑠.

It follows from (5.41) that we have
»

—

—

—

—

–

𝑞1𝑛

´

ℎ̂
¯

𝑞2𝑛

´

ℎ̂
¯

𝑔𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

“ |𝛽2𝑛|𝐾
´1
𝑛

»

—

—

—

—

–

𝑝1𝑛

´

ℎ̂
¯

𝑝2𝑛

´

ℎ̂
¯

𝑝3𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

´ |𝛽2𝑛|𝐾
´1
𝑛

»

—

–

𝑤1𝑛

𝑤2𝑛

𝑤3𝑛

fi

ffi

fl

. (5.44)
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Substituting (5.42) into (5.40) leads to
»

—

–

𝑝1𝑛pℎq

𝑝2𝑛pℎq

𝑝3𝑛pℎq

fi

ffi

fl

“
1

|𝛽2𝑛|
𝐾𝑛

»

—

–

𝑞1𝑛pℎq

𝑞2𝑛pℎq

𝑔𝑛pℎq

fi

ffi

fl

“
1

|𝛽2𝑛|
𝐾𝑛

»

—

—

–

𝑒|𝛽2𝑛|pℎ̂´ℎq 0 0

0 𝑒|𝛽2𝑛|pℎ̂´ℎq 0

0 0 𝑒|𝛽1𝑛|pℎ̂´ℎq

fi

ffi

ffi

fl

»

—

—

—

—

–

𝑞1𝑛

´

ℎ̂
¯

𝑞2𝑛

´

ℎ̂
¯

𝑔𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

`
1

|𝛽2𝑛|
𝐾𝑛

»

—

–

�̂�1𝑛

�̂�2𝑛

�̂�3𝑛

fi

ffi

fl

.

Plugging (5.44) into the above equation gives

»

—

–

𝑝1𝑛pℎq

𝑝2𝑛pℎq

𝑝3𝑛pℎq

fi

ffi

fl

“ 𝑃𝑛

»

—

—

—

—

–

𝑝1𝑛

´

ℎ̂
¯

𝑝2𝑛

´

ℎ̂
¯

𝑝3𝑛

´

ℎ̂
¯

fi

ffi

ffi

ffi

ffi

fl

´ 𝑃𝑛

»

—

–

𝑤1𝑛

𝑤2𝑛

𝑤3𝑛

fi

ffi

fl

`
1

|𝛽2𝑛|
𝐾𝑛

»

—

–

�̂�1𝑛

�̂�2𝑛

�̂�3𝑛

fi

ffi

fl

, (5.45)

where the matrix 𝑃𝑛 is given in (5.7).
Following the same proof as that for Lemma 5.8 of [32], we may show that

|�̂�𝑗𝑛| À
1

|𝑛|2max

ÿ

𝑗“1,2,3

}𝜉𝑗𝑛}𝐿8prℎ̂,ℎsq, |𝑤𝑗𝑛| À
1

|𝑛|2max

ÿ

𝑗“1,2,3

}𝜉𝑗𝑛}𝐿8prℎ̂,ℎsq. (5.46)

By (5.10) and (5.46), we have
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝑗“1,2,3

𝑃
p𝑛q
𝑖𝑗 𝑤𝑗𝑛

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|𝑛|max
𝑒p|𝛼𝑛|´|𝛽2𝑛|qpℎ´ℎ̂q

ÿ

𝑗“1,2,3

}𝜉𝑗𝑛}𝐿8prℎ̂,ℎsq. (5.47)

For sufficiently large |𝑛|max, it is easy to get

|𝛼𝑛| ´ |𝛽2𝑛| “ |𝛼𝑛| ´
`

|𝛼𝑛|
2 ´ 𝜅2

2

˘1{2
“

𝜅2
2

|𝛼𝑛| ` p|𝛼𝑛|
2 ´ 𝜅2

2q
1{2

„
1

|𝑛|max
¨

Plugging the above estimate into (5.47) gives
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝑗“1,2,3

𝑃
p𝑛q
𝑖𝑗 𝑤𝑗𝑛

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|𝑛|max

ÿ

𝑗“1,2,3

}𝜉𝑗𝑛}𝐿8prℎ̂,ℎsq. (5.48)

It is also easy to check
ˇ

ˇ

ˇ

ˇ

1
|𝛽2𝑛|

𝐾𝑛

ˇ

ˇ

ˇ

ˇ

„ 𝑂p|𝑛|maxq.

By (5.46), we have
1

|𝛽2𝑛|

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝑗“1,2,3

𝐾
p𝑛q
𝑖𝑗 �̂�𝑗𝑛

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|𝑛|max

ÿ

𝑗“1,2,3

}𝜉𝑗𝑛}𝐿8prℎ̂,ℎsq, (5.49)

which completes the proof after substituting (5.10) and (5.48), (5.49) into (5.45). �
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Using Lemma 5.9 and the same arguments as those in [32], we may show that
ˇ

ˇ

ˇ

ˇ

ż

Γℎ

p𝑇 ´ 𝑇𝑁 q𝜉 ¨ 𝑝d𝑠
ˇ

ˇ

ˇ

ˇ

À
1
𝑁
}𝜉}2𝐻1pΩq. (5.50)

The details are omitted for brevity.
Now we are ready to show the proof of Theorem 5.1.

Proof. By (5.3), Lemmas 5.4 and 5.6, we obtain

~𝜉~2
𝐻1pΩq ď 𝐶1

«˜

ÿ

𝐾Pℳℎ

𝜂2
𝐾

¸1{2

` max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq

` }𝑢inc ´ 𝑔ℎ}𝐻1{2p𝑆q

ff

}𝜉}𝐻1pΩq ` p𝐶2 ` 𝐶p𝛿qq}𝜉}
2
𝐿2pΩq ` 𝛿}𝜉}

2
𝐻1pΩq,

where 𝐶1, 𝐶2, 𝐶p𝛿q are positive constants. Choosing a small enough 𝛿 such that 𝛿{minp𝜇, 𝜔2q ă 1{2 gives

~𝜉~2
𝐻1pΩq ď 2𝐶1

«˜

ÿ

𝐾Pℳℎ

𝜂2
𝐾

¸1{2

` max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq

` }𝑢inc ´ 𝑔ℎ}𝐻1{2p𝑆q

ff

}𝜉}𝐻1pΩq ` 2p𝐶2 ` 𝐶p𝛿qq}𝜉}
2
𝐿2pΩq. (5.51)

Substituting (5.50) into (5.15) and using Lemma 5.4, we have

}𝜉}2𝐿2pΩq À

«˜

ÿ

𝐾Pℳℎ

𝜂2
𝐾

¸1{2

` max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq

` }𝑢inc ´ 𝑔ℎ}𝐻1{2p𝑆q

ff

}𝜉}𝐻1pΩq `
1
𝑁
}𝜉}2𝐻1pΩq. (5.52)

The proof is completed after substituting (5.52) into (5.51) and taking 𝑁 be a sufficiently large number. �

6. Numerical experiments

In this section, we introduce the algorithmic implementation of the adaptive finite element DtN method and
present two numerical examples to demonstrate the effectiveness of the proposed method.

6.1. Adaptive algorithm

It is shown in Theorem 5.1 that the a posteriori error consists of two parts: the finite element discretization
error 𝜖ℎ and the DtN operator truncation error 𝜖𝑁 , where

𝜖ℎ “

˜

ÿ

𝐾Pℳℎ

𝜂2
𝐾

¸1{2

` }𝑢inc ´ 𝑔ℎ}𝐻1{2p𝑆q,

𝜖𝑁 “ max
|𝑛|miną𝑁

´

|𝑛|max𝑒
´|𝛽2𝑛|pℎ´ℎ̂q

¯

}𝑢inc}𝐻1pΩq.

(6.1)

In the implementation, we choose the parameters ℎ, ℎ̂ and 𝑁 based on (6.1) to make sure that the DtN operator
truncation error is smaller than the finite element discretization error. In the following numerical experiments,
ℎ̂ is chosen such that ℎ̂ “ max𝑟PR2 𝑓p𝑟q and 𝑁 is the smallest positive integer that makes 𝜖𝑁 ď 10´8. The
adaptive finite element DtN algorithm is shown in Table 1.
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Table 1. The adaptive finite element DtN method.

(1) Given the tolerance 𝜖 ą 0 and the parameter 𝜏 P p0, 1q.
(2) Fix the computational domain Ω by choosing ℎ.

(3) Choose ℎ̂ and 𝑁 such that 𝜖𝑁 ď 10´8.
(4) Construct an initial triangulationℳℎ over Ω and compute error estimators.
(5) While 𝜖ℎ ą 𝜖 do
(6) refine meshℳℎ according to the following strategy:

if 𝜂�̂� ą 𝜏 max
𝐾Pℳℎ

𝜂𝐾 , refine the element �̂� Pℳℎ,

(7) denote refined mesh still byℳℎ, solve the discrete problem (4.3) on the new meshℳℎ,
(8) compute the corresponding error estimators.
(9) End while.

6.2. Numerical examples

In this section, we present two examples (cf. [28]) to demonstrate the numerical performance of the DtN
method. The first-order linear element is used for solving the problem. Our implementation is based on parallel
hierarchical grid (PHG) [36], which is a toolbox for developing parallel adaptive finite element programs on
unstructured tetrahedral meshes. The linear system resulted from the finite element discretization is solved by
the Supernodal LU (SuperLU) direct solver, which is a general purpose library for the direct solution of large,
sparse, nonsymmetric systems of linear equations.

Example 6.1. Consider a simple biperiodic structure, a plane surface, where the exact solution is available.
We assume that a plane compressional plane wave 𝑢inc “ 𝑞𝑒ip𝛼¨𝑟´𝛽𝑥3q is incident on the plane surface 𝑥3 “ 0,
where 𝛼 “ p𝛼1, 𝛼2q

J, 𝑞 “ p𝑞1, 𝑞2, 𝑞3q
J with

𝛼1 “ 𝜅1 sin 𝜃1 cos 𝜃2, 𝛼2 “ 𝜅1 sin 𝜃1 sin 𝜃2, 𝛽 “ 𝜅1 cos 𝜃1,
𝑞1 “ sin 𝜃1 cos 𝜃2, 𝑞2 “ sin 𝜃1 sin 𝜃2, 𝑞3 “ ´ cos 𝜃1.

Here 𝜃1 P r0, 𝜋{2q, 𝜃2 P r0, 2𝜋s are incident angles. It follows from the elastic wave equation and the Helmholtz
decomposition that we may obtain the exact solution for the scattered field

𝑢p𝑥q “ i

»

—

–

𝛼1

𝛼2

𝛽

fi

ffi

fl

𝑎𝑒ip𝛼¨𝑟`𝛽𝑥3q ` i

»

—

–

𝛼2𝑏3 ´ 𝛽20𝑏2

𝛽20𝑏1 ´ 𝛼1𝑏3

𝛼1𝑏2 ´ 𝛼2𝑏1

fi

ffi

fl

𝑒ip𝛼¨𝑟`𝛽20𝑥3q,

where

𝑎 “
i
𝜒
p𝛼1𝑞1 ` 𝛼2𝑞2 ` 𝛽20𝑞3q,

𝑏1 “
i
𝜒

`

𝛼1𝛼2p𝛽 ´ 𝛽20q𝑞1{𝜅
2
2 `

`

𝛼2
1𝛽20 ` 𝛼

2
2𝛽 ` 𝛽𝛽

2
20

˘

𝑞2{𝜅
2
2 ´ 𝛼2𝑞3

˘

,

𝑏2 “
i
𝜒

`

´
`

𝛼2
1𝛽 ` 𝛼

2
2𝛽20 ` 𝛽𝛽

2
20

˘

𝑞1{𝜅
2
2 ´ 𝛼1𝛼2p𝛽 ´ 𝛽20q𝑞2{𝜅

2
2 ` 𝛼1𝑞3

˘

,

𝑏3 “
i
𝜅2

2

p𝛼2𝑞1 ´ 𝛼1𝑞2q,

where
𝜒 “ |𝛼|2 ` 𝛽𝛽20.
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Figure 2. Example 6.1: The mesh and surface plots of the amplitude of the associated solution
for the scattered field 𝑢ℎ. Left: amplitude of the real part of the solution |ℜ𝑢ℎ|; right: amplitude
of the imaginary part of the solution |ℑ𝑢ℎ|.

Figure 3. Example 6.1: Left: grating efficiencies; right: error of the grating efficiency.

In our experiments, the parameters are chosen as 𝜆 “ 1, 𝜇 “ 1, 𝜃1 “ 𝜃2 “ 𝜋{6, 𝜔 “ 2𝜋. The computational
domain Ω “ p0, 1q ˆ p0, 1q ˆ p0, 0.3q. The mesh and surface plots of the amplitude of the scattered field 𝑣ℎ

are shown in Figure 2. The mesh has 228 400 tetrahedrons and the total number of degrees of freedom (DoFs)
on the mesh is 253 200. The grating efficiencies are displayed in Figure 3, which verifies the conservation of
the energy in Theorem 2.1 of [28]. Figure 4 shows the curves of log }∇p𝑢 ´ 𝑢𝑘q}0,Ω versus log𝑁𝑘 for both
the a priori and the a posteriori error estimates with different frequencies, where 𝑁𝑘 is the total number of
DoFs of the mesh. It indicates that the meshes and the associated numerical complexity are quasi-optimal, i.e.,
log }∇p𝑢´𝑢𝑘q}0,Ω “ 𝑂p𝑁

´1{3
𝑘 q is valid asymptotically. But the results also show that is is less accurate to solve

the problem with a higher frequency as the solution becomes more oscillatory.

Example 6.2. This example concerns the scattering of a time-harmonic compressional plane wave 𝑢inc on a
flat grating surface with two square bumps, as seen in Figure 5. The parameters are chosen as 𝜆 “ 1, 𝜇 “ 1, 𝜃1 “
𝜃2 “ 𝜋{6, 𝜔 “ 2𝜋. The computational domain is Ω “ p0, 1q ˆ p0, 1q ˆ p0, 0.6q. Since there is no exact solution
for this example, we plot in Figure 6 the curves of log }∇p𝑢 ´ 𝑢𝑘q}0,Ω versus log𝑁𝑘 for the a posteriori error
estimates with different frequencies, where 𝑁𝑘 is the total number of DoFs of the mesh. Again, the result shows
that the meshes and the associated numerical complexity are quasi-optimal for the proposed method; but it is
less accurate to solve the higher frequency problem. We also plot the grating efficiencies against the DoFs in
Figure 7 to verify the conservation of the energy. Figures 8 and 9 show the meshes and the amplitude of the
associated solution for the scattered field 𝑢ℎ when the mesh has 346 734 tetrahedrons.
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Figure 4. Example 6.1: Left: quasi-optimality of the a priori error estimates; right: quasi-
optimality of the a posteriori error estimates.

Figure 5. Example 6.2: Problem geometry of the domain.

Figure 6. Example 6.2: Quasi-optimality of the a posteriori error estimates.
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Figure 7. Example 6.2: Left: grating efficiencies; right: error of the grating efficiency.

Figure 8. Example 6.2: The mesh and surface plots of the amplitude of the associated solution
for the scattered field 𝑢ℎ: left: amplitude of the real part of the solution |ℜ𝑢ℎ|; right: the
amplitude of the imaginary part of the solution |ℑ𝑢ℎ|.

Figure 9. Example 6.2: The mesh and surface plots of the amplitude of the associated solution
for the scattered field 𝑣ℎ from a view of the 𝑥3-axis: left: amplitude of the real part of the solution
|ℜ𝑣ℎ|; right: amplitude of the imaginary part of the solution |ℑ𝑣ℎ|.
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7. Conclusion

In this paper, we have presented an adaptive finite element DtN method for the elastic scattering problem in
bi-periodic structures. Based on the Helmholtz decomposition, a new duality argument is developed to obtain the
a posteriori error estimate. It takes account of both the finite element discretization error and the DtN operator
truncation error, which is shown to decay exponentially with respect to the truncation parameter. Numerical
results show that the proposed method is effective and accurate. This work provides a viable alternative to the
adaptive finite element PML method for solving the elastic surface scattering problem. It also enriches the range
of choices available for solving elastic wave propagation problems imposed in unbounded domains. Along the
line of this work, a possible continuation is to extend our analysis to the adaptive finite element DtN method for
solving the three-dimensional obstacle scattering problem and acoustic-elastic interactive problem. The progress
will be reported elsewhere on these problems in the future.
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