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The paper is concerned with the three-dimensional electromagnetic scattering from a large 
open rectangular cavity that is embedded in a perfectly electrically conducting infinite 
ground plane. By introducing a transparent boundary condition, the scattering problem is 
formulated into a boundary value problem in the bounded cavity. Based on the Fourier 
expansions of the electric field, the Maxwell equation is reduced to one-dimensional 
ordinary differential equations for the Fourier coefficients. A fast algorithm, employing the 
fast Fourier transform and the Gaussian elimination, is developed to solve the resulting 
linear system for the cavity which is filled with either a homogeneous or a layered 
medium. In addition, a novel scheme is designed to evaluate rapidly and accurately the 
Fourier transform of singular integrals. Numerical experiments are presented for large 
cavities to demonstrate the superior performance of the proposed method.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The electromagnetic scattering from large cavities has received much attention in both engineering and mathematical 
communities due to its significant industrial and military applications [4,7,13,16,10]. For instance, the radar cross section 
(RCS) measures the detectability of a target by a radar system. In practice, the cavity RCS caused by objects such as jet 
engine inlet ducts, exhaust nozzles and cavity-backed antennas can dominate the total RCS. Therefore, mathematical and 
computational methods to accurately predict the cavity RCS are important for the enhancement or reduction of the total 
RCS [5,6]. Another example is the non-destructive testing to determine the shape of a cavity embedded in a known object. 
In these applications, it has played a crucial role to have an efficient forward solver for the optimal design problems of 
reducing or enhancing the cavity RCS and the inverse problems of determining an unknown cavity.

A variety of numerical methods, including finite difference methods, finite element methods, the moment methods, 
boundary element methods, and hybrid methods, have been developed to solve the open cavity problems [14,24,29,26,27,
12,18,25], In particular, Bao and Sun [7] proposed a finite difference based fast algorithm for the two-dimensional electro-
magnetic scattering from large cavities. In the algorithm, an FFT-sine transform in the horizontal direction and the Gaussian 
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elimination along the vertical direction were used to reduce the global system to a much smaller system imposed only on 
the open aperture of the cavity. As an extension of this method, a tensor product finite element method was proposed in 
[10] by employing piecewise polynomials of degree k ≥ 1 to approximate the solution space of the cavity problem. In [31], 
a fourth order finite difference scheme was developed to discrete the cavity scattering problem in the rectangular domain 
and to reach a global fourth order convergence in the whole computational domain by a special treatment on the boundary 
condition. Since the resulting linear system obtained from the cavity problem is usually indefinite and ill-conditioned, con-
vergence of iterative methods such as GMRES is very slow. Different kinds of preconditioners were proposed to accelerate 
the convergence [7,10,31,9,32]. On the other hand, a fast direct solver based on hierarchical matrix factorization technique 
was used to solve the two-dimensional electromagnetic scattering from an arbitrarily shaped cavity[16]. It was shown that 
the linear system resulted from the integral equation method can be solved in nearly linear time. The method was ex-
tended to the scattering of three-dimensional axis-symmetric cavities in [17]. We refer to [15] for the motivation, modeling, 
computation, as well as related references on the open cavity scattering problems.

It is worth mentioning that the computation is extremely challenging when the cavities are large compared to the 
wavelength of the incident wave because of the highly oscillatory nature of the fields. For such a high frequency scattering 
problem, it is shown that the ratio of the error by the usual Galerkin type method and the error of the best approximation 
tends to infinity as the wave number increases [3,2]. Due to these difficulties, the discretization by conventional numerical 
methods becomes very expensive for the large cavity scattering problems especially in three dimensions. In this paper, 
we intend to develop a fast algorithm for solving the three-dimensional electromagnetic scattering from large rectangular 
cavities embedded in an infinite perfectly electrically conducting ground plane.

More specifically, we consider the three-dimensional Maxwell equations along with the Silver–Müller radiation condition 
imposed at infinity. By using the dyadic Green’s function in the half space, we first derive an exact transparent boundary 
condition (TBC) on the open aperture of the cavity. As a result, the original scattering problem is formulated equivalently to 
a boundary value problem of Maxwell equations in a bounded domain. We refer to [1] for the mathematical study on the 
well-posedness of the cavity problem for Maxwell’s equations. Secondly, we introduce the Fourier series expansion of the 
electric field inside the cavity. By such an expansion, the governing Maxwell equations can be reduced to one-dimensional 
ordinary differential equations with respect to the vertical direction. A second-order finite difference scheme is adopted to 
solve the ordinary differential systems. A fast algorithm, based on the fast Fourier transform in the horizontal directions 
and the Gaussian elimination along the vertical direction, is developed to solve the linear system arising from scattering of 
large cavities which may be filled with a homogeneous medium or a vertically layered medium. Moreover, we reduce the 
global system to a linear system on the open aperture of the cavity only and design a novel scheme to evaluate rapidly and 
accurately the singular integrals appeared in the transparent boundary condition. Numerical results show that our algorithm 
is very efficient in terms of computational cost.

The paper is organized as follows. In Section 2, we describe the problem formulation of the electromagnetic scattering by 
a rectangular cavity which is filled with a homogeneous medium. The governing Maxwell equations along with the Silver–
Müller radiation condition are introduced. The TBC is presented to reduce the unbounded scattering problem to a boundary 
value problem formulated in the bounded cavity. The details of the fast algorithm are given in Section 3. Section 4 is devoted 
to an extension of the fast algorithm to the scattering of a cavity which is filled with a layered medium. Section 5 proposes 
an FFT based efficient algorithm to evaluate the singular integrals arising from the nonlocal TBC on the open aperture of 
the cavity. Analysis on the computational complexity for the fast algorithm is discussed in Section 6. Numerical examples 
are presented in Section 7 to demonstrate the performance of the proposed algorithm. The paper is concluded with some 
general remarks in Section 8.

2. Problem formulation

Consider the incidence of a time-harmonic electromagnetic wave on a rectangular cavity D ⊂ R3, which is embedded 
in the infinite ground plane �g . The problem geometry is shown in Fig. 1. The cavity wall S and the ground plane �g are 
assumed to be perfect electric conductors. We also assume that the open aperture � = [0, a] × [0, b] is aligned with the 
ground plane �g and the depth of the cavity is c. The half space above the ground and the cavity are assumed to be filled 
with some homogeneous material with a constant electric permittivity ε0 and a constant magnetic permeability μ0. Let B+

R
be a half-ball above the ground plane with hemisphere �+

R as part of the boundary, where the radius R is large enough so 
that �+

R covers the open aperture �. It is clear to note that the full boundary of ∂ B+
R consists of the hemisphere �+

R , the 
open aperture �, and a part of the ground plane �g . Without confusion, we simply denote ∂ B+

R = �+
R ∪ � ∪ �g .

The total electric and magnetic fields (E, H) consist of the incident waves (E inc, H inc), the reflected waves (Eref, H ref)

due to the infinite ground plane, and the scattered wave (Es, H s) because of the open cavity. The total fields E and H
satisfy Maxwell’s equations in R3+ ∪ D:

∇ × E = iωμ0 H , ∇ × H = −iωε0 E, (2.1)

where ω > 0 is the angular frequency. Since the ground plane and the cavity wall are perfect conductors, we have

ν × E = 0 on �g ∪ S, (2.2)
2
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Fig. 1. The problem geometry of the electromagnetic scattering by a rectangular cavity.

where ν is the unit normal vector on �g and S .
The incident electromagnetic plane waves (E inc, H inc) are given as

E inc = peiq·x, H inc = seiq·x, s = q × p

ωμ0
, p · q = 0,

where x = (x1, x2, x3) ∈R3, p = (p1, p2, p3) and s = (s1, s2, s3) are the polarization vectors, q = (α1, α2, −β) with β ≥ 0 is 
the propagation direction vector. It is easy to verify that the incident electromagnetic fields (E inc, H inc) satisfy the Maxwell 
equation (2.1) in R3+ .

Due to the infinite ground plane, the reflected fields (E ref, H ref) can be explicitly written as

Eref = p∗eiq∗·x, H ref = s∗eiq∗·x, s∗ = q∗ × p∗

ωμ0
, p∗ · q∗ = 0,

where p∗ = (−p1, −p2, p3) and q∗ = (α1, α2, β). Evidently, the reflected fields (Eref, H ref) also satisfy the Maxwell equation 
(2.1) in R3+ . In particular, the following homogeneous Dirichlet boundary condition is satisfied for the incident and reflected 
electric fields on the ground plane:

ν × (E inc + Eref) = 0 on �g .

It follows from (2.1) and the incident and reflected electromagnetic fields that the scattered electromagnetic fields 
(Es, H s) also satisfy the Maxwell equation

∇ × Es = iωμ0 H s, ∇ × H s = −iωε0 Es, x ∈R3+, (2.3)

and the homogeneous Dirichlet boundary condition

ν × E s = 0 on �g . (2.4)

In addition, the scattered field (Es, H s) are required to satisfy the Silver–Müller radiation condition:

√
ε0 Es − √

μ0 H s × x̂ = o(|x|−1), |x| → ∞, (2.5)

where x̂ = x/|x|. By eliminating the scattered magnetic field in (2.3), the scattered electric field satisfies

∇ × (∇ × Es) − κ2
0 Es = 0 in R3+, (2.6)

where κ0 = ω
√

ε0μ0 is the wavenumber.
In order to derive a transparent boundary condition on the open aperture �, we introduce the half-space dyadic Green’s 

function ¯̄Ge(x, y), which is given by

¯̄Ge(x, y) = ¯̄G0(x, y) − ¯̄G0(x, yi) + 2ẑ ẑg(x, yi), (2.7)

where

¯̄G0(x, y) =
(¯̄I − 1

κ2
0

∇x∇y

)
g(x, y), (2.8)

is the free space dyadic Green’s function, ¯̄I = x̂x̂ + ŷ ŷ + ẑ ẑ is the 3 × 3 identity matrix, and
3
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g(x, y) = eiκ0|x−y|

4π |x − y| , (2.9)

is the free space Green’s function for the three-dimensional Helmholtz equation. Here yi = y1x̂ + y2 ŷ − y3 ẑ denotes the 
image point of y = y1x̂ + y2 ŷ + y3 ẑ, and x̂, ŷ, ̂z are the unit vectors in the x1, x2, x3 axis, respectively.

The half-space dyadic Green’s function satisfies the Maxwell equation

∇ × (∇ × ¯̄Ge(x, y)
) − κ2

0
¯̄Ge(x, y) = ¯̄Iδ(x − y) in R3+, (2.10)

and the Dirichlet boundary condition

ν × ¯̄Ge(x, y) = 0 on �g ∪ �, (2.11)

where δ is the Dirac delta function. Furthermore, the half-space dyadic Green’s function satisfies the Silver–Müller radiation 
condition.

Next, we present the transparent boundary condition. Multiplying both sides of (2.6) by the half-space dyadic Green’s 
function and integrating over B+

R , we obtain∫
B+

R

((∇x × ∇x × Es(x)
) · ¯̄Ge(x, y) − κ2

0 Es(x) · ¯̄Ge(x, y)
)

dx = 0.

It follows from the second vector Green’s theorem that∫
B+

R

Es(x) ·
(
∇x × ∇x × ¯̄Ge(x, y) − κ2

0
¯̄Ge(x, y)

)
dx

= −
∫

�+
R ∪�∪�g

((
ν × Es(x)

) · (∇x × ¯̄Ge(x, y)
) − (

ν × ¯̄Ge(x, y)
) · (∇x × Es(x)

))
dsx. (2.12)

Since the scattered field Es(x) and the half-space dyadic Green’s function satisfy the Silver–Müller radiation condition, we 
get ∫

�+
R

((
ν × Es(x)

) · (∇x × ¯̄Ge(x, y)
) − (

ν × ¯̄Ge(x, y)
) · (∇x × Es(x)

))
dsx = 0. (2.13)

Combining (2.4) and (2.11) gives∫
�g

((
ν × Es(x)

) · (∇x × ¯̄Ge(x, y)
) − (

ν × ¯̄Ge(x, y)
) · (∇x × Es(x)

))
dsx = 0 (2.14)

and ∫
�

(
ν × ¯̄Ge(x, y)

) · (∇x × Es(x)
)
dsx = 0. (2.15)

Using (2.12)–(2.15) yields∫
B+

R

Es(x) ·
(
∇x × ∇x × · ¯̄Ge(x, y) − κ2

0
¯̄Ge(x, y)

)
dx

= −
∫
�

(
ν × Es(x)

) · (∇x × ¯̄Ge(x, y)
)
dsx. (2.16)

Substituting (2.10) into (2.16) and switching variables x and y, we get

Es(x) = −
∫
�

(
ν × Es(y)

) · (∇y × ¯̄Ge(x, y)
)
ds y .

Noting ν = −ẑ gives

Es(x) =
∫ (

ẑ × Es(y)
) · (∇y × ¯̄Ge(x, y)

)
ds y .
�

4
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It follows from Es = E − E inc − Eref and ẑ × (E inc + Eref) = 0 on � that

E = E inc + Eref +
∫
�

(
ẑ × E(y)

) · (∇y × ¯̄Ge(x, y)
)
ds y . (2.17)

Substituting (2.7) into (2.17), we obtain

E = E inc + Eref + 2
∫
�

(
ẑ × E(y)

) · (∇y × ¯̄G0(x, y)
)
ds y . (2.18)

Taking curl on the both sides of (2.18) yields

∇x × E = ∇x × E inc + ∇x × Eref − 2κ2
0

∫
�

(
ẑ × E(y)

) · ¯̄G0(x, y)ds y . (2.19)

Substituting (2.8) into (2.19), we get

(∇x × E
) = ∇x × E inc + ∇x × Eref − 2κ2

0

∫
�

(
ẑ × E(y)

)
g(x, y)ds y

+ 2
(
∇x

∫
�

(
ẑ × E(y)

) · (∇y g(x, y)
)
ds y

)
.

For a continuous differential function u defined in a neighborhood of �, define the surface gradient on � by

∇�u = (ν × ∇u) × ν.

Moreover, we have the decomposition

∇u = ∇�u + ∂u

∂ν
ν, (2.20)

where ∂u
∂ν is the normal derivative on �. Let v be a tangent vector on �, then we have∫

�

udiv�vds = −
∫
�

∇�u · vds. (2.21)

Using (2.20)–(2.21) and taking the limit x3 → 0+, we obtain the following transparent boundary condition (TBC):

ẑ × (∇x × E
) = T (E) + g on �, (2.22)

where g = ẑ × (∇x × E inc
) + ẑ × (∇x × Eref

)
and

T (E) = −2κ2
0 ẑ ×

∫
�

(
ẑ × E(y)

)
g(x, y)ds y − 2ẑ ×

(
∇x

∫
�

div�

(
ẑ × E(y)

)
g(x, y)ds y

)
.

Then, by eliminating the magnetic field in (2.1) and using the TBC (2.22), the scattering problem (2.1)–(2.2) can be reduced 
to an equivalent boundary value problem in the cavity D:⎧⎪⎪⎨

⎪⎪⎩
∇ × (∇ × E) − κ2

0 E = 0 in D,

ν × E = 0 on S,

ẑ × (∇x × E
) = T (E) + g on �.

(2.23)

3. Discretization and fast algorithm

In this section, we present the numerical discretization to the Maxwell equation and the TBC, and a fast algorithm for 
the resulting system.

Let E = (E1, E2, E3). On the plane surfaces x1 = 0 and x1 = a, the unit outward normal vectors are (−1, 0, 0) and (1, 0, 0), 
respectively. Using the boundary condition in (2.23), we get the homogeneous Dirichlet boundary condition for E2 and E3:

E2(0, x2, x3) = E2(a, x2, x3), E3(0, x2, x3) = E3(a, x2, x3). (3.1)
5
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Recall the divergence free condition on the surface:

∇ · E = ∂x1 E1 + ∂x2 E2 + ∂x3 E3 = 0,

which, together with (3.1), implies the homogeneous Neumann boundary condition for E1:

∂x1 E1(0, x2, x3) = ∂x1 E1(a, x2, x3) = 0. (3.2)

Similarly, on the plane surfaces x2 = 0 and x2 = b, the unit outward normal vectors are (0, −1, 0) and (0, 1, 0), respectively. 
Using the boundary condition in (2.23), we have the homogeneous Dirichlet boundary condition for E1 and E3:

E1(x1,0, x3) = E1(x1,b, x3), E3(x1,0, x3) = E3(x1,b, x3). (3.3)

Using (3.3) and the divergence free condition again gives the homogeneous Neumann boundary condition for E2:

∂x2 E2(x1,0, x3) = ∂x2 E2(x1,b, x3) = 0. (3.4)

By the boundary conditions (3.1)–(3.4), it is easy to show that E j, j = 1, 2, 3 admits the following Fourier series expansions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1(x1, x2, x3) =
∑

k∈N2

E(k)
1 (x3) cos

(k1πx1

a

)
sin

(k2πx2

b

)
,

E2(x1, x2, x3) =
∑

k∈N2

E(k)
2 (x3) sin

(k1πx1

a

)
cos

(k2πx2

b

)
,

E3(x1, x2, x3) =
∑

k∈N2

E(k)
3 (x3) sin

(k1πx1

a

)
sin

(k2πx2

b

)
,

(3.5)

where k = (k1, k2) ∈N2.
By the vector identity ∇ × (∇ × E) = −�E +∇(∇ · E) and the divergence free condition ∇ · E = 0, the Maxwell equation 

in (2.23) can be reduced to the vector Helmholtz equation

�E + κ2
0 E = 0 in D. (3.6)

Using the boundary condition in (2.23) and the divergence free condition on the plane surfaces x3 = −c, we get the homo-
geneous Dirichlet boundary condition

E1(x1, x2,−c) = E2(x1, x2,−c) = 0 (3.7)

and the homogeneous Neumann boundary condition

∂x3 E3(x1, x2,−c) = 0. (3.8)

Substituting (3.5) into (3.6)–(3.8), we may get the second order ordinary differential equations for the Fourier coefficients 
E(m,n)

l , l = 1, 2:⎧⎪⎨
⎪⎩

d2

dx2
3

E(m,n)

l (x3) +
(
κ2

0 − (mπ

a

)2 − (nπ

b

)2
)

E(m,n)

l (x3) = 0, x3 ∈ (−c,0),

E(m,n)

l (−c) = 0,

(3.9)

where (m, n) ∈N2
l , and the second order ordinary differential equations for the Fourier coefficients E(m,n)

3 :⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2

dx2
3

E(m,n)
3 (x3) +

(
κ2

0 − (mπ

a

)2 − (nπ

b

)2
)

E(m,n)
3 (x3) = 0, x3 ∈ (−c,0),

d

dx3
E(m,n)

3 (−c) = 0,

(3.10)

where (m, n) ∈N2
3 . Here N2

1 = {0, 1, 2, · · · , M} ×{1, 2, · · · , N}, N2
2 = {1, 2, · · · , M} ×{0, 1, 2, · · · , N} and N2

3 = {1, 2, · · · , M}
× {1, 2, · · · , N}, M and N are the finite truncation numbers of the Fourier series.

Let {x j
3} j= J+1

j=0 be a set of uniformly distributed grid points of [−c, 0] with x j+1
3 − x j

3 = h. Let E(m,n)

l, j be the finite difference 

solution of E(m,n)
(x3), l = 1, 2, 3 at the point x3 = x j . The discrete finite difference systems for (3.9)–(3.10) are
l 3

6
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⎧⎪⎨
⎪⎩

E(m,n)

l, j−1 − 2E(m,n)

l, j + E(m,n)

l, j+1

h2
+

(
κ2

0 − (mπ

a

)2 − (nπ

b

)2
)

E(m,n)

l, j = 0, j = 1,2, · · · , J ,

E(m,n)

l,0 = 0,

and ⎧⎪⎨
⎪⎩

E(m,n)
3, j−1 − 2E(m,n)

3, j + E(m,n)
3, j+1

h2
+

(
κ2

0 − (mπ

a

)2 − (nπ

b

)2
)

E(m,n)
3, j = 0, j = 1,2, · · · , J ,

E(m,n)
3,1 = E(m,n)

3,0 .

The above discrete systems can be written in the matrix form

(
A1 + D(m,n)

)
E(m,n)

l + a J E(m,n)

l, J+1 = 0, (m,n) ∈N2
l , l = 1,2, (3.11)

and

(
A2 + D(m,n)

)
E(m,n)

3 + a J E(m,n)
3, J+1 = 0, (m,n) ∈N2

3 , (3.12)

where the vectors of unknowns E(m,n)

l =
(

E(m,n)

l,1 , E(m,n)

l,2 , · · · , E(m,n)

l, J

)�
, l = 1, 2, 3,

A1 =

⎛
⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2

⎞
⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎝

−1 1
1 −2 1

. . .
. . .

. . .

1 −2

⎞
⎟⎟⎟⎠ , a J =

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ ,

and

D(m,n) = h2
(
κ2

0 − (mπ

a

)2 − (nπ

b

)2
)

I J ,

Here I J is the J × J identity matrix.
Next, we discuss the discretization of the transparent boundary condition (2.22). A simple calculation from the first 

component of (2.22) yields

∂ E3

∂x1
− ∂ E1

∂x3
= 2(iα1 p3 + iβp1)ei(α1x1+α2x2) + 2κ2

0

∫
�

E1(y)g(x, y)ds y

+ 2
∫
�

( − ∂y1 E2(y) + ∂y2 E1(y)
)
∂x2 g(x, y)ds y . (3.13)

Substituting (3.5) into (3.13), we have

∑
k∈N2

3

E(k)
3 (0)

k1π

a
cos

(k1πx1

a

)
sin

(k2πx2

b

)
−

∑
k∈N2

1

dE(k)
1 (0)

dx3
cos

(k1πx1

a

)
sin

(k2πx2

b

)

= 2(iα1 p3 + iβp1)ei(α1x1+α2x2)

+ 2κ2
0

∑
k∈N2

1

E(k)
1 (0)

∫
�

cos
(k1π y1

a

)
sin

(k2π y2

b

)
g(x, y)ds y

− 2
∑

k∈N2
2

E(k)
2 (0)

k1π

a

∫
�

cos
(k1π y1

a

)
cos

(k2π y2

b

)
∂x2 g(x, y)ds y

+ 2
∑

k∈N2
1

E(k)
1 (0)

k2π

b

∫
�

cos
(k1π y1

a

)
cos

(k2π y2

b

)
∂x2 g(x, y)ds y . (3.14)

Multiplying both sides of (3.14) by cos
(mπx1

)
sin

(nπx2
)
, (m, n) ∈N2 and integrating over �, we obtain
a b 1

7
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E(m,n)
3 (0)p(m,n) − dE(m,n)

1 (0)

dx3
q(m,n) = 2(iα1 p3 + iβp1)g̃(m,n)

1 + 2κ2
0

∑
k∈N2

1

E(k)
1 (0) F̃ (m,n)

1,(k)

−2
∑

k∈N2
2

E(k)
2 (0)

k1π

a
G̃(m,n)

1,(k)
+ 2

∑
k∈N2

1

E(k)
1 (0)

k2π

b
H̃ (m,n)

1,(k)
,

where

p(m,n) =
{

0, if m = 0,
bmπ

4 , others,
q(m,n) =

{
ab
2 , if m = 0,

ab
4 , others,

and

g̃(m,n)
1 =

∫
�

cos
(mπx1

a

)
sin

(nπx2

b

)
ei(α1x1+α2x2)dsx, (3.15)

F̃ (m,n)

1,(k)
=

∫
�

cos
(mπx1

a

)
sin

(nπx2

b

)(∫
�

cos
(k1π y1

a

)
sin

(k2π y2

b

)
g(x, y)ds y

)
dsx, (3.16)

G̃(m,n)

1,(k)
=

∫
�

cos
(mπx1

a

)
sin

(nπx2

b

)(∫
�

cos
(k1π y1

a

)
cos

(k2π y2

b

)
∂x2 g(x, y)ds y

)
dsx, (3.17)

H̃ (m,n)

1,(k)
=

∫
�

cos
(mπx1

a

)
sin

(nπx2

b

)(∫
�

cos
(k1π y1

a

)
cos

(k2π y2

b

)
∂x2 g(x, y)ds y

)
dsx. (3.18)

By using a backward finite difference scheme for the normal derivative and the fact that E(k)

l, J+1 = E(k)

l (0), l = 1, 2, 3, we 
get

E(m,n)
3, J+1 p(m,n) − E(m,n)

1, J+1 − E(m,n)
1, J

h
q(m,n) = 2(iα1 p3 + iβp1)g̃(m,n)

1 + 2κ2
0

∑
k∈N2

1

E(k)
1, J+1 F̃ (m,n)

1,(k)

−2
∑

k∈N2
2

E(k)
2, J+1

(k1π

a

)
G̃(m,n)

1,(k)
+ 2

∑
k∈N2

1

E(k)
1, J+1

(k2π

b

)
H̃ (m,n)

1,(k)
. (3.19)

For (m, n) ∈N2
1 , we define the following notations:

g(m,n)
1 := h

q(m,n)
2(iα1 p3 + iβp1)g̃(m,n)

1 ,

F (m,n)

1,(k)
:= h

q(m,n)
2κ2

0 F̃ (m,n)

1,(k)
,

G(m,n)

1,(k)
:= h

q(m,n)

−2k1π

a
G̃(m,n)

1,(k)
,

H (m,n)

1,(k)
:= h

q(m,n)

2k2π

b
H̃ (m,n)

1,(k)
.

Thus, we obtain from (3.19) that

E(m,n)
3, J+1

p(m,n)h

q(m,n)
− E(m,n)

1, J+1 + E(m,n)
1, J −

∑
k∈N2

1

E(k)
1, J+1 F (m,n)

1,(k)

−
∑

k∈N2
2

E(k)
2, J+1G(m,n)

1,(k)
−

∑
k∈N2

1

E(k)
1, J+1 H (m,n)

1,(k)
= g(m,n)

1 , (m,n) ∈N2
1 ,

which can be written in a matrix form

Î 1 E1, J + (− Î 1 − F 1 − H 1)E1, J+1 − G1 E2, J+1 + I 1 E3, J+1 = g1. (3.20)

Here Î1 = I ((M+1)N) , I 1 = Ĩ 1 ⊗ I N , ⊗ denotes the Kronecker product, and
8
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Ĩ 1 =

⎛
⎜⎜⎜⎝

0 · · · 0
πh
a

. . .
Mπh

a

⎞
⎟⎟⎟⎠ .

For clarity, we refer to Appendix A for the entries of F 1, H 1, G1, g1, and E l, j for l = 1, 2, 3, 0 ≤ j ≤ J + 1.
Similarly, the second component of TBC (2.22) can be discretized as

Î 2 E2, J − H 2 E1, J+1 + (− Î 2 − F 2 − G2)E2, J+1 + I 2 E3, J+1 = g2, (3.21)

where Î2 = I (M(N+1)) , I2 = I M ⊗ Ĩ 2, and

Ĩ 2 =

⎛
⎜⎜⎜⎝

0 · · · 0
πh
b

. . .
Nπh

b

⎞
⎟⎟⎟⎠

(N+1)×N

.

Again, the entries of the vectors F 2, H 2, G2 and g2 can be found in Appendix A.
Recall the divergence free condition on the surface �,

∂x1 E1 + ∂x2 E2 + ∂x3 E3 = 0. (3.22)

Substituting (3.5) into (3.22), we have∑
k∈N2

1

E(k)
1 (0)

(−k1π

a

)
sin

(k1πx1

a

)
sin

(k2πx2

b

)
+

∑
k∈N2

2

E(k)
2 (0)

(−k2π

b

)
sin

(k1πx1

a

)
sin

(k2πx2

b

)

+
∑

k∈N2
3

∂ E(k)
3 (0)

∂x3
sin

(k1πx1

a

)
sin

(k2πx2

b

)
= 0. (3.23)

Multiplying both side of (3.23) by sin
(mπx1

a

)
sin

(nπx2
b

)
, (m, n) ∈ N2

3 , integrating over �, and using the orthogonality of the 
trigonometric functions, we obtain(−mπ

a

ab

4

)
E(m,n)

1 (0) +
(−nπ

b

ab

4

)
E(m,n)

2 (0) +
(

ab

4

)
∂ E(m,n)

3 (0)

∂x3
= 0. (3.24)

By using a backward finite difference scheme, we get

E(m,n)
3, J +

(mπ

a

)
E(m,n)

1, J+1 +
(nπ

b

)
E(m,n)

2, J+1 − E(m,n)
3, J+1 = 0. (3.25)

Let

Ĩ 3 =
⎛
⎜⎝

0 πh
a

...
. . .

0 Mπh
a

⎞
⎟⎠ , Ĩ 4 =

⎛
⎜⎝

0 πh
b

...
. . .

0 Nπh
b

⎞
⎟⎠ ,

F 3 = Ĩ 3 ⊗ I N and G3 = I M ⊗ Ĩ 4. The discrete system (3.25) can be rewritten as

Î 3 E3, J + F 3 E1, J+1 + G3 E2, J+1 − Î 3 E3, J+1 = 0, (3.26)

where Î3 = I (MN) . It follows from (3.20)–(3.21) and (3.26) that⎛
⎝ Î 1

Î 2

Î 3

⎞
⎠

⎛
⎝ E1, J

E2, J

E3, J

⎞
⎠ +

⎛
⎝− Î 1 − F 1 − H 1 −G1 I 1

−H 2 − Î 2 − F 2 − G2 I 2

F 3 G3 − Î 3

⎞
⎠

⎛
⎝ E1, J+1

E2, J+1
E3, J+1

⎞
⎠ =

⎛
⎝ g1

g2
0

⎞
⎠ (3.27)

Clearly, the linear systems (3.11)–(3.12) and (3.27) are coupled and give the global system. Next, we use Gaussian elim-
ination method to decouple the global system into a linear system with the unknowns only on the aperture, which may 
reduce the computational complexity greatly and lead to a fast algorithm.

Let

L(m,n)U (m,n) = A1 + D(m,n), (m,n) ∈N2, l = 1,2, (3.28)
1 1 l

9
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and

L(m,n)
2 U (m,n)

2 = A2 + D(m,n), (m,n) ∈N2
3 , (3.29)

be the LU-decomposition, where A1 + D(m,n) and A2 + D(m,n) are the symmetric tridiagonal matrices in (3.11) and (3.12), 
respectively. Since L(m,n)

1 and L(m,n)
2 are nonsingular, we obtain

U (m,n)
1 E(m,n)

l + (
L(m,n)

1

)−1
a J+1 E(m,n)

l, J+1 = 0, (m,n) ∈N2
l , l = 1,2, (3.30)

U (m,n)
2 E(m,n)

3 + (
L(m,n)

2

)−1
a J+1 E(m,n)

3, J+1 = 0, (m,n) ∈N2
3 , (3.31)

where U (m,n)
1 = (

rm,n
1,(pq)

)
and U (m,n)

2 = (
rm,n

2,(pq)

)
.

Combining the last equations of the systems (3.30) and (3.31) gives

⎛
⎝ R1

R2
R3

⎞
⎠

⎛
⎝ E1, J

E2, J

E3, J

⎞
⎠ +

⎛
⎝ Î 1

Î 2

Î 3

⎞
⎠

⎛
⎝ E1, J+1

E2, J+1
E3, J+1

⎞
⎠ = 0, (3.32)

where

Rl = diag
(
r(m,n)

1,( J J )

)
, (m,n) ∈ N2

l , l = 1,2,

R3 = diag
(
r(m,n)

2,( J J )

)
, (m,n) ∈N2

3 .

If κ2
0 is not an eigenvalue of the Helmholtz operator with Dirichlet boundary condition, the continuous Helmholtz problem 

admits a unique solution; for h small enough, as an approximate problem, the discrete Helmholtz problem can also be 
shown to have a unique solution [28], which implies that

r(m,n)
1,( J J ) �= 0, (m,n) ∈N2

l , l = 1,2, (3.33)

and

r(m,n)
2,( J J ) �= 0, (m,n) ∈N2

3 . (3.34)

Consequently, combining (3.32) and (3.27) yields

⎛
⎝− Î 1 − F 1 − H 1 − R−1

1 −G1 I 1

−H 2 − Î 2 − F 2 − G2 − R−1
2 I 2

F 3 G3 − Î 3 − R−1
3

⎞
⎠

⎛
⎝ E1, J+1

E2, J+1
E3, J+1

⎞
⎠ =

⎛
⎝ g1

g2
0

⎞
⎠ . (3.35)

Solving the linear system (3.35) gives the solution El, J+1, l = 1, 2, 3 on the interface �. The rest of the unknowns can be 
simply obtained by solving the following systems:

(
A1 + D(m,n)

)
E(m,n)

l = −a J+1 E(m,n)

l, J+1, l = 1,2,(
A2 + D(m,n)

)
E(m,n)

3 = −a J+1 E(m,n)
3, J+1.

(3.36)

Remark 3.1. Since the medium is assumed to be homogeneous in the cavity, it follows from the Maxwell equation (2.23)
that the electrical field E is divergence free in D . Although the solutions are solved separately in D , they admit the series 
expansions (3.5) and satisfy the divergence free condition due to (2.23).

Remark 3.2. In order to fully resolve the wave oscillation, the choice of truncation number M and N depends on the 
wavenumber κ0 and the size of the aperture. In addition, the accuracy becomes higher when M and N increase. Recently, the 
convergence analysis has been done on the truncated DtN operators for the two- and three-dimensional obstacle scattering 
problems in [11,8], and the elastic obstacle scattering problem in [19]. Particularly, a wave-number-explicit exponential 
convergence has been established on the truncated DtN operators for high-frequency Helmholtz scattering problem when 
N ≥ λκ0 R for some λ > 1 in [20]. Using the ideas in these work, we believe that the analysis can also be done on the cavity 
problem of Maxwell’s equations, which will be our future work.
10
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Fig. 2. The problem geometry of the electromagnetic scattering by a rectangular cavity filled with a layered medium.

4. Layered media

This section is devoted to the numerical solution of the electromagnetic scattering by an open cavity with a layered 
medium. Specifically, we assume that the cavity is filled with a multi-layered medium, which is characterized by the piece-
wise constant dielectric permittivity εl, l = 1, 2, · · · , L. The medium is still assumed to be nonmagnetic with a constant 
magnetic permeability μ = μ0 everywhere and has a constant dielectric permittivity ε = ε0 in the upper half space. With-
out loss of generality, we discuss a two-layered medium in D . Denote by c1 and c2 the depth of the two layer domain D1
and D2, respectively. The problem geometry is depicted in Fig. 2. The open aperture of the cavity � = [0, a] × [0, b] and the 
total depth of the cavity is c, i.e., c = c1 + c2.

Let E1 = (u1, u2, u3) and E2 = (v1, v2, v3) be the total electric field in domain D1 and D2, respectively. Similar to the 
homogeneous case, it can be shown from the boundary condition and divergence free condition that u j and v j, j = 1, 2, 3
admit the following Fourier series expansions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x1, x2, x3) =
∑

k∈N2

u(k)
1 (x3) cos

(k1πx1

a

)
sin

(k2πx2

b

)
,

u2(x1, x2, x3) =
∑

k∈N2

u(k)
2 (x3) sin

(k1πx1

a

)
cos

(k2πx2

b

)
,

u3(x1, x2, x3) =
∑

k∈N2

u(k)
3 (x3) sin

(k1πx1

a

)
sin

(k2πx2

b

)
,

(4.1)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1(x1, x2, x3) =
∑

k∈N2

v(k)
1 (x3) cos

(k1πx1

a

)
sin

(k2πx2

b

)
,

v2(x1, x2, x3) =
∑

k∈N2

v(k)
2 (x3) sin

(k1πx1

a

)
cos

(k2πx2

b

)
,

v3(x1, x2, x3) =
∑

k∈N2

v(k)
3 (x3) sin

(k1πx1

a

)
sin

(k2πx2

b

)
,

(4.2)

where k = (k1, k2) ∈N2.
In the lower part of the layered medium D2, the electric field E2 = (v1, v2, v3) satisfies the Helmholtz equation

�E2 + κ2
2 E2 = 0 in D2, (4.3)

the homogeneous Dirichlet boundary condition

v1(x1, x2,−c) = v2(x1, x2,−c) = 0, (4.4)

and the homogeneous Neumann boundary condition

∂x3 v3(x1, x2,−c) = 0, (4.5)
11
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where κ2 = ω
√

ε2μ is the wavenumber in D2.
Substituting (4.2) into (4.3)–(4.5), we get the second order ordinary differential equations with the homogeneous Dirich-

let boundary condition at x3 = −c for the Fourier coefficients v(m,n)

l , l = 1, 2:⎧⎪⎨
⎪⎩

d2

dx2
3

v(m,n)

l (x3) +
(
κ2

2 − (mπ

a

)2 − (nπ

b

)2
)

v(m,n)

l (x3) = 0, x3 ∈ (−c,−c1),

v(m,n)

l (−c) = 0,

(4.6)

where (m, n) ∈N2
l , and the second order ordinary differential equations with the homogeneous Neumann boundary condi-

tion at x3 = −c for the Fourier coefficients v(m,n)
3 :⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d2

dx2
3

v(m,n)
3 (x3) +

(
κ2

2 − (mπ

a

)2 − (nπ

b

)2
)

v(m,n)
3 (x3) = 0, x3 ∈ (−c,−c1),

d

dx3
v(m,n)

3 (−c) = 0.

(4.7)

where (m, n) ∈N2
3 .

Define by {x j
3} j= J+1

j=0 a set of uniformly distributed grid points in [−c, −c1], where h = x j+1
3 − x j

3. Let v(m,n)

l, j , l = 1, 2, 3

be the finite difference solution of v(m,n)

l (x3) at the point x3 = x j
3. Similar to the discretization of (3.9)–(3.10), the discrete 

system of (4.6)–(4.7) can be written in the matrix form(
A1 + D(m,n)

2

)
v(m,n)

l + a J v(m,n)

l, J+1 = 0, (m,n) ∈N2
l , l = 1,2, (4.8)

and (
A2 + D(m,n)

2

)
v(m,n)

3 + a J v(m,n)
3, J+1 = 0, (m,n) ∈N2

3 , (4.9)

where the vector of unknowns v(m,n)

l =
(

v(m,n)

l,1 , v(m,n)

l,2 , · · · , v(m,n)

l, J

)�
, l = 1, 2, 3,

A1 =

⎛
⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2

⎞
⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎝

−1 1
1 −2 1

. . .
. . .

. . .

1 −2

⎞
⎟⎟⎟⎠ , a J =

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ ,

and

D(m,n)
2 = h2

(
κ2

2 − (mπ

a

)2 − (nπ

b

)2
)

I J .

Again, we apply the Gaussian elimination method to solve the linear system (4.8)–(4.9). Let

L(m,n)
1 U (m,n)

1 = A1 + D(m,n)
2 , (m,n) ∈N2

l , l = 1,2, (4.10)

and

L(m,n)
2 U (m,n)

2 = A2 + D(m,n)
2 , (m,n) ∈N2

3 , (4.11)

be the LU-decomposition, where U (m,n)
1 = (

r(m,n)
1,(pq)

)
and U (m,n)

2 = (
r(m,n)

2,(pq)

)
. Since L(m,n)

1 and L(m,n)
2 are nonsingular, we obtain

U (m,n)
1 v(m,n)

l + (
L(m,n)

1

)−1
a J v(m,n)

l, J+1 = 0, (m,n) ∈ N2
l , l = 1,2, (4.12)

and

U (m,n)
2 v(m,n)

3 + (
L(m,n)

2

)−1
a J v(m,n)

3, J+1 = 0, (m,n) ∈N2
3 . (4.13)

Combining the last equations of the systems (4.12) and (4.13) gives

r(m,n)
1,( J J )v(m,n)

l, J + v(m,n)

l, J+1 = 0, (m,n) ∈N2
l , l = 1,2, (4.14)

r(m,n)
2,( J J )v(m,n)

3, J + v(m,n)
3, J+1 = 0, (m,n) ∈N2

3 . (4.15)
12
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In the upper part of the layered medium D1, the electric field E1 = (u1, u2, u3) satisfies the Helmholtz equation

�E1 + κ2
1 E1 = 0 in D1, (4.16)

where κ1 = ω
√

ε1μ is the wavenumber in D1. Substituting (4.1) into (4.16) yields

d2

dx2
3

u(m,n)

l (x3) +
(
κ2

1 − (mπ

a

)2 − (nπ

b

)2
)

u(m,n)

l (x3) = 0, x3 ∈ (−c1,0), (m,n) ∈ N2
l , (4.17)

for l = 1, 2, 3.
Let {xi

3}i=I+1
i=0 be a set of uniformly distributed grid points in [−c1, 0] with xi+1

3 −xi
3 = h. Let u(m,n)

l,i be the finite difference 
solution of u(m,n)

l (x3), l = 1, 2, 3 at the point x3 = xi
3. The discrete finite difference systems (4.17) can be written as

u(m,n)

l,i−1 − 2u(m,n)

l,i + u(m,n)

l,i+1

h2
+

(
κ2

1 − (mπ

a

)2 − (nπ

b

)2
)

u(m,n)

l,i = 0, i = 1,2, · · · , I, (4.18)

where (m, n) ∈N2
l , l = 1, 2, 3.

Next, we consider the continuity conditions on �1 = {x ∈ R3|(x1, x2) ∈ [0, a] × [0, b], x3 = −c1}. By Maxwell’s equations, 
the tangential traces of the electromagnetic fields are continuous, i.e.,

ν × E1 = ν × E2, ν × H 1 = ν × H 2,

the normal components of the electric and magnetic flux density are continuous, i.e.,

ν · (ε1 E1) = ν · (ε2 E2), ν · (μ0 H 1) = ν · (μ0 H 2).

In addition, the electric field is divergence free, i.e.,

∇ · E1 = ∇ · E2 = 0.

Componentwisely, the above continuity and divergence free conditions are

u1(x1, x2,−c1) = v1(x1, x2,−c1), (4.19)

u2(x1, x2,−c1) = v2(x1, x2,−c1), (4.20)

ε1u3(x1, x2,−c1) = ε2 v3(x1, x2,−c1), (4.21)

∂x1 u3(x1, x2,−c1) − ∂x3 u1(x1, x2,−c1) = ∂x1 v3(x1, x2,−c1) − ∂x3 v1(x1, x2,−c1), (4.22)

∂x2 u3(x1, x2,−c1) − ∂x3 u2(x1, x2,−c1) = ∂x2 v3(x1, x2,−c1) − ∂x3 v2(x1, x2,−c1), (4.23)

∂x3 u3(x1, x2,−c1) = ∂x3 v3(x1, x2,−c1). (4.24)

Substituting (4.1)–(4.2) into (4.19) and matching the modes for the Fourier series expansions, we obtain

u(m,n)
1 (−c1) = v(m,n)

1 (−c1), (m,n) ∈ N2
1 ,

which implies

u(m,n)
1,0 = v(m,n)

1, J+1, (m,n) ∈N2
1 . (4.25)

Similarly, we have from (4.20)–(4.21) that

u(m,n)
2,0 = v(m,n)

2, J+1, (m,n) ∈N2
2 , (4.26)

and

ε1u(m,n)
3,0 = ε2 v(m,n)

3, J+1 (m,n) ∈N2
3 . (4.27)

Substituting (4.1)–(4.2) into (4.22), multiplying the resulting equation by cos
(mπx1

a

)
sin

(nπx2
b

)
, (m, n) ∈ N2

1 , and integrating 
over �1, we obtain from the orthogonality of the trigonometric functions that

∂u(0,n)
1 (−c1)

∂x3
= ∂v(0,n)

1 (−c1)

∂x3
, n = 1,2, · · · , N,

and
13
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u(m,n)
3 (−c1)

mπ

a
− ∂u(m,n)

1 (−c1)

∂x3
= v(m,n)

3 (−c1)
mπ

a
− ∂v(m,n)

1 (−c1)

∂x3
, (m,n) ∈N2

3 .

Using the backward and forward finite difference schemes, we obtain

u(0,n)
1,1 − u(0,n)

1,0

h
= v(0,n)

1, J+1 − v(0,n)
1, J

h
, n = 1,2, · · · , N, (4.28)

and

(mπ

a

)
u(m,n)

3,0 − u(m,n)
1,1 − u(m,n)

1,0

h
=

(mπ

a

)
v(m,n)

3, J+1 − v(m,n)
1, J+1 − v(m,n)

1, J

h
, (m,n) ∈N2

3 . (4.29)

Combining (4.28)–(4.29), (4.14), (4.25) and (4.27) gives( − 1/r(0,n)
1,( J J ) − 2

)
u(0,n)

1,0 + u(0,n)
1,1 = 0, n = 1,2, · · · , N, (4.30)

and ( − 1/r(m,n)
1,( J J ) − 2

)
u(m,n)

1,0 +
(ε1

ε2
− 1

)(
mπh

a

)
u(m,n)

3,0 + u(m,n)
1,1 = 0, (m,n) ∈N2

3 . (4.31)

For simplicity, let u(0,n)
3,0 = u(0,n)

3,I+1 = 0, n = 1, 2, · · · , N and u(m,0)
3,0 = u(m,0)

3,I+1 = 0, m = 1, 2, · · · , M in the rest of this section. 
Thus, (4.30)–(4.31) can be written uniformly as

( − 1/r(m,n)
1,( J J ) − 2

)
u(m,n)

1,0 +
(ε1

ε2
− 1

)(
mπh

a

)
u(m,n)

3,0 + u(m,n)
1,1 = 0, (m,n) ∈N2

1 . (4.32)

Similarly, based on the condition (4.23)–(4.24), we get

( − 1/r(m,n)
1,( J J ) − 2

)
u(m,n)

2,0 +
(ε1

ε2
− 1

)(
nπh

b

)
u(m,n)

3,0 + u(m,n)
2,1 = 0, (m,n) ∈N2

2 , (4.33)

and (( − 1/r(m,n)
2,( J J ) − 1

)ε1

ε2
− 1

)
u(m,n)

3,0 + u(m,n)
3,1 = 0, (m,n) ∈ N2

3 . (4.34)

Define

u(m,n)

l =
(

u(m,n)

l,1 , u(m,n)

l,2 , · · · , u(m,n)

l,I

)�
, l = 1,2,3.

Using (4.34), we can rewrite the discrete system (4.18) with l = 3 in the matrix form(
A(m,n)

4 + D(m,n)
1

)
u(m,n)

3 + aI u(m,n)
3,I+1 = 0, (m,n) ∈ N2

3 , (4.35)

where

A(m,n)
4 =

⎛
⎜⎜⎜⎜⎝

1/
(
(1/r(m,n)

2,( J J ) + 1) ε1
ε2

+ 1)
)

− 2 1

1 −2 1
. . .

. . .
. . .

1 −2

⎞
⎟⎟⎟⎟⎠ , aI =

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ ,

and

D(m,n)
1 = h2

(
κ2

1 − (mπ

a

)2 − (nπ

b

)2
)

I I .

Let

A(m,n)
4 + D(m,n)

1 = L(m,n)
4 U (m,n)

4 , (m,n) ∈N2
3 (4.36)

be the LU-decomposition. It follows from (4.35)–(4.36) that

U (m,n)
4 u(m,n)

3 + (
L(m,n)

4

)−1
aI u(m,n)

3,I+1 = 0, (m,n) ∈N2
3 , (4.37)

where U (m,n) = (
r(m,n) )

. It follows from (4.37) that
4 4,(pq)

14
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u(m,n)
3 = −(

U (m,n)
4

)−1(
L(m,n)

4

)−1
aI u(m,n)

3,I+1, (m,n) ∈N2
3 . (4.38)

It is clear to note that the first equation of the system (4.38) is

u(m,n)
3,1 = (−1)2+I(det(U (m,n)

4 )
)−1

u(m,n)
3,I+1, (m,n) ∈N2

3 . (4.39)

Let

A(m,n)
3 =

⎛
⎜⎜⎜⎝

1/(1/r(m,n)
1,( J J ) + 2) − 2 1

1 −2 1
. . .

. . .
. . .

1 −2

⎞
⎟⎟⎟⎠

I×I

, a(m,n)
1 =

⎛
⎜⎜⎜⎝

−1
0
...

0,

⎞
⎟⎟⎟⎠

I×1

,

where (m, n) ∈ N2
1 or (m, n) ∈ N2

2 . Using (4.32), (4.34) and (4.39), we can write (4.18) with l = 1 in the following matrix 
form: (

A(m,n)
3 + D(m,n)

1

)
u(m,n)

1 + a(m,n)
I u(m,n)

1,I+1 = a1d(m,n)
1 u(m,n)

3,I+1, (m,n) ∈N2
1 , (4.40)

where

d(0,n)
1 = 0, n = 1,2, · · · , N,

and

d(m,n)
1 =

⎛
⎝ ( ε1

ε2
− 1)mπh

a

1/r(m,n)
1,( J J ) + 2

⎞
⎠

⎛
⎝ 1

(1/r(m,n)
2,( J J ) + 1) ε1

ε2
+ 1

⎞
⎠(

(−1)2+I

det(U (m,n)
4 )

)
, (m,n) ∈N2

3 .

Similarly, we can rewrite (4.18) with l = 2 in the following matrix form:(
A(m,n)

3 + D(m,n)
1

)
u(m,n)

2 + a(m,n)
I u(m,n)

2,I+1 = a1d(m,n)
2 u(m,n)

3,I+1, (m,n) ∈N2
2 , (4.41)

where

d(m,0)
2 = 0, m = 1,2, · · · , M,

and

d(m,n)
2 =

⎛
⎝ ( ε1

ε2
− 1)nπh

b

1/r(m,n)
1,( J J ) + 2

⎞
⎠

⎛
⎝ 1

(1/r(m,n)
2,( J J ) + 1) ε1

ε2
+ 1

⎞
⎠(

(−1)2+I

det(U (m,n)
4 )

)
, (m,n) ∈ N2

3 .

Let

A(m,n)
3 + D(m,n)

1 = L(m,n)
3 U (m,n)

3 , (m,n) ∈N2
1 or (m,n) ∈ N2

2 , (4.42)

be the LU-decomposition. It follows from (4.40)–(4.42) that

U (m,n)
3 u(m,n)

l + (
L(m,n)

3

)−1
aI u(m,n)

l,I+1 = (
L(m,n)

3

)−1
a1d(m,n)

l u(m,n)
3,I+1, (m,n) ∈ N2

l , l = 1,2, (4.43)

where U (m,n)
3 = (

r(m,n)
3,(pq)

)
.

Combining the last equations of the systems (4.43) and (4.37) gives

r(m,n)
3,(I I)ul,I + ul,I+1 = s(m,n)

l u(m,n)
3,I+1, (m,n) ∈N2

l , for l = 1,2,

r(m,n)
4,(I I)u3,I + u3,I+1 = 0, (m,n) ∈N2

3 ,

where s(m,n)

l = −l̃(m,n)
I1 d(m,n)

l , l = 1, 2, and l̃(m,n)
I1 is the (I, 1)-th entry of 

(
L(m,n)

3

)−1
. We can write the above system in the 

matrix form⎛
⎝ R4

R5
R6

⎞
⎠

⎛
⎝u1,I

u2,I

u3,I

⎞
⎠ +

⎛
⎝ Î 4 −D1

Î 5 −D2

Î 6

⎞
⎠

⎛
⎝u1,I+1

u2,I+1
u3,I+1

⎞
⎠ = 0, (4.44)

where
15
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R4 = diag
(
r(m,n)

3,(I I)

)
, (m,n) ∈N2

1 ,

R5 = diag
(
r(m,n)

3,(I I)

)
, (m,n) ∈N2

2 ,

R6 = diag
(
r(m,n)

4,(I I)

)
, (m,n) ∈N2

3 ,

the matrix D1 is the diagonal matrix diag
(
s(m,n)

1

)
, (m, n) ∈ N2

1 by deleting the column with respect to m = 0, and the 
matrix D2 is the diagonal matrix diag

(
s(m,n)

2

)
, (m, n) ∈N2

2 by deleting the column with respect to n = 0.
Similar to the homogeneous medium case, the TBC (2.22) can be discretized as

⎛
⎝ Î 1

Î 2

Î 3

⎞
⎠

⎛
⎝u1,I

u2,I

u3,I

⎞
⎠ +

⎛
⎝− Î 1 − F 1 − H 1 −G1 I 1

−H 2 − Î 2 − F 2 − G2 I 2

F 3 G3 − Î 3

⎞
⎠

⎛
⎝u1,I+1

u2,I+1
u3,I+1

⎞
⎠ =

⎛
⎝ g1

g2
0

⎞
⎠ . (4.45)

Using (4.44) and (4.45), we obtain

⎛
⎝− Î 1 − F 1 − H 1 − R−1

4 −G1 I 1 + R−1
4 D1

−H 2 − Î 2 − F 2 − G2 − R−1
5 I 2 + R−1

5 D2

F 3 G3 − Î 3 − R−1
6

⎞
⎠

⎛
⎝u1,I+1

u2,I+1
u3,I+1

⎞
⎠ =

⎛
⎝ g1

g2
0

⎞
⎠ . (4.46)

The solution E1 = (u1, u2, u3) on the open aperture � can be obtained by solving the linear system (4.46).

Remark 4.1. For the cavity filled with a multi-layered medium (more than two layers), a similar discretization can be de-
veloped for each layer, and similar discrete continuity conditions can be deduced on the interface between every two 
neighboring layers. As a result, a linear system similar to (4.44) can be obtained for the electric field in the first layer below 
the ground plane. Consequently, we can get a linear system on the open aperture of the cavity by using the linear system 
similar to (4.44)–(4.45). The solution E on the open aperture � can be obtained by solving the resulting system.

5. Evaluating singular integrals based on the FFT

One of the key issues in the algorithm is how to evaluate efficiently and accurately the singular integrals in (3.16)–(3.18). 
Due to the lack of closed form and the existence of singularity, direct numerical integration is notoriously expensive. In this 
section, we propose an efficient algorithm to evaluate these integrals based on the Fast Fourier Transform (FFT). Specifically, 
we consider the evaluation of integrals F̃ (m,n)

j,(k)
, G̃(m,n)

j,(k)
, and H̃ (m,n)

j,(k)
, j = 1, 2 for (m, n) ∈ N2, k ∈ N2, N2 = {0, 1, 2, · · · , M} ×

{0, 1, 2, · · · , N}. We refer to Appendix A for the definition of F̃ (m,n)

2,(k)
, G̃(m,n)

2,(k)
, and H̃ (m,n)

2,(k)
.

5.1. Reduction of singularity

It is easy to see that F̃ (m,n)

j,(k)
, j = 1, 2 are weakly singular integrals, while G̃(m,n)

j,(k)
, H̃ (m,n)

j,(k)
, j = 1, 2 include Cauchy type 

singular integrals. To make the computation easier, we first apply the integration by parts to reduce the order of singularity

G̃(m,n)

1,(k)
=

∫
�

cos
(mπx1

a

)
sin

(nπx2

b

)
∂x2

⎛
⎝∫

�

cos

(
k1π y1

a

)
cos

(
k2π y2

b

)
g(x, y)ds y

⎞
⎠dsx

=
a∫

0

cos
(mπx1

a

)
sin

(nπx2

b

)⎛
⎝∫

�

cos

(
k1π y1

a

)
cos

(
k2π y2

b

)
g(x, y)dy

⎞
⎠∣∣∣x2=b

x2=0
dx1

−
∫
�

∂x2

(
cos

(mπx1

a

)
sin

(nπx2

b

))⎛
⎝∫

�

cos

(
k1π y1

a

)
cos

(
k2π y2

b

)
g(x, y)ds y

⎞
⎠dsx

= −nπ

b

∫
�

cos
(mπx1

a

)
cos

(nπx2

b

)⎛
⎝∫

�

cos

(
k1π y1

a

)
cos

(
k2π y2

b

)
g(x, y)ds y

⎞
⎠dsx.

Similar simplifications can be done for the integrals G̃(m,n)

2,(k)
and H̃ (m,n)

j,(k)
, j = 1, 2. In the end, we only need to consider 

evaluating the following three integrals:
16
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I(m,n)

1,(k)
=

∫
�

cos
(mπx1

a

)
sin

(nπx2

b

)⎛
⎝∫

�

cos

(
k1π y1

a

)
sin

(
k2π y2

b

)
g(x, y)ds y

⎞
⎠dsx,

I(m,n)

2,(k)
=

∫
�

sin
(mπx1

a

)
cos

(nπx2

b

)⎛
⎝∫

�

sin

(
k1π y1

a

)
cos

(
k2π y2

b

)
g(x, y)ds y

⎞
⎠dsx,

I(m,n)

3,(k)
=

∫
�

cos
(mπx1

a

)
cos

(nπx2

b

)⎛
⎝∫

�

cos

(
k1π y1

a

)
cos

(
k2π y2

b

)
g(x, y)ds y

⎞
⎠dsx.

They belong to the same type of integrals, i.e.,

I(m,n)

(k)
=

∫
�

exp
(mπx1

a
i
)

exp
(nπx2

b
i
)⎛

⎝∫
�

exp

(
k1π y1

a
i

)
exp

(
k2π y2

b
i

)
g(x, y)ds y

⎞
⎠dsx.

Next, we propose a fast algorithm to evaluate I(m,n)

(k)
by using the FFT.

5.2. Algorithm for I(m,n)

(k)
based on the FFT

Without loss of generality, we may assume a ≥ b. To evaluate the integral I(m,n)

(k)
, we first consider evaluating the inner 

integral

Ik(x1, x2) =
∫
�

exp

(
k1π y1

a
i

)
exp

(
k2π y2

b
i

)
g(x, y)dy

for fixed k1, k2 ∈N and x ∈ �.
Define two functions:

fRect(x1, x2) =
{

1, if (x1, x2) ∈ �,

0, otherwise,

and

fCirc(r) =
{

1, if r ≤ √
2a,

0, otherwise.

Then

Ik(x1, x2) =
∫
R2

exp

(
k1π y1

a
i

)
exp

(
k2π y2

b
i

)
fRect(y1, y2)g(x, y) fCirc(|x − y|)d y, x ∈ �.

Define

F (y) = exp

(
k1π y1

a
i

)
exp

(
k2π y2

b
i

)
fRect(y1, y2)

and

G(x − y) = g(x, y) fCirc(|x − y|).
Then

Ik(x1, x2) =
∫
R2

F (y)G(x − y)ds y,

which is a convolution and can be efficiently evaluated by using the FFT. Denote by F(·) the Fourier transform and F−1(·)
the inverse Fourier transform. Clearly, we have from the Fourier transformation that

Ik(x1, x2) = F−1 (F(F ) ·F(G)) .

For ( j1, j2) ∈N2, it is easy to see that
17
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F(F )( j1, j2) =
∫
R2

e−2π i( j1 y1+ j2 y2) F (y)d y

=
∫
�

e−2π i( j1 y1+ j2 y2) exp

(
k1π y1

a
i

)
exp

(
k2π y2

b
i

)
d y

= (e−2π j1a+k1π − 1)

(−2π j1 + k1π/a)i

(e−2π j2b+k2π − 1)

(−2π j2 + k2π/b)i
.

Denote by B the disk centered at the origin with radius 
√

2a. The following integral formula is convenient to evaluate 
F(G)( j1, j2):

F(G)( j1, j2) =
∫
R2

e−2π i( j1 y1+ j2 y2)G(y)ds y

=
∫
B

e−2π i( j1 y1+ j2 y2) g(0, y)ds y

= 1

4π

√
2a∫

0

2π∫
0

e−2π i( j1r cos θ+ j2r sin θ) eiκ0r

r
rdθdr

= 1

4π

√
2a∫

0

J0

(
2π

√
j2
1 + j2

2r

)
eiκ0rdr,

where J0(·) is the Bessel function of order zero.

Let R = √
2a and c = 2π

√
j2
1 + j2

2. Since there is no closed form for the integral

I =
R∫

0

J0(cr)eiκ0rdr

with R > 0 and c > 0, we need an algorithm to evaluate I numerically.

We may assume R and the wavenumber κ0 are both O(1). Since c = 2π
√

j2
1 + j2

2 can be very large for ( j1, j2) ∈N2, in 
order to evaluate I accurately, we consider two cases:

(1) Case 1: j1 and j2 are small, say, max{| j1|, | j2|} ≤ 10, so that c is O(1). In this case, direct integration by using a high 
order Gaussian quadrature would efficiently evaluate the integral I .

(2) Case 2: j1 and j2 are large, in which case c is large and J0(cr) is highly oscillatory. We can make use of the asymptotic 
formula

J0(z) =
√

2

π z

(
cos(z − π/4) + sin(z − π/4)

8z
+O(

1

z2
)

)
,

which is quite accurate for z � 1 if we drop the reminder. Another useful formula is

∞∫
0

J0(cr)eiκ0rdr = 1

c2 − κ2
0

, for c > κ0.

Therefore,

I = 1

c2 − κ2
0

−
∞∫

R

J0(cr)eiκ0rdr

= 1

c2 − κ2
0

− 1

c

∞∫
J0(z)eiκ0 z/cdz
cR

18
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≈ 1

c2 − κ2
0

− 1

c

√
2

π

∞∫
cR

(
cos(z − π/4)√

z
+ sin(z − π/4)

8z3/2

)
eiκ0 z/cdz

= 1

c2 − κ2
0

− 1

c

√
2

π

∞∫
cR

(
e(z−π/4)i + e(π/4−z)i

2
√

z
+ e(z−π/4)i − e(z−π/4)i

2i8z3/2

)
eiκ0 z/cdz.

In other words, we have to evaluate these two kinds of integrals

∞∫
R0

epzi

√
z

dz,

∞∫
R0

eqzi

z3/2
dz,

where p, q ∈R and R0 � 1. They belong to the same type of integrals. In fact, we obtain from the integration by parts 
that

∞∫
R0

eqzi

z3/2
dz = 2

eqR0i

√
R0

+ 2qi

∞∫
R0

eqzi

√
z

dz.

On the other hand,

∞∫
R0

epzi

√
z

dz =
√

π

2p

(
1 + i − 2Fresnelc(

√
2pR0/π) − 2iFresnels(

√
2pR0/π)

)
,

where Fresnelc(·) and Fresnels(·) are Fresnel cosine and sine integrals, respectively. To efficiently evaluate them, we 
make use of the following asymptotic expansions for z � 1:

Fresnelc(z) = 1

2
+ f (z) sin(

1

2
π z2) − g(z) cos(

1

2
π z2),

Fresnels(z) = 1

2
− f (z) cos(

1

2
π z2) − g(z) sin(

1

2
π z2),

where

f (z) = 1

π z

(
1 − 3

(π z2)2
+O(

1

z8
)

)
,

g(z) = 1

π2z3

(
1 − 15

(π z2)2
+O(

1

z8
)

)
.

Combining all the ingredients above, we are able to efficiently evaluate the inner integral Ik(x1, x2). Once Ik(x1, x2) is 
available, for the outer integral with respect to x, we simply use the trapezoidal rule, in which case the FFT can also be 
directly applied.

6. Implementation and complexity

Our algorithm is extremely efficient in terms of computational cost. A detailed analysis on the computational complexity 
of Algorithm I for the electromagnetic scattering by an open rectangular cavity filled with a homogeneous medium and 
Algorithm II for the electromagnetic scattering by an open rectangular cavity filled with a layered medium.

Algorithm I Electromagnetic scattering by a homogeneous cavity.
Step 1 Generate the matrices F i , G i , H i , i = 1, 2 and the vectors g i , i = 1, 2;
Step 2 Calculate the LU decomposition to get U (m,n)

i , i = 1, 2 and R−1
i , i = 1, 2, 3 by using the forward Gaussian elimination with a row 

partial pivoting;
Step 3 Solve the system (3.35) for E i, J+1, i = 1, 2, 3.

The cost for each step is presented in Table 1. In Step 1, one needs to calculate the singular integrals to generate the 
matrices F i, G i, H i, i = 1, 2. As shown in Section 5, we evaluate the singular integrals based on FFT, which requires only 
MN(MN log(MN) + MN log(MN)) complex operations for all the singular integrals. Hence the overall cost of Step 1 is 
O (M2N2 log(MN)). In Step 2 for Algorithm I, we need to calculate the LU decomposition for A1 + D(m,n), (m, n) ∈N2

1 ∪N2
2

and A2 + D(m,n), (m, n) ∈N2. By noting the tridiagonal structure of these matrices, only 3 J (M +1)(N +1) +3 J MN complex 
3
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Algorithm II Electromagnetic scattering by a layered cavity.
Step 1 Generate the matrices F i , G i , H i , i = 1, 2 and the vectors g i , i = 1, 2;
Step 2 Calculate the LU decomposition to get U (m,n)

i , i = 1, 2 and R−1
i , i = 1, 2, 3 by using the forward Gaussian elimination with a row 

partial pivoting. Further, calculate the LU decomposition to get U (m,n)
i , U (m,n)

i , i = 3, 4 Di , i = 1, 2 and R−1
i , i = 4, 5, 6;

Step 3 Solve the system (4.46) for E on the open aperture �.

Table 1
The computational complexity of Algorithms I and II.

Step Homogeneous cavity Layered cavity

1 O (M2 N2 log(MN)) O (M2 N2 log(MN))

2 3 J ((M + 1)(N + 1) + MN) 3 J (M + 1)(N + 1) + 3 J MN
+5I(M + 1)(N + 1) + 3I MN

3 (3MN + 2N)3/3 (3MN + 2N)3/3

operations are needed. In Step 2 for Algorithm II, the cost for calculating the LU decomposition in the bottom layer is 
3 J (M + 1)(N + 1) + 3 J MN , and the cost for calculating the LU decomposition in the top layer is 5I(M + 1)(N + 1) + 3I MN . 
In Algorithms I and II, we need to solve the interface system (3.35) and (4.46), respectively. We point out that a direct 
method, such as the Gaussian elimination scheme, requires (3MN + 2N)3/3 complex operations, which is not efficient. In 
order to solve the interface system effectively, we may need the effective iterative solver. The efficiency of the iterative 
algorithm for the interface system depends upon many factors, such as the complicated transparent boundary condition, the 
regularity of solution, the eigenvalue distribution and the condition numbers of the coefficient matrix. We will carry out the 
related work in the follow-up work.

7. Numerical experiments

In this section, several numerical examples are presented to demonstrate the performance of the proposed method. 
Throughout all the examples, the incident wave

E inc(x) = (cosαθ̂ + sinαφ̂)eiκ0dr,

where α is the polarization angle, θ̂ and φ̂ are the standard unit vectors in the spherical coordinates, and d is the incident 
direction given by

d = −(sin θ cosφ, sin θ sinφ, cos θ).

The wavenumber κ0 = 2π . The incident angle φ = 0 so that we focus on the xz-plane.
The physical quantity of interest associated with the cavity scattering is the radar cross section (RCS), which measures 

the detectability of a target by a radar system [15]. When the incident angle and the observation angle are the same, the RCS 
is called the backscatter RCS. The specific formulas can be found in [13] for the RCS of the three-dimensional cavity-backed 
apertures.

Our fast algorithm is mainly validated and compared with the adaptive finite element PML method. The fast algorithm is 
carried out by a laptop with Intel(R) Core(TM) i5-2430M CPU @ 2.40 GHz. The implementation of the adaptive finite element 
PML method is based on parallel hierarchical grid (PHG) [23,30], which is a toolbox for developing parallel adaptive finite 
element programs on unstructured tetrahedral meshes. The linear system resulted from the finite element discretization 
is solved by MUMPS (MUltifrontal Massively Parallel Sparse direct Solver) [22], which is a general purpose library for the 
direct solution of large linear systems. The computation is done on the high performance computers of State Key Laboratory 
of Scientific and Engineering Computing, Chinese Academy of Sciences, in which each node has 2 Intel Xeon Gold 6140 CPUs 
(2.3 GHz, 18 cores) and 192 GB memory and a 100 GB EDR Infiniband network is used for data communication between 
nodes. We solve the finite element problem for each θ with one node (36 cores). The maximum number of degrees of 
freedom (DoFs) on the mesh are between 2,000,000 and 3,000,000. The running time (CPU time/cores) is 5 to 10 minutes. 
By choosing the increment of θ as �θ = 0.5◦ , the finite element problem is solved 100 times in Example 1, and 180 times 
in Examples 2 and 3.

When presenting the numerical results, we use the following notations:

• M , N: Number of modes for the Fourier expansions in the x1 and x2 directions, respectively.
• J : Number of partition points along the x3 direction. For a two-layered medium, another variable I is used.
• Tsingular: Amount of time in seconds required to evaluate the singular integrals.
• Tassemble: Amount of time in seconds required to assemble the matrix.
• Tsolve: Amount of time in seconds required to solve the linear system.
• TRCS: Amount of time in seconds required to calculate the RCS.
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Fig. 3. Example 1: the backscatter RCS of the cavity with size a = b = 10λ and c = 30λ. The dashed line is the RCS calculated by our fast algorithm, the 
solid line is the RCS calculated by the mode matching method presented in [4], and the circle is the RCS calculated by the modal approach presented in 
[21].

Table 2
Example 1: The time of the computation for the cavity size a = b = λ, c = 3λ with α = 0, θ = π/6.

M , N J Tsingular Tassemble Tsolve TRCS

M = N = 21 1000 119.697858 0.307505 0.286226 0.006255
M = N = 3 1000 4.100736 0.002453 0.000072 0.000715
M = N = 3 600 4.013451 0.002015 0.000066 0.000691

7.1. Example 1

In this example, we consider the cavity filled with a homogeneous medium. First, the backscatter RCS of the cavity with 
size a = b = 10λ and c = 30λ is calculated. The RCS of θ̂ θ̂ and φ̂φ̂ polarizations are shown in Fig. 3 for various incident 
angle θ . The numerical results show excellent agreement with the calculations by the mode matching method presented 
in [4] and the modal approach presented in [21]. The detailed computational time is given in Table 2. Most of the time is 
spent on the evaluation of singular integrals. However, we only need to compute them once for different incident angles. 
In addition, most of the applications only require a small number of modes to resolve the field. It can also be accelerated 
by parallelization, as different modes in the outer part of the singular integral I(m,n)

(k)
can be evaluated separately. Next, the 

backscatter radar cross section of a cavity with size a = b = λ and c = 3λ is calculated by the fast algorithm and the adaptive 
finite element PLM method. Fig. 4 shows the RCS versus θ for θ̂ θ̂ and φ̂φ̂ polarizations. The backscatter RCS is shown as red 
solid lines and blue circles for the fast algorithm and adaptive PML method, respectively. It is clear to note that the results 
obtained by both methods are consistent with each other. Detailed computational time is given in Table 3.

7.2. Example 2

In this example, we consider the cavity filled with a material having a relative permittivity εr = 7 + 1.5 i and a constant 
magnetic permeability μ = 1. The backscatter RCS of the cavity with size a = λ, and b = c = 0.25λ is calculated. The RCS of 
θ̂ θ̂ and φ̂φ̂ polarizations are shown in Fig. 5 for various incident angle θ . The results based on the fast algorithm and the 
adaptive PML method are again in excellent agreement. Detailed computational time is given in Table 4. Again, the cost is 
dominated by the evaluation of singular integrals.

7.3. Example 3

This example is concerned with the cavity filled with a two-layer material. The cavity size is a = b = λ and c = 3λ. The 
top and bottom layer materials have parameters εr = 7 + 1.5 i and εr = 3 + 0.05 i, respectively. The thickness of the top 
material and the bottom material are c1 = λ and c2 = 2λ, respectively. The backscatter RCS of θ̂ θ̂ and φ̂φ̂ polarizations are 
shown in Fig. 6 for various incident angle θ . Once again, both methods are consistent with each other very well. Detailed 
computational time is given in Table 5. It can be seen that the total computational time is less than three minutes by using 
our fast algorithm.
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Fig. 4. Example 1: the backscatter RCS of the cavity with size a = b = λ and c = 3λ. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Table 3
Example 1: The time of the computation for the cavity size a = b = 10λ, c = 30λ with α = 0, θ = π/6.

M , N J Tsingular Tassemble Tsolve TRCS

M = N = 21 1000 212.170604 0.298627 0.335862 0.006811
M = N = 15 1000 155.201708 0.062623 0.058558 0.003075
M = N = 15 1500 155.360674 0.063114 0.038757 0.006100

Fig. 5. Example 2: the backscatter RCS of the cavity with size a = λ and b = c = 0.25λ.

Table 4
Example 2: The time of the computation for the cavity size a = λ, b = c = 0.25λ with α = 0, θ = π/2.

M , N J Tsingular Tassemble Tsolve TRCS

M = N = 15 1000 43.997846 0.065300 0.051353 0.003815
M = N = 3 1000 3.037277 0.001508 0.000068 0.001106
M = N = 3 100 3.047187 0.001897 0.000098 0.001130

8. Conclusion

In this paper, we have presented a fast algorithm for the electromagnetic scattering from three dimensional open rect-
angular cavities. Based on the Fourier series expansions in the horizontal directions and the Gaussian elimination along 
the vertical direction, the fast algorithm reduces the global system to an interface system on the open aperture only. We 
also propose an efficient algorithm to evaluate the singular integrals on the aperture based on FFT. The whole algorithm 
enjoys the advantage of the low computational cost by solving only the coefficients of the modes of the Fourier series. 
Moreover, our fast algorithm has the capability of handling large cavities or high wave numbers. This work provides a viable 
alternative to the current efforts of designing sophisticated basis functions for solving Maxwell equations with high wave 
numbers or large cavities. A possible future work is to extend our fast algorithm to the optimal design problems and inverse 
problems. It is of particular interest in designing the shape and composition of a layered cavity to minimize the RCS [5,6]. 
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Fig. 6. Example 3: The backscatter RCS of the cavity with size a = b = λ, c1 = λ and c2 = 2λ.

Table 5
Example 3: The time of the computation for the cavity size a = b = λ, c1 = λ, c2 = 2λ with α = 0, θ = π/2.

M , N J , I Tsingular Tassemble Tsolve TRCS

M = N = 21 J = 1000, I = 2000 130.499710 0.329729 0.341623 0.006732
M = N = 3 J = 1000, I = 2000 4.075719 0.002566 0.000097 0.001600
M = N = 3 J = 100, I = 200 4.194746 0.002448 0.000075 0.001176

Computationally, the design problem can be challenging because of the need of solving the scattering problem repeatedly. 
The fast algorithm presented here certainly would provide an efficient and accurate numerical tool for these problems.
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Appendix A. Notations

In the appendix, we list the expressions of the entries for the vectors used in (3.20).
The definitions of F 1, G1 and H 1 are given by

F 1 :=

⎛
⎜⎜⎜⎜⎝

F (0)
1

F (1)
1
...

F (M)
1

⎞
⎟⎟⎟⎟⎠ , G1 :=

⎛
⎜⎜⎜⎜⎝

G(0)
1

G(1)
1
...

G(M)
1

⎞
⎟⎟⎟⎟⎠ , H 1 :=

⎛
⎜⎜⎜⎜⎝

H (0)
1

H (1)
1
...

H (M)
1

⎞
⎟⎟⎟⎟⎠ ,

with

F (m)
1 :=

⎛
⎜⎜⎜⎜⎝

F (m,1)
1

F (m,2)
1
...

F (m,N)
1

⎞
⎟⎟⎟⎟⎠ , G(m)

1 :=

⎛
⎜⎜⎜⎜⎝

G(m,1)
1

G(m,2)
1
...

G(m,N)
1

⎞
⎟⎟⎟⎟⎠ , H (m)

1 :=

⎛
⎜⎜⎜⎜⎝

H (m,1)
1

H (m,2)
1
...

H (m,N)
1

⎞
⎟⎟⎟⎟⎠ ,

where

F (m,n)
1 :=

(
F (m,n)

1,(0) F (m,n)
1,(1) · · · F (m,n)

1,(M)

)
, F (m,n)

1,(k )
:=

(
F (m,n) F (m,n) · · · F (m,n)

)
,

1 1,(k1,1) 1,(k1,2) 1,(k1,N)

23



Y. Chen, X. Jiang, J. Lai et al. Journal of Computational Physics 437 (2021) 110331
G(m,n)
1 :=

(
G(m,n)

1,(1) G(m,n)
1,(2) · · · G(m,n)

1,(M)

)
, G(m,n)

1,(k1)
:=

(
G(m,n)

1,(k1,0)
G(m,n)

1,(k1,1)
· · · G(m,n)

1,(k1,N)

)
,

H (m,n)
1 :=

(
H (m,n)

1,(0) H (m,n)
1,(1) · · · H (m,n)

1,(M)

)
, H (m,n)

1,(k1)
:=

(
H (m,n)

1,(k1,1)
H (m,n)

1,(k1,2)
· · · H (m,n)

1,(k1,N)

)
.

The definitions of g1 and E l, j with l = 1, 2, 3, 0 ≤ j ≤ J + 1 are given by

g1 :=
(

g(0)
1 g(1)

1 . . . g(M)
1

)�
, g(m)

1 :=
(

g(m,1)
1 g(m,2)

1 . . . g(m,N)
1

)
,

E1, j :=
(

E(0)
1, j E(1)

1, j . . . E(M)
1, j

)�
, E(m)

1, j :=
(

E(m,1)
1, j E(m,2)

1, j . . . E(m,N)
1, j

)
,

E2, j :=
(

E(1)
2, j E(2)

2, j . . . E(M)
2, j

)�
, E(m)

2, j :=
(

E(m,0)
2, j E(m,1)

2, j . . . E(m,N)
2, j

)
,

E3, j :=
(

E(1)
3, j E(2)

3, j . . . E(M)
3, j

)�
, E(m)

3, j :=
(

E(m,1)
3, j E(m,2)

3, j . . . E(m,N)
3, j

)
.

The definitions of F 2, G2 and H 2 are given by

F 2 :=

⎛
⎜⎜⎜⎜⎝

F (1)
2

F (2)
2
...

F (M)
2

⎞
⎟⎟⎟⎟⎠ , G2 :=

⎛
⎜⎜⎜⎜⎝

G(1)
2

G(2)
2
...

G(M)
2

⎞
⎟⎟⎟⎟⎠ , H 2 :=

⎛
⎜⎜⎜⎜⎝

H (1)
2

H (2)
2
...

H (M)
2

⎞
⎟⎟⎟⎟⎠ ,

with

F (m)
2 :=

⎛
⎜⎜⎜⎜⎝

F (m,0)
2

F (m,1)
2
...

F (m,N)
2

⎞
⎟⎟⎟⎟⎠ , G(m)

2 :=

⎛
⎜⎜⎜⎜⎝

G(m,0)
2

G(m,1)
2
...

G(m,N)
2

⎞
⎟⎟⎟⎟⎠ , H (m)

2 :=

⎛
⎜⎜⎜⎜⎝

H (m,0)
2

H (m,1)
2
...

H (m,N)
2

⎞
⎟⎟⎟⎟⎠ ,

where

F (m,n)
2 :=

(
F (m,n)

2,(1) F (m,n)
2,(2) · · · F (m,n)

2,(M)

)
, F (m,n)

2,(k1)
:=

(
F (m,n)

2,(k1,0)
F (m,n)

2,(k1,1)
· · · F (m,n)

2,(k1,N)

)
,

G(m,n)
2 :=

(
G(m,n)

2,(1) G(m,n)
2,(2) · · · G(m,n)

2,(M)

)
, G(m,n)

2,(k1)
:=

(
G(m,n)

2,(k1,0)
G(m,n)

2,(k1,1)
· · · G(m,n)

2,(k1,N)

)
,

H (m,n)
2 :=

(
H (m,n)

2,(0) H (m,n)
2,(1) · · · H (m,n)

2,(M)

)
, H (m,n)

2,(k1)
:=

(
H (m,n)

2,(k1,1)
H (m,n)

2,(k1,2)
· · · H (m,n)

2,(k1,N)

)
,

and

F (m,n)

2,(k)
:= h

c(m,n)
2κ2

0 F̃ (m,n)

2,(k)
, G(m,n)

2,(k)
:= h

c(m,n)

2k1π

a
G̃(m,n)

2,(k)
, H (m,n)

2,(k)
:= h

c(m,n)

−2k2π

b
H̃ (m,n)

2,(k)
,

with

F̃ (m,n)

2,(k)
:=

∫
�

sin
(mπx1

a

)
cos

(nπx2

b

)(∫
�

sin
(k1π y1

a

)
cos

(k2π y2

b

)
g(x, y)ds y

)
dsx,

G̃(m,n)

2,(k)
:=

∫
�

sin
(mπx1

a

)
cos

(nπx2

b

)(∫
�

cos
(k1π y1

a

)
cos

(k2π y2

b

)
∂x1 g(x, y)ds y

)
dsx,

H̃ (m,n)

2,(k)
:=

∫
�

sin
(mπx1

a

)
cos

(nπx2

b

)(∫
�

cos
(k1π y1

a

)
cos

(k2π y2

b

)
∂x1 g(x, y)ds y

)
dsx.

Here

c(m,n) =
{

ab
2 , if n = 0,

ab
4 , others.

The definition of g2 is given by

g2 :=
(

g(1)
2 g(2)

2 . . . g(M)
2

)
, g(m)

2 :=
(

g(m,0)
1 g(m,1)

1 . . . g(m,N)
1

)
,
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where

g(m,n)
2 := h

c(m,n)
2(iα2 p3 + iβp2)

∫
�

sin
(mπx1

a

)
cos

(nπx2

b

)
ei(α1x1+α2x2)dsx.
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