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Abstract

This paper is concerned with the well-posedness and regularity of the distributional solutions for the 
stochastic acoustic and elastic scattering problems. We show that the regularity of the solutions depends on 
the regularity of both the random medium and the random source.
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1. Introduction

The acoustic and elastic wave equations are two fundamental equations to describe wave prop-
agation. They have significantly applications in diverse scientific areas such as remote sensing, 
nondestructive testing, geophysical prospecting, and medical imaging [5]. In practice, due to the 
unpredictability of the environments and incomplete knowledge of the systems, the radiating 
sources and/or the host media, and hence the radiated fields may not be deterministic but rather 
are modeled by random fields [7]. Their governing equations are some forms of stochastic differ-
ential equations and their solutions are random fields instead of their deterministic counterparts 

✩ The research is supported in part by the NSF grant DMS-1912704.
* Corresponding author.

E-mail addresses: lipeijun@math.purdue.edu (P. Li), wang4191@purdue.edu (X. Wang).
https://doi.org/10.1016/j.jde.2021.03.014
0022-0396/© 2021 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2021.03.014&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2021.03.014
http://www.elsevier.com/locate/jde
mailto:lipeijun@math.purdue.edu
mailto:wang4191@purdue.edu
https://doi.org/10.1016/j.jde.2021.03.014


P. Li and X. Wang Journal of Differential Equations 285 (2021) 640–662
of regular functions [4,11,13]. Regularity theory of stochastic wave equations has played an im-
portant role in the study of partial differential equations and attracted a lot of attention [6,12,21]. 
As is known, a basic problem in classical scattering theory is the scattering of a time-harmonic 
wave by an inhomogeneous medium. This paper is concerned with the well-posedness and regu-
larity of the solutions for the time-harmonic stochastic acoustic and elastic scattering problems.

For the case of acoustic waves, it is to find the induced pressure u which satisfies the 
Helmholtz equation

�u + k2(1 + ρ)u = f in Rd, (1.1)

where d = 2 or 3, k > 0 is the wavenumber, ρ describes the inhomogeneous medium and is 
assumed to be a microlocally isotropic generalized Gaussian random field (cf. Definition 2.1) 
defined in a bounded domain Dρ , and f is assumed to be either a microlocally isotropic gen-
eralized Gaussian random field in a bounded domain Df or a point source given by a delta 
distribution. In addition, the pressure u is required to satisfy the Sommerfeld radiation condition

lim|x|→∞ |x| d−1
2

(
∂|x|u − iku

) = 0. (1.2)

The elastic analogue is to find the displacement u satisfying the Navier equation

μ�u + (λ + μ)∇∇ · u + k2(I + M)u = f in Rd, (1.3)

where I is the identity matrix in Rd , the Lamé parameters μ and λ satisfy μ > 0 and λ +
2μ > 0 such that the linear operator �∗ := μ� + (λ + μ)∇∇· is uniformly elliptic (cf. [20, 
(10.4)]), M represents the anisotropic, inhomogeneous medium and is assumed to be a Rd×d -
valued microlocally isotropic generalized Gaussian random field in a bounded domain DM , and 
f is either a microlocally isotropic generalized Gaussian random field in a bounded domain Df

or a point source given by a delta distribution. By [2], the displacement admits the Helmholtz 
decomposition

u = up + us inRd \ (DM ∪ Df ),

where up and us are the compressional and shear wave components, respectively, and are re-
quired to satisfy the Kupradze–Sommerfeld radiation condition

lim|x|→∞ |x| d−1
2

(
∂|x|up − iκpup

) = lim|x|→∞ |x| d−1
2

(
∂|x|us − iκsus

) = 0, (1.4)

where

κp = k/(λ + 2μ)1/2, κs = k/μ1/2

are called the compressional and shear wavenumbers, respectively.
Recently, the microlocally isotropic generalized Gaussian random fields are adopted to char-

acterize the random coefficients of some stochastic wave equations. The associated covariance 
operators can be viewed as classical pseudo-differential operators. These random fields may be 
too rough to be classical functions, and should be interpreted as distributions instead. Classical 
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regularity estimates are not applicable for these stochastic equations due to the roughness of the 
random coefficients. The well-posedness of these equations in the distribution sense and regu-
larity of the distributional solutions need to be investigated. We refer to [3,17] and [15,16] for 
the study of the well-posedness of the solutions for the acoustic and elastic wave equations with 
random potentials and sources, respectively. However, it remains open for the well-posedness 
and regularity of the solutions for the stochastic acoustic and elastic wave scattering problems in 
random media with random sources. The goal of this paper is to examine the well-posedness and 
regularity of the distributional solutions for the stochastic acoustic scattering problem (1.1)–(1.2)
and the stochastic elastic scattering problem (1.3)–(1.4) by using a unified approach.

This paper is organized as follows. In Section 2, we introduce some Sobolev spaces of real 
order and the microlocally isotropic generalized Gaussian random fields. Sections 3 and 4 address 
the well-posedness and regularity of the solutions for the stochastic acoustic and elastic scattering 
problems, respectively.

2. Preliminaries

In this section, we briefly introduce Sobolev spaces of real order and microlocally isotropic 
generalized Gaussian random fields, which are used in this paper.

2.1. Sobolev spaces

Let C∞
0 (D) be the set of smooth functions compactly supported in D ⊂ Rd , and D(D) be the 

space of test functions, which is C∞
0 (D) equipped with a locally convex topology (cf. [1]). The 

dual space D′(D) of D(D) is called the space of distributions on D equipped with a weak-star 
topology. Define the product

〈u,v〉 :=
∫
D

u(x)v(x)dx

for u ∈ D′(D) and v ∈ D(D). The distributional partial derivative of u ∈D′(D) satisfies

〈∂ζ u,ψ〉 = (−1)|ζ |〈u, ∂ζ ψ〉

for any ψ ∈ D(D) and multi-index ζ = (ζ1, . . . , ζd).
For any positive integer n and 1 ≤ p < ∞, the Sobolev space Wn,p(D) is defined by

Wn,p(D) = {u ∈ Lp(D) : ∂ζ u ∈ Lp(D) for 0 ≤ |ζ | ≤ n},

which is equipped with the norm

‖u‖Wn,p(D) :=
⎛⎝ ∑

0≤|ζ |≤n

‖∂ζ u‖p

Lp(D)

⎞⎠
1
p

.

For any r ∈ R+, let r = n + μ with n = [r] being the largest integer smaller than r and 
μ ∈ (0, 1), and define
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Wr,p(D) = {u ∈ Wn,p(D) : |∂ζ u|Wμ,p(D) < ∞ for |ζ | = n}
equipped with the norm

‖u‖Wr,p(D) :=
⎛⎝‖u‖p

Wn,p(D) +
∑
|ζ |=n

|∂ζ u|pWμ,p(D)

⎞⎠
1
p

,

where

|u|Wμ,p(D) :=
⎛⎝∫

D

∫
D

|u(x) − u(y)|p
|x − y|pμ+d

dxdy

⎞⎠
1
p

is the Slobodeckij semi-norm. Denote by Wr,p

0 (D) the closure of C∞
0 (D) in Wr,p(D).

For any r ∈ R+, the Sobolev space W−r,p(D) of negative order is defined as the dual of 
W

r,q
0 (D) with 1

p
+ 1

q
= 1 equipped with the norm

‖u‖W−r,p(D) := sup
v∈Wr,q (D),‖v‖Wr,q (D)≤1

|〈u,v〉|.

If D = Rd , there is another kind of Sobolev spaces defined through the Bessel potential. Let 
S(Rd) be the Schwartz space of rapidly decreasing smooth functions, i.e.,

S(Rd) := {φ ∈ C∞(Rd) : sup
x∈Rd

|xζ ∂τφ(x)| < ∞ for all multi-indices ζ and τ },

and S ′(Rd) be the dual space of S(Rd). Then D(Rd) ⊂ S(Rd) and S ′(Rd) ⊂ D′(Rd). For any 
s ∈R, define the Bessel potential J s : S(Rd) → S(Rd) of order s by

J su := (I − �)
s
2 u = F−1[(1 + | · |2) s

2 û],
where F−1 is the inverse Fourier transform. It is easy to verify that

(J su, v)L2(Rd ) = (u,J sv)L2(Rd ) ∀u,v ∈ S(Rd),

where (·, ·)L2(Rd ) is the inner product in L2(Rd) satisfying

(u, v)L2(Rd ) = 〈u,v〉.
Based on the Bessel potential, we introduce the following Sobolev space of order s ∈ R:

Hs,p(Rd) = {u ∈ S ′(Rd) : J su ∈ Lp(Rd)}.
Denote Hs(Rd) := Hs,2(Rd), which is a Hilbert space with the inner product

(u, v)Hs(Rd ) := (J su,J sv)L2(Rd )
643



P. Li and X. Wang Journal of Differential Equations 285 (2021) 640–662
and the induced norm

‖u‖Hs(Rd ) := ‖J su‖L2(Rd ).

For any set D ⊂ Rd , define

Hs(D) = {u ∈D′(D) : u = ũ|D for some extension ũ ∈ Hs(Rd)}.
Then it holds Hs(D) = Ws,2(D) for any real s ≥ 0 and H−n(D) = W−n,2(D) for any integer 
n ≥ 0 with equivalent norms (cf. [9,20]).

2.2. Microlocally isotropic generalized Gaussian random fields

Denote by (�, F , P ) a complete probability space, where � is a sample space, F is a σ -
algebra on �, and P is a probability measure on the measurable space (�, F). Define D :=
D(Rd) and D′ := D′(Rd). A real-valued field ρ is said to be a generalized random field if, for 
each ω ∈ �, the realization ρ(ω) belongs to D′ and the mapping

ω ∈ � �−→ 〈ρ(ω),ψ〉 ∈R (2.1)

is a random variable for all ψ ∈D.
In particular, a generalized random field is said to be Gaussian if (2.1) defines a Gaussian ran-

dom variable for all ψ ∈D. A generalized Gaussian random field ρ ∈ D′ is uniquely determined 
by its expectation Eρ ∈D′ and covariance operator Qρ : D → D′ defined by

〈Eρ,ψ〉 := E〈ρ,ψ〉 ∀ψ ∈D,

〈Qρψ1,ψ2〉 := E [(〈ρ,ψ1〉 −E〈ρ,ψ1〉)(〈ρ,ψ2〉 −E〈ρ,ψ2〉)] ∀ψ1,ψ2 ∈D.

It follows from the continuity of Qρ and the Schwartz kernel theorem that there exists a 
unique kernel function Kρ(x, y) satisfying

〈Qρψ1,ψ2〉 =
∫
Rd

∫
Rd

Kρ(x, y)ψ1(x)ψ2(y)dxdy ∀ψ1,ψ2 ∈D.

The regularity of the covariance operator Qρ determines the regularity of the random field ρ.

Definition 2.1. A generalized Gaussian random field ρ on Rd is called microlocally isotropic 
of order −m with m ≥ 0 in D if its covariance operator Qρ is a classical pseudo-differential 
operator having an isotropic principal symbol φ(x)|ξ |−m with the micro-correlation strength 
φ ∈ C∞

0 (D) being compactly supported in D and φ ≥ 0.

Note that the covariance operator with a principle symbol φ(x)|ξ |−m has similar regularity as 
the fractional Laplacian. To investigate the regularity of microlocally isotropic Gaussian random 
fields defined above, we introduce the centered fractional Gaussian fields (cf. [18,19]) defined by

hm(x) := (−�)−
m
4 Ẇ (x), x ∈ Rd, (2.2)
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where (−�)− m
4 is the fractional Laplacian and Ẇ ∈ D′ denotes the white noise. It is shown 

in [19] that hm is a microlocally isotropic Gaussian random field of order −m satisfying Def-
inition 2.1 with φ ≡ 1. Hence the fractional Gaussian field hm defined by (2.2) has the same 
regularity as the microlocally isotropic Gaussian random field ρ of order −m in Definition 2.1.

In particular, if m ∈ (d, d + 2), the fractional Gaussian field hm defined above is a translation 
of a classical fractional Brownian motion. More precisely,

h̃m(x) := 〈hm, δ(x − ·) − δ(·)〉, x ∈Rd

has the same distribution as the classical fractional Brownian motion with Hurst parameter H =
m−d

2 ∈ (0, 1) up to a multiplicative constant, where δ(·) is the Dirac function centered at the 
origin.

Taking advantages of the relationship between the microlocally isotropic Gaussian random 
fields and the fractional Gaussian fields defined in (2.2), we conclude this section by providing 
the regularity of microlocally isotropic Gaussian random fields, whose proof can be found in 
[19].

Lemma 2.2. Let ρ be a microlocally isotropic Gaussian random field of order −m in D with 
m ∈ [0, d + 2).

(i) If m ∈ (d, d + 2), then ρ ∈ C0,α(D) almost surely for all α ∈ (0, m−d
2 ).

(ii) If m ∈ [0, d], then ρ ∈ W
m−d

2 −ε,p(D) almost surely for any ε > 0 and p ∈ (1, ∞).

Remark 2.3. For a microlocally isotropic Gaussian random field ρ in Definition 2.1, its kernel 
has the form Kρ(x, y) = φ(x)Khm(x, y) + r(x, y), where φKhm is the leading term with strength 
φ and r is a smooth residual (cf. [14]).

3. The acoustic scattering problem

In this section, we consider the Helmholtz equation (1.1) and study the well-posedness for the 
acoustic scattering problem under the following assumptions on the medium ρ and the source f .

Assumption 1. Let the medium ρ be a real-valued centered microlocally isotropic Gaussian 
random field of order −mρ with mρ ∈ (d − 1, d] in a bounded domain Dρ ⊂ Rd . The principal 
symbol of its covariance operator has the form φρ(x)|ξ |−mρ with φρ ∈ C∞

0 (Dρ) and φρ ≥ 0.

Assumption 2. Let the real-valued source f satisfy one of the following assumptions:

(i) f is a centered microlocally isotropic Gaussian random field of order −mf with mf ∈ (d −
1, d] in a bounded domain Df ⊂ Rd . The principal symbol of its covariance operator has 
the form φf (x)|ξ |−mf with φf ∈ C∞

0 (Df ) and φf ≥ 0.
(ii) f = −δ(· − y)a is a point source with y ∈ Rd and some fixed constant a ∈ R.

For such rough ρ and f , the Helmholtz equation (1.1) should be interpreted in the distribution 
sense. First let us consider the equivalent Lippmann–Schwinger integral equation.
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3.1. The Lippmann–Schwinger equation

Based on the fundamental solution

�d(x, y, k) =

⎧⎪⎪⎨⎪⎪⎩
i

4
H

(1)
0 (k|x − y|), d = 2,

eik|x−y|

4π |x − y| , d = 3,

(3.1)

of the equation �u + k2u = −δ(· − y) in Rd , the Lippmann–Schwinger integral equation has 
the form

u(x) − k2
∫
Rd

�d(x, z, k)ρ(z)u(z)dz = −
∫
Rd

�d(x, z, k)f (z)dz. (3.2)

Define two operators

(Hkv)(x) :=
∫
Rd

�d(x, z, k)v(z)dz,

(Kkv)(x) :=
∫
Rd

�d(x, z, k)ρ(z)v(z)dz,

which have the following properties.

Lemma 3.1. Let ρ satisfy Assumption 1. Let D ⊂ Rd be a bounded set and G ⊂Rd be a bounded 
set with a locally Lipschitz boundary.

(i) The operator Hk : H−β
0 (D) → Hβ(G) is bounded for any β ∈ (0, 1].

(ii) The operator Hk : W
−γ,p

0 (D) → Wγ,q(G) is compact for any q ∈ (2, ∞), γ ∈ (0, ( 1
q

−
1
2 )d + 1) and p satisfying 1

p
+ 1

q
= 1.

(iii) The operator Kk : Wγ,q(G) → Wγ,q(G) is compact for any q ∈ (2, 2d
2d−2−mρ

) and γ ∈
(
d−mρ

2 , ( 1
q

− 1
2 )d + 1).

Proof. (i) It follows from [5, Theorem 8.1] that Hk is bounded from C0,α(D) to C2,α(G) with 
respect to the corresponding Hölder norms ‖ · ‖C0,α(D) and ‖ · ‖C2,α(G). Define spaces X :=
C0,α(D) and Y := C2,α(G) with scalar products

(f1, f2)X := (f̃1, f̃2)Hβ−2(Rd ) ∀f1, f2 ∈ X

and

(g1, g2)Y := (g̃1, g̃2)Hβ(Rd ) ∀g1, g2 ∈ Y,
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respectively, where f̃i and g̃i are the zero extensions of fi and gi in Rd \ D and Rd \ G, respec-
tively. It is easy to verify that the products defined above satisfy

(f1, f2)X = (J β−2f̃1, J
β−2f̃2)L2(Rd ) =

∫
Rd

(1 + |ξ |2)β−2 ˆ̃
f1(ξ)

ˆ̃
f2(ξ)dξ

� ‖f̃1‖L2(Rd )‖f̃2‖L2(Rd ) � ‖f1‖C0,α(D)‖f2‖C0,α(D)

and

(g1, g2)Y = (J βg̃1, J
βg̃2)L2(Rd ) � ‖g̃1‖Hβ(Rd )‖g̃2‖Hβ(Rd ) � ‖g1‖C2,α(G)‖g2‖C2,α(G),

where the notation a � b denotes a ≤ Cb for some constant C > 0.
We claim that there exists a bounded operator V : Y → X defined by V = (I − �)Hk(I − �)

such that

(Hkf,g)Y = (f,Vg)X ∀f ∈ X,g ∈ Y.

In fact, for any g ∈ Y ,

‖Vg‖C0,α(D) = ‖(I − �)Hk(I − �)g‖C0,α(D) � ‖Hk(I − �)g‖C2,α(D)

� ‖(I − �)g‖C0,α(G) � ‖g‖C2,α(G).

Furthermore,

(Hkf,g)Y = (J βHkf̃ , J β g̃)L2(Rd ) = (Hkf̃ , J 2β g̃)L2(Rd )

= (Ĥkf̃ , Ĵ β g̃)L2(Rd ) =
∫
Rd

�̂d(ξ)
ˆ̃

f (ξ)(1 + |ξ |2)β ˆ̃g(ξ)dξ

=
∫
Rd

ˆ̃
f (ξ)(1 + |ξ |2)β−2

[
(1 + |ξ |2)�̂d(ξ)(1 + |ξ |2) ˆ̃g(ξ)

]
dξ

=
∫
Rd

ˆ̃
f (ξ)(1 + |ξ |2)β−2V̂ g̃(ξ)dξ = (J β−2f̃ , J β−2V g̃)L2(Rd )

= (f,Vg)X,

where �̂d is the Fourier transform of �d(x, y, k) with respect to x−y and satisfies −|ξ |2�̂d(ξ) +
k2�̂d(ξ) = −1. The claim is proved.

It follows from the claim and [5, Theorem 3.5] that Hk : X → Y is bounded with respect to 
the norms induced by the scalar products on X and Y . More precisely, we have

‖Hkf ‖Y = ‖Hkf ‖Hβ(G) � ‖f ‖X = ‖f ‖Hβ−2(D) ≤ ‖f ‖H−β(D) (3.3)
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for any f ∈ X and β ≤ 1. It then suffices to show that (3.3) also holds for any f ∈ H−β(D). 
Noting that the subspace C∞

0 (D) ⊂ X is dense in L2(D) (cf. [1, Section 2.30]) and H−1(D) =
L2(D)

‖·‖
H−1(D) (cf. [1, Section 3.13]), we get that (3.3) holds for any f ∈ H−1(D), and hence 

for any f ∈ H−β(D) since H−β(D) ⊂ H−1(D).
(ii) For parameters p, q and γ given above, we choose β = 1 such that γ < β , 1

2 − β−γ
d

< 1
q

, 
and hence the embeddings

W
−γ,p

0 (D) ↪→ H
−β
0 (D), Hβ(G) ↪→ Wγ,q(G)

are compact according to the Kondrachov compact embedding theorem (cf. [1]). Combining with 
the result in (i) yields that Hk is compact from W−γ,p

0 (D) to Wγ,q(G).

(iii) Note that ρ ∈ W
mρ−d

2 −ε,p′
for any ε > 0 and p′ > 1 according to Lemma 2.2. Then for 

any γ ∈ (
d−mρ

2 , ( 1
q

− 1
2 )d + 1), there exist ε > 0 and p′ > 1 such that mρ−d

2 − ε > −γ and 

1
p′ −

mρ−d

2 −ε+γ

d
< 1

p̃
with p̃ = p

2−p
and p satisfying 1

p
+ 1

q
= 1, which leads to

W
mρ−d

2 −ε,p′
0 (Dρ) ↪→ W

−γ,p̃

0 (Dρ)

according to the Kondrachov compact embedding theorem, and hence ρ ∈ W
−γ,p̃

0 (Dρ). It then 
follows from [14, Lemma 2] that ρv ∈ W

−γ,p

0 (Dρ) for any v ∈ Wγ,q(G) with

‖ρv‖W−γ,p � ‖ρ‖W−γ,p̃‖v‖Wγ,q . (3.4)

Consequently, for any v ∈ Wγ,q(G), we have Kkv = Hk(ρv) ∈ Wγ,q(G), which implies that 
Kk : Wγ,q(G) → Wγ,q(G) is compact according to (ii). �

Before showing the well-posedness of the Lippmann–Schwinger equation (3.2), we present 
the unique continuation principle which ensures the uniqueness of the solution of (3.2).

Theorem 3.2. Let ρ satisfy Assumption 1. If u ∈ W
γ,q
comp(Rd) with γ ∈ (0, ( 1

q
− 1

2 ) d
2 + 1

2 ) and 

q ∈ (2, 2d
d−2 ) is a solution of the homogeneous equation

�u + k2(1 + ρ)u = 0

in the distribution sense, then u ≡ 0.

Proof. For any fixed k > 0, define an auxiliary function v(x) := e−iη·xu(x) with

η := (kt,0, · · · ,0, ik
√

t2 + 1) ∈Cd , t > 1

such that η · η = −k2 and limt→∞ |η| = ∞, which satisfies

(� + 2iη · ∇)v = −k2ρv.

The equation above is equivalent to
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v = Gη(ρv),

where v ∈ W
γ,q
comp(Rd) and the operator Gη is defined by

Gη(f )(x) := F−1
[

k2

|ξ |2 + 2η · ξ f̂

]
(x)

with ξ = (ξ1, · · · , ξd)� ∈Rd .
We first give the estimate of the operator Gη. Let D ⊂ Rd be a bounded domain containing 

the supports of both u and ρ. For any f, g ∈ C∞
0 (D), we still denote the zero extensions of f and 

g in Rd by f and g, respectively. For any s ∈ [0, 12 ], by denoting ξ− := (ξ1, · · · , ξd−1)
� ∈Rd−1

and ξ−− := (ξ2, · · · , ξd−1)
� ∈Rd−2 with ξ−− = 0 if d = 2, we get

〈Gηf,g〉 =〈Ĝηf , ĝ〉 =
∫
Rd

k2

|ξ |2 + 2η · ξ f̂ (ξ)ĝ(ξ)dξ

=
∫
Rd

k2

|ξ |2 + 2ktξ1 + 2ik
√

t2 + 1ξd

f̂ (ξ)ĝ(ξ)dξ

=
∫
Rd

k2

(ξ1 + kt)2 − k2t2 + |ξ−−|2 + ξ2
d + 2ik

√
t2 + 1ξd

f̂ (ξ)ĝ(ξ)dξ

=
∫
Rd

k2

|ξ−|2 − k2t2 + ξ2
d + 2ik

√
t2 + 1ξd

f̂ (ξ)ĝ(ξ)dξ

=
∫
�I

k2(1 + |ξ |2)s
|ξ−|2 − k2t2 + ξ2

d + 2ik
√

t2 + 1ξd

̂J −sf (ξ)̂J −sg(ξ)dξ

+
∫

�II

k2(1 + |ξ |2)s
|ξ−|2 − k2t2 + ξ2

d + 2ik
√

t2 + 1ξd

̂J −sf (ξ)̂J −sg(ξ)dξ

= : I + II

with

�I :=
{
ξ : ||ξ−| − kt | > kt

2

}
=

{
ξ : |ξ−| > 3kt

2
or |ξ−| < kt

2

}
and

�II :=
{
ξ : ||ξ−| − kt | < kt

2

}
=

{
ξ : kt

2
< |ξ−| < 3kt

2

}
,

where the transformation of variables (ξ1 + kt, ξ2, · · · , ξd)� �→ (ξ1, ξ2, · · · , ξd)� and the fact 
f̂ (ξ1 − kt, ξ2, · · · , ξd) = e−iktξ1 f̂ (ξ1, ξ2, · · · , ξd) are used.
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The first term I satisfies

|I| ≤
∫
�I

k2(1 + |ξ |2)s[
(|ξ−|2 − k2t2 + ξ2

d )2 + 4k2(t2 + 1)ξ2
d

] 1
2

|̂J −sf ||̂J −sg|dξ

=
∫
�I

k2(1 + |ξ |2)s[
((|ξ−| − kt)2 + ξ2

d )((|ξ−| + kt)2 + ξ2
d ) + 4k2ξ2

d

] 1
2

|̂J −sf ||̂J −sg|dξ

≤
∫
�I

k2(1 + |ξ |2)s
||ξ−| − kt |((|ξ−| + kt)2 + ξ2

d )
1
2

|̂J −sf ||̂J −sg|dξ

≤2k

t

[ ∫
{ξ :|ξ−|> 3kt

2 }

(1 + |ξ |2)s
((|ξ−| + kt)2 + ξ2

d )
1
2

|̂J −sf ||̂J −sg|dξ

+
∫

{ξ :|ξ−|< kt
2 ,|ξd |< kt

2 }

(1 + |ξ |2)s
((|ξ−| + kt)2 + ξ2

d )
1
2

|̂J −sf ||̂J −sg|dξ

+
∫

{ξ :|ξ−|< kt
2 ,|ξd |> kt

2 }

(1 + |ξ |2)s
((|ξ−| + kt)2 + ξ2

d )
1
2

|̂J −sf ||̂J −sg|dξ

]

= : 2k

t
[I1 + I2 + I3] , (3.5)

where in the third step we use the fact

(|ξ−|2 − k2t2 + ξ2
d )2 + 4k2(t2 + 1)ξ2

d

=
(
|ξ−|2 + ξ2

d + k2t2
)2 − 4k2t2|ξ−|2 + 4k2ξ2

d

=
[
(|ξ−|2 − kt)2 + ξ2

d

][
(|ξ−|2 + kt)2 + ξ2

d

]
+ 4k2ξ2

d .

For sufficiently large t > 0, the following estimates hold:

I1 �
∫

{ξ :|ξ |> 3kt
2 }

1

|ξ |1−2s
|̂J −sf ||̂J −sg|dξ � 1

(kt)1−2s
‖f ‖H−s (D)‖g‖H−s (D),

I2 �
∫

{ξ :|ξ |<kt}

(1 + |ξ |2)s
kt

|̂J −sf ||̂J −sg|dξ � 1

(kt)1−2s
‖f ‖H−s (D)‖g‖H−s (D)

and
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I3 �
∫

{ξ :|ξ−|< kt
2 ,|ξd |> kt

2 }

(1 + |ξ−|2 + ξ2
d )s

|ξd | |̂J −sf ||̂J −sg|dξ

�
∫

{ξ :|ξ−|< kt
2 ,|ξd |> kt

2 }

( |ξ−|2s

|ξd | + 1

|ξd |1−2s

)
|̂J −sf ||̂J −sg|dξ

� 1

(kt)1−2s
‖f ‖H−s (D)‖g‖H−s (D),

which, together with (3.5), lead to

|I| � k2s

t2−2s
‖f ‖H−s (D)‖g‖H−s (D). (3.6)

For term II, a simple calculation yields

II =
∫

{ξ : kt
2 <|ξ−|< 3kt

2 ,|ξd |> kt
2 }

k2(1 + |ξ |2)s ̂J −sf (ξ)̂J −sg(ξ)

|ξ−|2 − k2t2 + ξ2
d + 2ik

√
t2 + 1ξd

dξ

+
∫

{ξ : kt
2 <|ξ−|< 3kt

2 ,|ξd |< kt
2 }

k2(1 + |ξ |2)s ̂J −sf (ξ)̂J −sg(ξ)

|ξ−|2 − k2t2 + ξ2
d + 2ik

√
t2 + 1ξd

dξ

= : II1 + II2, (3.7)

where II1 satisfies

|II1| ≤
∫

{ξ : kt
2 <|ξ−|< 3kt

2 ,|ξd |> kt
2 }

k2(1 + |ξ |2)s
∣∣∣̂J −sf

∣∣∣ ∣∣∣̂J −sg

∣∣∣[
(|ξ−|2 − k2t2 + ξ2

d )2 + 4k2(t2 + 1)ξ2
d

] 1
2

dξ

�
∫

{ξ : kt
2 <|ξ−|< 3kt

2 ,|ξd |> kt
2 }

(
k2|ξ−|2s

kt |ξd | + k2

kt |ξd |1−2s

)∣∣∣̂J −sf

∣∣∣ ∣∣∣̂J −sg

∣∣∣dξ

� k2s

t2−2s
‖f ‖H−s (D)‖g‖H−s (D). (3.8)

It then suffices to estimate II2. Define a function

mt(ξ) := k2

|ξ−|2 − k2t2 + ξ2
d + 2ik

√
t2 + 1ξd

and the transformation of variables ξ �→ ξ∗ = (ξ ′, −ξd) with
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ξ ′ =
(

2kt

|ξ−| − 1

)
ξ−

and the Jacobian

Jt (ξ) =
∣∣∣∣det

∂ξ∗

∂ξ

∣∣∣∣ =
(

2kt

|ξ−| − 1

)d−2

such that |ξ ′| = 2kt − |ξ−|. Clearly, the transformation maps the subdomain

�1 := {ξ : kt

2
< |ξ−| < kt, |ξd | < kt

2
}

to the subdomain

�2 := {ξ : kt < |ξ−| < 3kt

2
, |ξd | < kt

2
}.

Hence, II2 satisfies

II2 =
∫

�1∪�2

mt(ξ)(1 + |ξ |2)s ̂J −sf (ξ)̂J −sg(ξ)dξ

=
∫
�2

[
mt(ξ)(1 + |ξ |2)s ̂J −sf (ξ)̂J −sg(ξ)

+ mt(ξ
∗)(1 + |ξ∗|2)s ̂J −sf (ξ∗)̂J −sg(ξ∗)Jt (ξ)

]
dξ

=
∫
�2

[
mt(ξ) + mt(ξ

∗)Jt (ξ)
]
(1 + |ξ |2)s ̂J −sf (ξ)̂J −sg(ξ)dξ

+
∫
�2

mt(ξ
∗)Jt (ξ)

[
(1 + |ξ∗|2)s − (1 + |ξ |2)s

]
̂J −sf (ξ)̂J −sg(ξ)dξ

+
∫
�2

mt(ξ
∗)Jt (ξ)(1 + |ξ∗|2)s[̂J −sf (ξ∗) − ̂J −sf (ξ)

]
̂J −sg(ξ)dξ

+
∫
�2

mt(ξ
∗)Jt (ξ)(1 + |ξ∗|2)s ̂J −sf (ξ∗)

[
̂J −sg(ξ∗) − ̂J −sg(ξ)

]
dξ

= : II21 + II22 + II23 + II24.

For any ξ ∈ �2, we define the function

h(ξ2
d ) := |mt(ξ) + mt(ξ

∗)Jt (ξ)|.

If d = 2, it can be easily shown that
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h(ξ2
d ) :=

∣∣∣∣ k2

|ξ−|2 − k2t2 + ξ2
d + 2ik

√
t2 + 1ξd

+ k2

|ξ ′|2 − k2t2 + ξ2
d − 2ik

√
t2 + 1ξd

∣∣∣∣
= k2(|ξ−|2 + |ξ ′|2 − 2k2t2 + 2ξ2

d )[
(|ξ−|2 − k2t2 + ξ2

d )2 + 4k2(t2 + 1)ξ2
d

] 1
2
[
(|ξ ′|2 − k2t2 + ξ2

d )2 + 4k2(t2 + 1)ξ2
d

] 1
2

is decreasing with respect to ξ2
d ∈ [0, k

2t2

4 ) and hence

h(ξ2
d ) ≤ h(0) = 2k2

(|ξ−| + kt)(3kt − |ξ−|) �
1

t2 .

If d = 3, similarly, we have

h(ξ2
d ) ≤h(0) = k2

∣∣∣∣ 1

|ξ−|2 − k2t2 +
( 2kt
|ξ−| − 1)

|ξ ′|2 − k2t2

∣∣∣∣
= k2

|ξ−|
2kt

(|ξ−| + kt)(3kt − |ξ−|) �
1

t2 .

As a result, we obtain

|II21|� 1

t2

∫
�2

(1 + |ξ |2)s
∣∣∣̂J −sf

∣∣∣ ∣∣∣̂J −sg

∣∣∣dξ � k2s

t2−2s
‖f ‖H−s (D)‖g‖H−s (D). (3.9)

By the mean value theorem, similar to the estimate of h(ξ2
d ) above, we get for some θ ∈ (0, 1)

that ∣∣∣mt(ξ
∗)Jt (ξ)

[
(1 + |ξ∗|2)s − (1 + |ξ |2)s

]∣∣∣
=

∣∣∣∣mt(ξ
∗)Jt (ξ)s

(
1 + θ |ξ∗|2 + (1 − θ)|ξ |2

)s−1
(|ξ∗|2 − |ξ |2)

∣∣∣∣
=

∣∣∣∣∣ k2( 2kt
|ξ−| − 1)d−2(|ξ ′|2 − |ξ−|2)

|ξ ′|2 − k2t2 + ξ2
d − 2ik

√
t2 + 1ξd

∣∣∣∣∣ s (
1 + θ |ξ∗|2 + (1 − θ)|ξ |2

)s−1
� k2s

t2−2s
,

which leads to

|II22|� k2s

t2−2s
‖f ‖H−s (D)‖g‖H−s (D). (3.10)

To estimate II23 and II24, we employ the following characterization of W 1,p(Rd) introduced in 
[10].

Lemma 3.3. For 1 < p ≤ ∞, the function u ∈ W 1,p(Rd) if and only if there exist g ∈ Lp(Rd)

and C > 0 such that
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|u(x) − u(y)| ≤ C|x − y|(g(x) + g(y)).

Moreover, we can choose g = M(|∇u|), where M is defined by

M(f )(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|f (y)|dy

and is called the Hardy–Littlewood maximal function of f .

For f, g ∈ C∞
0 (D), we have ̂J −sf , ̂J −sg ∈ S(Rd) ⊂ H 1(Rd). An application of Lemma 3.3

gives ∣∣∣̂J −sf (ξ∗) − ̂J −sf (ξ)

∣∣∣� ∣∣|ξ∗| − |ξ |∣∣[M(|∇̂J −sf |)(ξ∗) + M(|∇̂J −sf |)(ξ)
]
,

where M(|∇̂J −sf |) satisfies

‖M(|∇̂J −sf |)‖L2(Rd ) � ‖∇̂J −sf ‖L2(Rd ) � ‖(I − �)
1
2 ̂J −sf ‖L2(Rd )

= ‖(I − �)
1
2 (1 + | · |2)− s

2 f̂ (·)‖L2(Rd )

= ‖(I + | · |) 1
2 (1 − �)−

s
2 f (·)‖L2(Rd )

� ‖f ‖H−s (D)

according to [22, Theorem 2.1], and the same for g. The above estimates then lead to

|II23| � k1+2s

t1−2s

∫
�2

[
M(|∇̂J −sf |)(ξ∗) + M(|∇̂J −sf |)(ξ)

]|̂J −sg(ξ)|dξ

� k1+2s

t1−2s
‖f ‖H−s (D)‖g‖H−s (D)

and

|II24| � k1+2s

t1−2s
‖f ‖H−s (D)‖g‖H−s (D),

which, together with (3.9) and (3.10), yield

|II2| � (1 + k)k2s

t1−2s
‖f ‖H−s (D)‖g‖H−s (D). (3.11)

We conclude from (3.6)–(3.8) and (3.11) that

|〈Gηf,g〉|� (1 + k)k2s

‖f ‖H−s (D)‖g‖H−s (D)

t1−2s
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for any f, g ∈ C∞
0 (D), which can be easily extended to f, g ∈ H−s(D) by taking the procedure 

used in the estimate of (3.3). Hence, we get

‖Gη‖L(H−s (D),Hs(D)) �
(1 + k)k2s

t1−2s
,

which, together with [14, Proposition 2], leads to

‖Gη‖L(W−γ,p(D),Wγ,q (D)) �
(1 + k)θ k2sθ

t (1−2s)θ
,

where p satisfies 1
p

+ 1
q

= 1, θ = ( 1
q

− 1
2 )d + 1 and γ = θs ∈ (0, ( 1

q
− 1

2 ) d
2 + 1

2 ). Utilizing (3.4)
gives

‖v‖Wγ,q(D) = ‖Gη(ρv)‖Wγ,q(D) �
(1 + k)θ k2sθ

t (1−2s)θ
‖ρ‖W−γ,p̃(D)‖v‖Wγ,q(D),

where p̃ = p
2−p

. The proof is completed by letting t → ∞. �
Theorem 3.4. Let ρ satisfy Assumption 1. Then the Lippmann–Schwinger equation (3.2) ad-
mits a unique solution u ∈ W

γ,q

loc (Rd) almost surely with γ ∈ ( d−m
2 , ( 1

q
− 1

2 ) d
2 + 1

2 ) and q ∈
(2, 2d

3d−2−2m
), where

(i) m = mρ ∧ mf if the condition (i) in Assumption 2 holds

or

(ii) m = mρ if the condition (ii) in Assumption 2 holds.

Proof. Let G ⊂ Rd be any bounded set with a locally Lipschitz boundary. Based on the defini-
tion of the operator Kk , the Lippmann–Schwinger equation can be written in the form

(I − k2Kk)u = −Hkf, (3.12)

where the operator I − k2Kk : Wγ,q(G) → Wγ,q(G) is Fredholm according to Lemma 3.1. It 
follows from the Fredholm alternative theorem that (3.12) has a unique solution u ∈ Wγ,q(G) if

(I − k2Kk)u = 0 (3.13)

has only the trivial solution u ≡ 0, which has been proved in Theorem 3.2.
Next is to show Hkf ∈ Wγ,q(G). We consider the following two cases:
If the condition (i) in Assumption 2 holds, for any q, γ given above and p satisfying 1

p
+ 1

q
=

1, there exist ε > 0 and p′ > 1 such that

f ∈ W

mf −d

2 −ε,p′
(Df ) ↪→ W

−γ,p
(Df )
0 0
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and hence Hkf ∈ Wγ,q(G) according to Lemma 3.1.
If the condition (ii) in Assumption 2 holds, it holds Hkf = �d(·, y, k) ∈ W 1,p′

(G) for any 
p′ ∈ (1, 3 − d

2 ) according to [19, Lemma 3.1]. Then there exists p′ = 3 − d
2 − ε for a sufficiently 

small ε > 0 satisfying 1
p′ − 1−γ

d
< 1

q
, such that

W 1,p′
(G) ↪→ Wγ,q(G),

and hence Hkf = �d(·, y, k) ∈ Wγ,q(G). �
3.2. Well-posedness

Now we present the well-posedness on the solution of (1.1)–(1.2) in the distribution sense by 
showing the equivalence to the Lippmann–Schwinger equation.

Theorem 3.5. Let ρ satisfy Assumption 1. The acoustic scattering problem (1.1)–(1.2) is well-
defined in the distribution sense, and admits a unique solution u ∈ W

γ,q

loc (Rd) almost surely with 
γ ∈ ( d−m

2 , ( 1
q

− 1
2 ) d

2 + 1
2 ) and q ∈ (2, 2d

3d−2−2m
), where

(i) m = mρ ∧ mf if the condition (i) in Assumption 2 holds

or

(ii) m = mρ if the condition (ii) in Assumption 2 holds.

Proof. First we show the existence of the solution of (1.1)–(1.2). Specifically, we show that 
the solution of the Lippmann–Schwinger equation (3.2) is also a solution of (1.1)–(1.2) in the 
distribution sense. Suppose that u∗ ∈ W

γ,q

loc (Rd) is the solution of (3.2) and satisfies

u∗(x) − k2
∫
Rd

�d(x, z, k)ρ(z)u∗(z)dz = −
∫
Rd

�d(x, z, k)f (z)dz, x ∈Rd .

Note that the Green tensor �d is the fundamental solution for the operator � + k2I :

(� + k2)�d(·, z, k) = −δ(· − z),

where the Dirac delta function δ is a distribution, i.e., δ ∈D′. It indicates that, for any ψ ∈D,

〈(� + k2)�d(·, z, k),ψ〉 = −〈δ(· − z),ψ〉 = −ψ(y).

We obtain for any ψ ∈ D that

〈�u∗ + k2u∗ + k2ρu∗,ψ〉

= k2

〈 ∫
d

(
� + k2

)
�d(·, z, k)ρ(z)u∗(z)dz,ψ

〉

R
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−
〈 ∫
Rd

(
� + k2

)
�d(x, z, k)f (z)dz,ψ

〉
+ k2〈ρu∗,ψ〉

= k2
∫
Rd

ρ(z)u∗(z)
〈(

� + k2
)

�d(·, z, k),ψ
〉
dz

−
∫
Rd

f (z)
〈(

� + k2
)

�d(·, y, k),ψ
〉
dz + k2〈ρu∗,ψ〉

= −k2
∫
Rd

ρ(z)u∗(z)ψ(z)dz +
∫
Rd

f (z)ψ(z)dz + k2〈ρu∗,ψ〉

= 〈f,ψ〉.

Hence, u∗ ∈ W
γ,q

loc (Rd) is also a solution of (1.1)–(1.2) in the distribution sense, which shows the 
existence of the solution of (1.1)–(1.2) according to Theorem 3.4.

The uniqueness of the solution of (1.1)–(1.2) can be proved by using the same procedure as 
that of the Lippmann–Schwinger equation. Let u0 be any solution of (1.1) with f = 0 in the 
distribution sense. It then suffices to show that u0 is also a solution of (3.13) with f = 0, i.e., 
u0 ≡ 0. In fact, u0 satisfies

�u0 + k2u0 = −k2ρu0

in the distribution sense, where ρ ∈ W−γ,p̃(Dρ), u0 ∈ W
γ,q

loc (Rd) and hence ρu0 ∈ W
−γ,p

0 (Dρ)

with p̃ = p
2−p

according to the proof of Lemma 3.1. Let Br be an open ball with radius r large 
enough such that Dρ ⊂ Br .

Moreover, it has been shown in Theorem 3.4 that �d(·, y, k) ∈ W 1,p′
(Br) ↪→ Wγ,q(Br) with 

p′ = 3 − d
2 − ε for a sufficiently small ε > 0. It then indicates that∫

Br

�d(x, z, k)
[
�u0(z) + k2u0(z)

]
dz

= −k2
∫
Br

�d(x, z, k)ρ(z)u0(z)dz. (3.14)

Define the operator T by

(T ψ)(x) :=
∫
Br

�d(x, z, k)
[
�ψ(z) + k2ψ(z)

]
dz

for ψ ∈D. By the similar arguments as those in the proof of [15, Lemma 4.3], we obtain

(T ψ)(x) = −ψ(x) +
∫

[�d(x, z, k)∂νψ(z) − ∂ν�d(x, z, k)ψ(z)]ds(z),
∂Br
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where ν is the unit outward normal vector on the boundary ∂Br . Then (3.14) turns to be

u0(x) −
∫

∂Br

[
�d(x, z, k)∂νu0(z) − ∂ν�d(x, z, k)u0(z)

]
ds(z)

= k2
∫
Br

�d(x, z, k)ρ(z)u0(z)dz.

Let r → ∞ and applying the radiation condition, we get

u0(x) = k2
∫
Rd

�d(x, z, k)ρ(z)u0(z)dz,

which implies that u0 is also a solution of the Lippmann–Schwinger equation (3.2) with f = 0, 
and hence u0 ≡ 0 according to Theorem 3.4. �
4. The elastic scattering problem

In this section, we discuss the well-posedness of the elastic wave equation (1.3) in the distri-
bution sense, where the medium M and the source f satisfy the following assumptions.

Assumption 3. Let the medium M = (Mij )d×d be a Rd×d -valued and centered microlocally 
isotropic Gaussian random field of order −mM with mM ∈ (d − 1, d] in a bounded domain 
DM ⊂ Rd . The principal symbol of the covariance operator of each component Mij has the form 
φij (x)|ξ |−mM with φij ∈ C∞

0 (DM), φij ≥ 0 and i, j = 1, · · · , d .

Remark 4.1. For a random medium M = (Mij )d×d , if the components are centered microlocally 
isotropic Gaussian random fields of different orders, denoted by −mij , then M satisfies Assump-
tion 3 with mM := mini,j∈{1,··· ,d} mij . Moreover, for any component Mij with mij > mM , it 
holds φij ≡ 0.

Assumption 4. Let the Rd -valued source f satisfy one of the following assumptions:

(i) f is a centered microlocally isotropic Gaussian random vector field of order −mf with 
mf ∈ (d − 1, d] in a bounded domain Df ⊂ Rd . The principal symbol of its covariance 
operator has the form Af (x)|ξ |−mf with Af ∈ C∞

0 (Df ; Rd×d).
(ii) f = −δ(· − y)a is a point source with y ∈ Rd and some fixed vector a ∈ Rd .

In the sequel, we denote by

X := Xd = {g = (g1, · · · , gd)� : gj ∈ X ∀ j = 1, · · · , d}

the Cartesian product vector space, and use notations W r,p := (Wr,p(Rd))d and H r := W r,2 for 
simplicity.
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4.1. The Lippmann–Schwinger equation

Similarly, we consider the equivalent Lippmann–Schwinger equation for the elastic wave scat-
tering problem. Denote by �d(x, y, k) ∈ Cd×d the Green tensor for the Navier equation which 
has the following form:

�d(x, y, k) = 1

μ
�d(x, y, κs)I + 1

ω2 ∇x∇�
x

[
�d(x, y, κs) − �d(x, y, κp)

]
, (4.1)

where I is the d × d identity matrix and �d is the fundamental solution for the Helmholtz 
equation and is defined in (3.1).

Based on the Green tensor �d given in (4.1), the Lippmann–Schwinger equation has the form

u(x) − k2
∫
Rd

�d(x, z, k)M(z)u(z)dz = −
∫
Rd

�d(x, z, k)f (z)dz. (4.2)

Define two operators H k and Kk by

(H kv)(x) =
∫
Rd

�d(x, z, k)v(z)dz,

(Kkv)(x) =
∫
Rd

�d(x, z, k)M(z)v(z)dz,

which have the following properties.

Lemma 4.2. Let M satisfy Assumption 3. Let D ⊂ Rd be a bounded set and G ⊂ Rd be a 
bounded set with a locally Lipschitz boundary.

(i) The operator H k : H−β
0 (D) → H β(G) is bounded for any β ∈ (0, 1].

(ii) The operator H k : W
−γ,p

0 (D) → W γ,q(G) is compact for any q ∈ (0, ∞), γ ∈ (0, ( 1
q

−
1
2 )d + 1) and p satisfying 1

p
+ 1

q
= 1.

(iii) The operator Kk : W γ,q(G) → W γ,q(G) is compact almost surely for any q ∈ (2, 2d
2d−2−mM

)

and γ ∈ (
d−mM

2 , ( 1
q

− 1
2 )d + 1).

Proof. Noting that the linear operator in (1.3) is uniformly elliptic and H k is bounded from 
C0,α(D) to C2,α(G) (cf. [8, Theorem 6.8]), we may obtain the result in (i) by following essen-
tially the same procedure as that for Lemma 3.1. The details are omitted for brevity.

The proof of (ii) can also be obtained by using the same procedure as the proof of Lemma 3.1
and noting that the embeddings

W
−γ,p

0 (D) ↪→ H
−β
0 (D), H β(G) ↪→ W γ,q(G)

hold by choosing β = 1 such that γ < β and 1 − β−γ
< 1 .
2 d q
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It then suffices to show (iii). Note that M ∈ (W
mM−d

2 −ε,p′
)d×d almost surely for any ε > 0 and 

p′ > 1 according to Lemma 2.2, and there must exist ε > 0 and p′ > 1 such that the embedding

W
mM−d

2 −ε,p′
0 (DM) ↪→ W

−γ,p̃

0 (DM )

holds according to the Kondrachov compact embedding theorem with p̃ = p
2−p

. Hence, M ∈
(W−γ,p̃(Rd))d×d and Mv ∈ W−γ,p almost surely for any v ∈ W γ,q(G) with

‖Mv‖W−γ,p � ‖M‖(W−γ,p̃(Rd ))d×d ‖v‖W γ,q

according to [14, Lemma 2], where

‖M‖(W−γ,p̃)d×d :=
⎛⎝ d∑

i,j=1

‖Mij‖2
W−γ,p̃(Rd )

⎞⎠
1
2

, ‖v‖W γ,q :=
⎛⎝ d∑

j=1

‖vj‖2
Wγ,q(Rd )

⎞⎠
1
2

for any v = (v1, · · · , vd)�. As a result, for any v ∈ W γ,q(G), we get Kkv = H k(Mv) ∈
W γ,q(G) almost surely, which completes the proof. �
Theorem 4.3. Let M satisfy Assumption 3. Then the Lippmann–Schwinger equation (4.2) admits 
a unique solution u ∈ W

γ,q

loc almost surely with γ ∈ ( d−m
2 , ( 1

q
− 1

2 ) d
2 + 1

2 ) and q ∈ (2, 2d
3d−2−2m

), 
where

(i) m = mM ∧ mf if the condition (i) in Assumption 4 holds

or

(ii) m = mM if the condition (ii) in Assumption 4 holds.

Note that, according to the Helmholtz decomposition, the solution u of the homogeneous 
elastic wave equation with f ≡ 0 in (1.3) can be decomposed into the compressional part up
and the shear part us such that u = up + us. Both up and us satisfy the Helmholtz equation 
with Sommerfeld radiation condition (cf. [16]). Hence, the proof of Theorem 4.3 can be ob-
tained similarly by following the same procedure as the proof of Theorem 3.4 utilizing the fact 
�d(·, y, k) ∈ (W 1,p′

(G))d×d with p′ ∈ (1, 3 − d
2 ) shown in [15, Lemma 4.1]. The details are 

omitted for brevity.

4.2. Well-posedness

Now we present the existence and uniqueness of the solution of (1.3)–(1.4) in the distribution 
sense by utilizing the Lippmann–Schwinger equation for the elastic scattering problem.

Theorem 4.4. Let M satisfy Assumption 3. The elastic scattering problem (1.3)–(1.4) is well-
defined in the distribution sense, and admits a unique solution u ∈ W

γ,q

loc almost surely with 
γ ∈ ( d−m, ( 1 − 1 ) d + 1 ) and q ∈ (2, 2d ), where
2 q 2 2 2 3d−2−2m
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(i) m = mM ∧ mf if the condition (i) in Assumption 4 holds

or

(ii) m = mM if the condition (ii) in Assumption 4 holds.

Proof. To show the existence of the solution, we first show that the solution of the Lippmann–
Schwinger equation (4.2) is also a solution of (1.3)–(1.4) in the distribution sense. Suppose that 
u∗ ∈ W

γ,q

loc is the solution of (4.2) and satisfies

u∗(x) − k2
∫
Rd

�d(x, z, k)M(z)u∗(z)dz = −
∫
Rd

�d(x, z, k)f (z)dz, x ∈ Rd .

The Green tensor �d is the fundamental solution of the equation

(�∗ + k2)�d(·, y, k) = −δ(· − y)I ,

where �∗ := μ� + (μ + λ)∇∇·. For any ψ ∈D, it is easy to note that

〈(�∗ + k2)�d(·, y, k),ψ〉 = −〈δ(· − y)I ,ψ〉 = −ψ(y).

Hence, for any ψ ∈ D, we get

〈�∗u∗ + k2(I + M)u∗,ψ〉

= k2

〈 ∫
Rd

(
�∗ + k2

)
�d(·, z, k)M(z)u∗(z)dz,ψ

〉

−
〈 ∫
Rd

(
�∗ + k2

)
�d(·, z, k)f (z)dz,ψ

〉
+ k2〈Mu∗,ψ〉

= k2
∫
Rd

(
M(z)u∗(z)

)� 〈(
�∗ + k2

)
�d(·, z, k),ψ

〉
dz

−
∫
Rd

f (z)�
〈(

�∗ + k2
)

�d(·, z, k),ψ
〉
dz + k2〈Mu∗,ψ〉

= −k2
∫
Rd

(
M(z)u∗(z)

)�
ψ(z)dz +

∫
Rd

f (z)�ψ(z)dz + k2〈Mu∗,ψ〉

= 〈f ,ψ〉.
Hence, u∗ ∈ W

γ,q

loc is also a solution of (1.3)–(1.4) in the distribution sense, which shows the 
existence of the solution of (1.3)–(1.4) according to Theorem 4.3.

The uniqueness of the solution of (1.3)–(1.4) is obtained based on the same procedure as the 
proof of Theorem 3.5. �
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