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INVERSE RANDOM SOURCE SCATTERING FOR THE
HELMHOLTZ EQUATION WITH ATTENUATION\ast 

PEIJUN LI\dagger AND XU WANG\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, a new model is proposed for the inverse random source scattering prob-
lem of the Helmholtz equation with attenuation. The source is assumed to be driven by a fractional
Gaussian field whose covariance is represented by a classical pseudodifferential operator. The work
contains three contributions. First, the connection is established between fractional Gaussian fields
and rough sources characterized by their principal symbols. Second, the direct source scattering
problem is shown to be well-posed in the distribution sense. Third, we demonstrate that the micro-
correlation strength of the random source can be uniquely determined by the passive measurements
of the wave field in a set which is disjoint with the support of the strength function. The analysis
relies on careful studies on the Green function and Fourier integrals for the Helmholtz equation.
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1. Introduction. The inverse source scattering in waves is an important and
active research subject in inverse scattering theory. It is an important mathematical
tool for the solution of many medical imaging modalities [3, 13]. The inverse source
scattering problems are to determine the unknown sources that generate prescribed
wave patterns. These problems have attracted much research. The mathematical and
numerical results can be found in [7, 8, 17] and the references cited therein.

Stochastic modeling is widely introduced to mathematical systems due to un-
predictability of the environments, incomplete knowledge of the systems and mea-
surements, and fine-scale fluctuations in simulation. In many situations, the source,
hence the wave field, may not be deterministic but are rather modeled by random
processes [12]. Due to the extra challenge of randomness and uncertainties, little is
known for the inverse random source scattering problems.

In this paper, we consider the Helmholtz equation with a random source

(1.1) \Delta u+ (k2 + ik\sigma )u = f, x \in \BbbR d,

where d = 2 or 3, k > 0 is the wavenumber, the attenuation coefficient \sigma \geq 0 describes
the electrical conductivity of the medium, u denotes the wave field, and f representing
the electric current density is a random function compactly supported in a bounded
domain \scrO .

In [4], the white noise model was studied for the inverse random source problem
of the stochastic Helmholtz equation without attenuation

\Delta u+ k2u = g + h \.W, x \in \BbbR d,

where g and h are deterministic and compactly supported functions, and \.W is the
spatial white noise. It was shown that g and h can be determined by statistics of the
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486 PEIJUN LI AND XU WANG

wave fields at multiple frequencies. The white noise model can also be found in [6]
and [5] for the one-dimensional problem and the stochastic elastic wave equation,
respectively. Recently, the model of a generalized Gaussian field was developed to
handle random processes [9, 14]. The random function is said to be microlocally
isotropic of order 2s if the covariance operator is a pseudodifferential operator with
principal symbol given by \mu (x)| \xi |  - 2s, where \mu \geq 0 is a smooth and compactly support
function and is called the microcorrelation strength of the random function. It was
shown that \mu can be uniquely determined by the wave field averaged over the frequency
band at a single realization of the random function. This model was also investigated
in [20, 21] for the inverse random source problems of the elastic wave equation and the
Helmholtz equation without attenuation. In these works, the parameter s \in [d2 ,

d
2 +1)

and the random functions are smoother than the white noise (cf. Lemma 2.6): They
can be interpreted as distributions in W - \epsilon ,p(\scrO ) for any small \epsilon > 0 and p \in (1,\infty ) if
s = d

2 ; they are functions in C0,\alpha (\BbbR d) for any \alpha \in (0, s - d
2 ) if s \in (d2 ,

d
2+1). To the best

of our knowledge, it is still open on the problem of the stochastic Helmholtz equation
driven by rougher random sources with s < d

2 , where the distributional solution should
be studied since it is less regular than the one considered in the previous work.

In this paper, we propose a new model for the stochastic Helmholtz equation (1.1),
where the random source f is driven by a fractional Gaussian field (FGF) ( - \Delta ) - 

s
2 \.W

with s \in [0, d2 + 1) (cf. Definition 2.2). The FGFs include various processes such as
Brownian motion (d = 1, s = 1), fractional Brownian motion (d = 1, 12 < s < 3

2 ),
white noise (s = 0), Gaussian free field (s = 1), bi-Laplacian Gaussian field (s = 2),
the log-correlated Gaussian field (s = d

2 ), L\'evy's Brownian motion (s = d
2 + 1

2 ), and

multidimensional fractional Brownian motion (d2 < s < d
2 + 1). A survey can be

found in [25] on some basic results of FGFs. These fields have significant applications
in finance, statistical physics, quantum field theory, early-universe cosmology, image
processing, and many other disciplines. In particular, the model problem considered
in this paper has an important application in medical imaging of lossy media such as
the human body.

The work contains three contributions in addition to the new model. First, we
demonstrate that the FGFs include the classical fractional Brownian fields. Moreover,
we establish the connection between the FGFs and rough sources characterized by
their principal symbols (cf. Proposition 2.5). Second, we examine the regularity of
the random source and show that the direct scattering problem is well-posed in the
distribution sense (cf. Theorem 3.2). Third, for the inverse problem, we prove that
the strength \mu of the random source can be uniquely determined by the high frequency
limit of the second moment of the wave field, which is stated as follows (cf. Theorems
4.2, 4.4, and 4.5).

Theorem 1.1. Let d = 2, 3. Assume that \mu is compactly supported in \scrO and
\scrU \subset \BbbR d is a bounded open set such that dist(\scrU ,\scrO ) =: r0 > 0. For any x \in \scrU , it holds

lim
k\rightarrow \infty 

k2s+3 - d\BbbE | u(x; k)| 2 = Cd

\int 
\scrO 

e - \sigma | x - y| 

| x - y| d - 1
\mu (y)dy =: T (d)(x),

where Cd = 1
22(2\pi )d - 1 . Moreover, the strength \mu can be uniquely determined by the

integral T (d)(x).

In particular, if \sigma = 0, the strength \mu can also be determined uniquely by the
amplitude of the wave field averaged over the frequency band at a single realization
of the random source. It is worthy to be pointed out that (1) if s \in [0, d2 ], the random
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INVERSE RANDOM SOURCE SCATTERING 487

function is a distribution in f \in W s - d
2 - \epsilon ,p(\scrO ) for any \epsilon > 0 and p \in (1,\infty ) (cf.

Lemma 2.6), which is rougher than those considered in [9, 14, 20, 21]; (2) if \sigma = 0 and
s \in [d2 ,

d
2 + 1), the results obtained in this paper coincide with the ones given in [20].

The paper is organized as follows. In section 2, the random source model is intro-
duced. The relationship is established between the FGF and the classical fractional
Brownian motion; the regularity is studied for the random source. Section 3 addresses
the well-posedness and regularity of the solution for the direct problem. The inverse
problem is discussed in section 4, where the two- and three-dimensional problems
are considered separately. The paper is concluded with some general remarks and
directions for future work in section 5.

2. Random source. In this section, we give a general description of the random
source on \BbbR d. Let f be a real-valued centered random field defined on a completed
probability space (\Omega ,\scrF ,\BbbP ). Introduce the following Sobolev spaces. The details can
be found in [2].

\bullet W s,p := W s,p(\BbbR d) for s \in \BbbR and p \in (1,\infty ). In particular, if p = 2, denote
Hs :=W s,2.

\bullet Denote by W s,p
loc the space of functions which are locally in W s,p. More

precisely, for any precompact subset D \subset \BbbR d, u| D \in W s,p(D).
\bullet Denote by W s,p

0 (D) the closure of C\infty 
0 (D) in W s,p(D) with D \subset \BbbR d. In

particular, if D = \BbbR d, W s,p
0 =W s,p.

Let f : \Omega \rightarrow \scrD \prime be measurable such that the mapping \omega \mapsto \rightarrow \langle f(\omega ), \phi \rangle defines a
Gaussian random variable for any \phi \in \scrD . Here, \scrD \prime is the space of distributions on
\BbbR d, which is the dual space of the test function space \scrD . The covariance operator
Qf : \scrD \rightarrow \scrD \prime is given by

\langle \varphi ,Qf\psi \rangle = \BbbE [\langle f, \varphi \rangle \langle f, \psi \rangle ] \forall \varphi ,\psi \in \scrD ,

where \langle \cdot , \cdot \rangle denotes the dual product. The derivative of a distribution g \in \scrD \prime is defined
by

\langle \partial xj
g, \varphi \rangle =  - \langle g, \partial xj

\varphi \rangle \forall \varphi \in \scrD .
Denote by Kf (x, y) the Schwartz kernel of Qf , which satisfies

\langle \varphi ,Qf\psi \rangle =
\int 
\BbbR d

\int 
\BbbR d

Kf (x, y)\varphi (x)\psi (y)dxdy.

Hence we have the following formal expression of the Schwartz kernel:

Kf (x, y) = \BbbE [f(x)f(y)].

Assumption 2.1. The covariance operator Qf of the source f is a classical pseu-
dodifferential operator with the principal symbol \mu (x)| \xi |  - 2s, where s \in 

\bigl[ 
0, d2 + 1

\bigr) 
and

0 \leq \mu \in C\infty 
0 (\scrO ).

The positive function \mu stands for the microcorrelation strength of the random
field f . The assumption implies that the covariance operator Qf satisfies

(Qf\psi )(x) =
1

(2\pi )d

\int 
\BbbR d

eix\cdot \xi c(x, \xi ) \^\psi (\xi )d\xi \forall \psi \in \scrD ,

where the symbol c(x, \xi ) has the leading term \mu (x)| \xi |  - 2s and

\^\psi (\xi ) = \scrF [\psi ](\xi ) =

\int 
\BbbR d

e - ix\cdot \xi \psi (x)dx
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488 PEIJUN LI AND XU WANG

is the Fourier transform of \psi [15, 16]. By the expression of Qf\psi , we can deduce the
relationship between the kernel Kf and the symbol c(x, \xi ). In fact, noting that

\langle \varphi ,Qf\psi \rangle =
\int 
\BbbR d

\varphi (x)

\biggl[ 
1

(2\pi )d

\int 
\BbbR d

eix\cdot \xi c(x, \xi ) \^\psi (\xi )d\xi 

\biggr] 
dx

=
1

(2\pi )d

\int 
\BbbR d

\varphi (x)

\int 
\BbbR d

e\bfi x\cdot \xi c(x, \xi )

\biggl[ \int 
\BbbR d

e - iy\cdot \xi \psi (y)dy

\biggr] 
d\xi dx

=

\int 
\BbbR d

\int 
\BbbR d

\biggl[ 
1

(2\pi )d

\int 
\BbbR d

ei(x - y)\cdot \xi c(x, \xi )d\xi 

\biggr] 
\varphi (x)\psi (y)dxdy,

we get that the kernel Kf is an oscillatory integral of the form

(2.1) Kf (x, y) =
1

(2\pi )d

\int 
\BbbR d

ei(x - y)\cdot \xi c(x, \xi )d\xi .

2.1. FGFs. We introduce the FGFs, which can be used to generate random
fields satisfying Assumption 2.1.

Definition 2.2. The FGF hs on \BbbR d with parameter s \in \BbbR is given by

hs := ( - \Delta ) - 
s
2 \.W,

where ( - \Delta ) - 
s
2 is the fractional Laplacian on \BbbR d defined by

(2.2) ( - \Delta )\alpha u = \scrF  - 1
\bigl[ 
| \xi | 2\alpha \scrF [u](\xi )

\bigr] 
, \alpha \in \BbbR ,

and \.W \in \scrD \prime is the white noise on \BbbR d determined by the covariance operator Q \.W :
L2 \rightarrow L2 as follows:

\langle \varphi ,Q \.W\psi \rangle := \BbbE [\langle \.W,\varphi \rangle \langle \.W,\psi \rangle ] = (\varphi ,\psi )L2 \forall \varphi ,\psi \in L2.

We denote by \BbbG s(\BbbR d) the space of FGFs with parameter s. Let hs \sim \BbbG s(\BbbR d) if
hs is a FGF on \BbbR d with parameter s. If d = 1 and s = 1, h1 turns to be the classical
one-dimensional Brownian motion. If s = 0, h0 = \.W is the white noise on \BbbR d. If
s < 0, hs is even rougher than the white noise. We refer to [25] and references therein
for more details about the FGFs and the fractional Laplacian.

To make sense of the expression hs = ( - \Delta ) - 
s
2 \.W , we define

\scrS r :=

\Biggl\{ \bigl\{ 
\varphi \in \scrS :

\int 
\BbbR d x

\alpha \varphi (x)dx = 0 \forall | \alpha | \leq r
\bigr\} 

if r \geq 0,

\scrS if r < 0,

where \scrS denotes the Schwartz space. Denote by Ts the closure of \scrS s - d
2
in H - s. Then

the expression hs = ( - \Delta ) - 
s
2 \.W in Definition 2.2 is interpreted by

\langle hs, \varphi \rangle := \langle \.W, ( - \Delta ) - 
s
2\varphi \rangle =

\int 
\BbbR d

( - \Delta ) - 
s
2\varphi (x)dW (x) \forall \varphi \in Ts.

The kernel Khs for the covariance operator Qhs of hs satisfies

\langle \varphi ,Qhs\psi \rangle =
\int 
\BbbR d

\int 
\BbbR d

Khs(x, y)\varphi (x)\psi (y)dxdy \forall \varphi ,\psi \in \scrD \cap Ts.

Moreover, the kernel has the following expression. The proof can be found in [25].
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Lemma 2.3. Let hs \sim \BbbG s(\BbbR d) with parameter s \in [0,\infty ). Denote H := s - d
2 .

(i) If s \in (0,\infty ) and H is not a nonnegative integer, then

Khs(x, y) = C1(s, d)| x - y| 2H ,

where C1(s, d) = 2 - 2s\pi  - d
2\Gamma (d2  - s)/\Gamma (s) with \Gamma (\cdot ) being the Gamma function.

(ii) If s \in (0,\infty ) and H is a nonnegative integer, then

Khs(x, y) = C2(s, d)| x - y| 2H ln | x - y| ,

where C2(s, d) = ( - 1)H+12 - 2s+1\pi  - d
2 /(H!\Gamma (s)).

(iii) If s = 0, then
Khs(x, y) = \delta (x - y),

where \delta (\cdot ) is the Dirac delta function centered at 0.

2.2. Relationship with classical fractional Brownian fields. For any hs \sim 
\BbbG s(\BbbR d), we define its generalized Hurst parameter H = s - d

2 . If s \in (d2 ,
d
2 +1), hs co-

incides with the classical fractional Brownian fields BH determined by the covariance
operator QBH :

(2.3) \langle \varphi ,QBH\psi \rangle =
\int 
\BbbR d

\int 
\BbbR d

1

2

\bigl[ 
| x| 2H + | y| 2H  - | x - y| 2H

\bigr] 
\varphi (x)\psi (y)dxdy,

where the Hurst parameter H \in (0, 1).

Lemma 2.4. Let s \in (d2 ,
d
2 + 1) and hs \sim \BbbG s(\BbbR d). Then the stochastic process

defined by
\~hs(x) = \langle hs, \delta x  - \delta 0\rangle 

has the same distribution as the fractional Brownian field BH with H = s - d
2 \in (0, 1)

up to a multiplicative constant, where \delta x(\cdot ) \in H - s is the Dirac measure centered at
x \in \BbbR d.

Proof. By Lemma 2.3, the kernel of the covariance operator reads

\BbbE [\~hs(x)\~hs(y)] = \BbbE [\langle hs, \delta x  - \delta 0\rangle \langle hs, \delta y  - \delta 0\rangle ]

= C1(s, d)

\int 
\BbbR d

\int 
\BbbR d

| r1  - r2| 2H(\delta x  - \delta 0)(r1)(\delta y  - \delta 0)(r2)dr1dr2

= C1(s, d)
\bigl( 
| x - y| 2H  - | x| 2H  - | y| 2H

\bigr) 
,

which is a scalar multiple of the kernel of the covariance operator QBH defined in (2.3).
The result then follows from the fact that the distribution of a centered Gaussian
random field is unique determined by its covariance operator.

Note that \langle hs, \delta x  - \delta 0\rangle is actually a translation of hs. It indicates that we can
identify hs \sim \BbbG s(\BbbR d) as the fractional Brownian field BH with H = s - d

2 \in (0, 1) by
fixing its value to be zero at the origin. Define a random function

(2.4) f(x, \omega ) := a(x)hs(x, \omega ), x \in \BbbR d, \omega \in \Omega ,

where s \in (d2 ,
d
2 +1) and a \in C\infty 

0 with supp(a) \subset \scrO . We claim that such an f defined
above satisfies Assumption 2.1. More precisely, the covariance operator Qf of f has
the principal symbol a2(x)| \xi |  - 2s up to a multiplicative constant.
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Proposition 2.5. The random field f defined in (2.4) with s \in [0, d2 +1) satisfies
Assumption 2.1 with \mu = a2.

Proof. According to Definition 2.2, the covariance operator Qf of f satisfies

\langle \varphi ,Qf\psi \rangle = \BbbE [\langle ahs, \varphi \rangle \langle ahs, \psi \rangle ] = \BbbE 
\biggl[ \int 

\BbbR d

( - \Delta ) - 
s
2 (a\varphi )dW

\int 
\BbbR d

( - \Delta ) - 
s
2 (a\psi )dW

\biggr] 
=

\int 
\BbbR d

( - \Delta ) - 
s
2 (a\varphi )( - \Delta ) - 

s
2 (a\psi )dx

=
1

(2\pi )d

\int 
\BbbR d

\scrF 
\bigl[ 
( - \Delta ) - 

s
2 (a\varphi )

\bigr] 
(\xi )\scrF 

\bigl[ 
( - \Delta ) - 

s
2 (a\psi )

\bigr] 
(\xi )d\xi ,

where the Plancherel theorem is used in the last step. It follows from the definition
of the fractional Laplacian given in (2.2) that we get

\langle \varphi ,Qf\psi \rangle =
1

(2\pi )d

\int 
\BbbR d

| \xi |  - 2s \widehat (a\varphi )(\xi ) \widehat (a\psi )(\xi )d\xi 
=

1

(2\pi )d

\int 
\BbbR d

| \xi |  - 2s

\biggl[ \int 
\BbbR d

a(x)\varphi (x)eix\cdot \xi dx

\biggr] \biggl[ \int 
\BbbR d

a(y)\psi (y)e - iy\cdot \xi dy

\biggr] 
d\xi 

=
1

(2\pi )d

\int 
\BbbR d

\int 
\BbbR d

\int 
\BbbR d

\varphi (x)\psi (y)ei(x - y)\cdot \xi a2(x)| \xi |  - 2sd\xi dxdy

 - 1

(2\pi )d

\int 
\BbbR d

\int 
\BbbR d

\int 
\BbbR d

\varphi (x)\psi (y)ei(x - y)\cdot \xi a(x)(a(x) - a(y))| \xi |  - 2sd\xi dxdy

=: I1 + I2.

Noting a(x) - a(y) = \nabla a(\theta x+ (1 - \theta )y) \cdot (x - y) for some \theta \in (0, 1) and\int 
\BbbR d

ei(x - y)\cdot \xi \nabla a(\theta x+ (1 - \theta )y) \cdot (x - y)| \xi |  - 2sd\xi 

=  - i

\int 
\BbbR d

\nabla a(\theta x+ (1 - \theta )y) \cdot (x - y)[(x - y)\top (x - y)] - 1(x - y)\top | \xi |  - 2sdei(x - y)\cdot \xi 

=  - 2is

\int 
\BbbR d

ei(x - y)\cdot \xi \nabla a(\theta x+ (1 - \theta )y) \cdot (x - y)

[(x - y)\top (x - y)] - 1(x - y)\top | \xi |  - 2s - 2\xi \top d\xi ,

we conclude that the term I2 contains only higher order terms of the symbol and the
term I1 contains the principal symbol a2(x)| \xi |  - 2s, which completes the proof.

2.3. Regularity of random sources. By Proposition 2.5, for any function f
satisfying Assumption 2.1 with parameter s \in [0, d2 + 1), its principal symbol has the
same order as the principal symbol of the random field ahs. Without loss of generality,
we only need to investigate the regularity of random fields given by f = ahs, where
a \in C\infty 

0 and supp(a) \subset \scrO . Moreover, we assume that f is a centered random field to
avoid using the modification \langle hs, \delta x  - \delta 0\rangle .

Lemma 2.6. Let s \in [0, d2+1) and hs \sim \BbbG s(\BbbR d). Define the random field f := ahs

with a \in C\infty 
0 and supp(a) \subset \scrO .

(i) If s \in (d2 ,
d
2 + 1), then f \in C0,\alpha almost surely for all \alpha \in (0, s - d

2 ).

(ii) If s \in [0, d2 ], then f \in W s - d
2 - \epsilon ,p(\scrO ) almost surely for any \epsilon > 0 and p \in 

(1,\infty ).
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Proof. (i) If s \in (d2 ,
d
2 + 1), it follows from Lemma 2.4 that f has the same

distribution as aBH , where BH is a classical fractional Brownian field on \BbbR d with the
Hurst parameter H = s - d

2 \in (0, 1). Note that BH is (H  - \epsilon )-H\"older continuous for

any \epsilon \in (0, H). Hence, f \in C0,\alpha with \alpha \in (0, H) = (0, s - d
2 ).

(ii) We first consider the case s = 0. Note that f = ah0 = a \.W has the same

regularity as the white noise. Hence, f \in W - d
2 - \epsilon ,p(\scrO ) for any \epsilon > 0 and p \in (1,\infty )

(cf. [26]).
If s \in (0, d2 ], as a smoothing of the white noise, it holds f = ahs = a( - \Delta ) - 

s
2 \.W \in 

W s - d
2 - \epsilon ,p(\scrO ) for any \epsilon > 0 and p \in (1,\infty ).

The readers are also referred to [9, Proposition 2.4] for an alternative proof of the
regularity of random fields satisfying Assumption 2.1.

3. Direct scattering problem. This section is to investigate the well-posedness
and study the regularity of the solution for the direct scattering problem.

3.1. Fundamental solution. Let \kappa 2 = k2 + ik\sigma with \Re [\kappa ] > 0. A simple
calculation yields that

\Re [\kappa ] = \kappa r =

\biggl( \surd 
k4 + k2\sigma 2 + k2

2

\biggr) 1
2

, \Im [\kappa ] = \kappa i =

\biggl( \surd 
k4 + k2\sigma 2  - k2

2

\biggr) 1
2

,

and

(3.1) lim
k\rightarrow \infty 

\kappa r
k

= 1, lim
k\rightarrow \infty 

\kappa i =
\sigma 

2
.

Then the Helmholtz equation (1.1) can be written as

\Delta u+ \kappa 2u = f in \BbbR d.(3.2)

The Helmholtz equation (3.2) with a complex-valued wavenumber has the fundamen-
tal solution

\Phi \kappa (x, y) =

\Biggl\{ 
i
4H

(1)
0 (\kappa | x - y| ), d = 2,

1
4\pi 

ei\kappa | x - y| 

| x - y| , d = 3,

where H
(1)
0 is the Hankel function of the first kind with order 0.

3.2. Well-posedness and regularity. Using the fundamental solution \Phi \kappa , we
define a volume potential

(V\kappa f)(x) :=  - 
\int 
\BbbR d

\Phi \kappa (x, y)f(y)dy.

The mollifier V\kappa has the following property, which will be used to show the well-
posedness of the direct scattering problem.

Lemma 3.1. Let D and U be two bounded domains in \BbbR d. The operator V\kappa :
H - \beta 

0 (D) \rightarrow H\beta (U) is bounded for \beta \in (0, 1].

The proof of the above lemma can be found in [24] and is omitted here. Now we
are at the position to show the well-posedness of (1.1) in the distribution sense.

Theorem 3.2. Let f satisfy Assumption 2.1 with s \in (dp  - 1, d2 ] and p \in ( 2d
d+2 , 2].

Denote H = s  - d
2 \in (( 1p  - 1

2 )d  - 1, 0]. Then the scattering problem (1.1) admits a
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unique solution u \in W - H+\epsilon ,q
loc almost surely in the distribution sense with q satisfying

1
p + 1

q = 1. Moreover, the solution is given by

u(x; k) =  - 
\int 
\BbbR d

\Phi \kappa (x, y)f(y)dy.

Proof. We only need to show the existence of the solution since the uniqueness
follows directly from the deterministic case. Since f satisfies Assumption 2.1, accord-
ing to Proposition 2.5, f has the same regularity as the random field defined in (2.4).
Hence, it follows from Lemma 2.6 that f \in WH - \epsilon ,p(\scrO ) for any \epsilon > 0. For any x \in \BbbR d,
define the volume potential

u\ast (x; k) :=  - 
\int 
\scrO 
\Phi \kappa (x, y)f(y)dy =  - 

\int 
\BbbR d

\Phi \kappa (x, y)f(y)dy.

First we show that u\ast is a solution of (1.1) in the distribution sense. In fact, we
have for any v \in \scrD that

\langle \Delta u\ast + \kappa 2u\ast , v\rangle =  - \langle \nabla u\ast ,\nabla v\rangle + \kappa 2\langle u\ast , v\rangle 

=

\int 
\BbbR d

\nabla x

\Bigl[ \int 
\BbbR d

\Phi \kappa (x, y)f(y)dy
\Bigr] 
\nabla v(x)dx - \kappa 2

\int 
\BbbR d

\Bigl[ \int 
\BbbR d

\Phi \kappa (x, y)f(y)dy
\Bigr] 
v(x)dx

=  - 
\int 
\BbbR d

\int 
\BbbR d

\Delta x\Phi \kappa (x, y)v(x)f(y)dxdy  - \kappa 2
\int 
\BbbR d

\Bigl[ \int 
\BbbR d

\Phi \kappa (x, y)f(y)dy
\Bigr] 
v(x)dx

=

\int 
\BbbR d

\int 
\BbbR d

\bigl( 
\kappa 2\Phi \kappa (x, y) + \delta (x - y)

\bigr) 
v(x)f(y)dxdy  - \kappa 2

\int 
\BbbR d

\Bigl[ \int 
\BbbR d

\Phi \kappa (x, y)f(y)dy
\Bigr] 
v(x)dx

= \langle f, v\rangle .

It then suffices to show that u\ast \in W - H+\epsilon ,q
loc , which is equivalent to show that

\phi u\ast \in W - H+\epsilon ,q for any \phi \in C\infty 
0 compactly supported in \scrU \subset \BbbR d with a C1-boundary.

Define a weighted potential

( \~V\kappa f)(x) :=  - \phi (x)
\int 
\BbbR d

\Phi \kappa (x, y)f(y)dy, x \in \scrU .

By Lemma 3.1, the operator \~V\kappa : H - \beta 
0 (\scrO ) \rightarrow H\beta (\scrU ) is bounded for any \beta \in (0, 1].

For parameters p, q, and H satisfying assumptions in the theorem, by choosing \beta = 1

such that 1
q >

1
2  - \beta  - ( - H+\epsilon )

d , we get from the Kondrachov embedding theorem that
the embeddings

WH - \epsilon ,p
0 (\scrO ) \lhook \rightarrow H - \beta 

0 (\scrO ), H\beta (\scrU ) \lhook \rightarrow W - H+\epsilon ,q(\scrU )

are continuous. Consequently, \~V\kappa : WH - \epsilon ,p
0 (\scrO ) \rightarrow W - H+\epsilon ,q(\scrU ) is bounded, which

shows that \phi u\ast = \~V\kappa f \in W - H+\epsilon ,q and completes the proof.

Remark 3.3. It follows from Lemma 2.6 that the random source is a continuous
function for s \in (d2 ,

d
2 +1). The well-posedness of the scattering problem (1.1) is well

known since the source f is compactly supported and regular enough [10].

4. Inverse scattering problem. This section addresses the inverse scattering
problem. The goal is to determine the strength \mu of the random source f . We discuss
the two- and three-dimensional cases separately.
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4.1. Two-dimensional case. First we consider d = 2 in which s \in [0, d2 + 1) =
[0, 2). Recall that the Hankel function has the following asymptotic expansion [1]:

(4.1) H
(1)
0 (z) \sim 

\infty \sum 
j=0

ajz
 - (j+ 1

2 )eiz, z \in \BbbC , | z| \rightarrow \infty ,

where a0 =
\sqrt{} 

2
\pi e

 - i\pi 
4 and aj =

\sqrt{} 
2
\pi (

i
8 )

j(
\prod j

l=1(2l  - 1)2/j!)e - 
i\pi 
4 , j \geq 1. Denoting

H
(1)
0,N (z) :=

N\sum 
j=0

ajz
 - (j+ 1

2 )eiz, \Phi N
\kappa (x, y) :=

i

4
H

(1)
0,N (\kappa | x - y| ),

we have

\Phi \kappa (x, y) = \Phi N
\kappa (x, y) +O

\bigl( 
| \kappa | x - y| |  - (N+ 3

2 )
\bigr) 
, N \in \BbbN ,

as | \kappa | x  - y| | \rightarrow \infty due to \kappa i > 0. Based on the truncated fundamental solution
\Phi 2

\kappa (x, y) by choosing N = 2, we first consider the approximate solution

u2(x; k) =  - 
\int 
\BbbR 2

\Phi 2
\kappa (x, y)f(y)dy =  - ia0

4

\int 
\BbbR 2

(\kappa | x - y| ) - 1
2 ei\kappa | x - y| f(y)dy

 - ia1
4

\int 
\BbbR 2

(\kappa | x - y| ) - 3
2 ei\kappa | x - y| f(y)dy  - ia2

4

\int 
\BbbR 2

(\kappa | x - y| ) - 5
2 ei\kappa | x - y| f(y)dy.(4.2)

Let \scrU \subset \BbbR 2 be a bounded domain satisfying dist(\scrU ,\scrO ) = r0 > 0. First we show
that the strength \mu of the source f given in Assumption 2.1 can be reconstructed
uniquely by the variance of the solution u on \scrU .

Proposition 4.1. Let d = 2, k \geq 1 and the assumptions in Theorem 3.2 hold.
Then the following estimate holds:

\BbbE | u2(x; k)| 2 = T\kappa (x)| \kappa |  - 1\kappa  - 2s
r +O

\bigl( 
\kappa  - 2s - 2
r

\bigr) 
, x \in \scrU ,

where

T\kappa (x) :=
1

23\pi 

\int 
\BbbR 2

e - 2\kappa i| x - y| 

| x - y| 
\mu (y) dy

and the residual term O(\kappa  - 2s - 2
r ) is an infinitesimal function equivalent to \kappa  - 2s - 2

r as
\kappa r \rightarrow \infty .

Proof. For any x \in \scrU , we have from the expression of u2 given in (4.2) that
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\BbbE | u2(x; k)| 2 =
| a0| 2

16| \kappa | 

\int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| 12 | x - z| 12
\BbbE [f(y)f(z)]dydz

+\Re 
\biggl[ 
a0\=a1
8| \kappa | \=\kappa 

\biggr] \int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| 12 | x - z| 32
\BbbE [f(y)f(z)]dydz

+
| a1| 2

16| \kappa | 3

\int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| 32 | x - z| 32
\BbbE [f(y)f(z)]dydz

+\Re 
\biggl[ 
a0\=a2
8| \kappa | \=\kappa 2

\biggr] \int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| 12 | x - z| 52
\BbbE [f(y)f(z)]dydz

+\Re 
\biggl[ 
a1\=a2
8| \kappa | 3\=\kappa 

\biggr] \int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| 32 | x - z| 52
\BbbE [f(y)f(z)]dydz

+
| a2| 2

16| \kappa | 5

\int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| 52 | x - z| 52
\BbbE [f(y)f(z)]dydz.(4.3)

To estimate all the above terms, it suffices to consider the following integral with
l1, l2 \in \{ 0, 1, 2\} :

Il1,l2(x; k) :=

\int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\kappa | x - z| 

| x - y| 12+l1 | x - z| 12+l2
Kf (y, z)\theta (x)dydz

=

\int 
\BbbR 2

\int 
\BbbR 2

ei\kappa | x - y|  - i\kappa | x - z| 

| x - y| 12+l1 | x - z| 12+l2
C1(y, z, x)dydz,(4.4)

where C1(y, z, x) := Kf (y, z)\theta (x) and \theta \in C\infty 
0 such that \theta | \scrU \equiv 1 and supp(\theta ) \subset \BbbR 2\setminus \scrO .

According to (2.1), the kernel C1 in (4.4) is also an oscillatory integral

C1(y, z, x) =
1

(2\pi )2

\int 
\BbbR 2

ei(y - z)\cdot \xi c1(y, x, \xi )d\xi 

and is compactly supported in \scrO \theta := \scrO \times \scrO \times supp(\theta ), where c1(y, x, \xi ) := c(y, \xi )\theta (x)
and c(y, \xi ) is the symbol of the covariance operator Qf of the random field f . Since
f satisfies Assumption 2.1, we get c1 \in S - 2s with the principal symbol

cp1(y, x, \xi ) = \mu (y)\theta (x)| \xi |  - 2s,

where Sm denotes the space of symbols of order m. Moreover, C1 is a conormal
distribution in \BbbR 6 of the H\"ormander type having conormal singularity on the surface
S := \{ (y, z, x) \in \BbbR 6 : y - z = 0\} and is invariant under the change of coordinates [16].

To calculate the integral in (4.4), it is necessary to consider different coordinate
systems. Define an invertible transformation \tau : \BbbR 6 \rightarrow \BbbR 6 by

\tau (y, z, x) = (g, h, x),

where g = (g1, g2) and h = (h1, h2) with

g1=
1

2
(| x - y|  - | x - z| ), g2=

1

2

\biggl[ 
| x - y| arcsin

\Bigl( y1  - x1
| x - y| 

\Bigr) 
 - | x - z| arcsin

\Bigl( z1  - x1
| x - z| 

\Bigr) \biggr] 
,

h1=
1

2
(| x - y| + | x - z| ), h2=

1

2

\biggl[ 
| x - y| arcsin

\Bigl( y1  - x1
| x - y| 

\Bigr) 
+ | x - z| arcsin

\Bigl( z1  - x1
| x - z| 

\Bigr) \biggr] 
.
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Under the new coordinates system, (4.4) can be written as

Il1,l2(x; k) =

\int 
\BbbR 2

\int 
\BbbR 2

ei\kappa r(| x - y|  - | x - z| ) - \kappa i(| x - y| +| x - z| ) C1(y, z, x)

| x - y| 12+l1 | x - z| 12+l2
dydz

=

\int 
\BbbR 2

\int 
\BbbR 2

ei2\kappa r(e1\cdot g) - 2\kappa i(e1\cdot h)C2(g, h, x)dgdh,(4.5)

where e1 = (1, 0) and

C2(g, h, x) = C1(\tau 
 - 1(g, h, x))

| det((\tau  - 1)\prime (g, h, x))| 
((g + h) \cdot e1)

1
2+l1 ((h - g) \cdot e1)

1
2+l2

= : C1(\tau 
 - 1(g, h, x))L\tau (g, h, x).(4.6)

To get a detailed expression of C2 as well as its principal symbol, we define another
invertible transformation \eta : \BbbR 6 \rightarrow \BbbR 6 by

\eta (y, z, x) = (v, w, x),

where v = y  - z and w = y + z. Consider the pull-back C3 := C1 \circ \eta  - 1 satisfying

C3(v, w, x) = C1(\eta 
 - 1(v, w, x)) = C1

\Bigl( v + w

2
,
w  - v

2
, x

\Bigr) 
=

1

(2\pi )2

\int 
\BbbR 2

eiv\cdot \xi c1

\Bigl( v + w

2
, x, \xi 

\Bigr) 
d\xi =

1

(2\pi )2

\int 
\BbbR 2

eiv\cdot \xi c3 (w, x, \xi ) d\xi ,

where we have used the properties of symbols (cf. [16, Lemma 18.2.1]) and that c3
has the following asymptotic expansion:

c3(w, x, \xi ) = e - i\langle Dv,D\xi \rangle c1

\Bigl( v + w

2
, x, \xi 

\Bigr) \bigm| \bigm| \bigm| 
v=0

\sim 
\infty \sum 
j=0

\langle  - iDv, D\xi \rangle j

j!
c1

\Bigl( v + w

2
, x, \xi 

\Bigr) \bigm| \bigm| \bigm| 
v=0

.

Moreover, the principal symbol of c3 is

cp3(w, x, \xi ) = cp1

\Bigl( w
2
, x, \xi 

\Bigr) 
= \mu 

\Bigl( w
2

\Bigr) 
\theta (x)| \xi |  - 2s.

Finally, we define a diffeomorphism \gamma := \eta \circ \tau  - 1 : (g, h, x) \mapsto \rightarrow (v, w, x), which
preserves the plane \{ (g, h, x) \in \BbbR 6 : g = 0\} ; i.e., if g = 0, then v = 0. By Theorem
18.2.9 in [16], the pull-back C4 := C3 \circ \gamma can be calculated by

C4(g, h, x) = C3(\gamma (g, h, x)) =
1

(2\pi )2

\int 
\BbbR 2

eig\cdot \xi c4 (h, x, \xi ) d\xi ,

where

c4(h, x, \xi ) = c3
\bigl( 
\gamma 2(0, h, x), (\gamma 

\prime 
11(0, h, x))

 - \top \xi 
\bigr) 
| det (\gamma \prime 11(0, h, x))| 

 - 1
+ r3(h, x, \xi )

= cp3
\bigl( 
\gamma 2(0, h, x), (\gamma 

\prime 
11(0, h, x))

 - \top \xi 
\bigr) 
| det (\gamma \prime 11(0, h, x))| 

 - 1
+ r4(h, x, \xi ).

Here the residuals r3, r4 \in S - 2s - 1, \gamma = (\gamma 1, \gamma 2) with \gamma 1(g, h, x) = v and \gamma 2(g, h, x) =
(w, x), and \gamma \prime 11 is determined by the Jacobian matrix

\gamma \prime =

\biggl[ 
\gamma \prime 11 \gamma \prime 12
\gamma \prime 21 \gamma \prime 22

\biggr] 
.
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Hence, c4 \in S - 2s is still C\infty -smooth and compactly supported in the variables (h, x)
with the principal symbol

cp4(h, x, \xi ) = \mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)

\bigm| \bigm| (\gamma \prime 11(0, h, x)) - \top \xi 
\bigm| \bigm|  - 2s | det(\gamma \prime 11(0, h, x))| 

 - 1
.(4.7)

Noting that C4 = C3 \circ \gamma = C1 \circ \eta  - 1 \circ \eta \circ \tau  - 1 = C1 \circ \tau  - 1 and combining with
(4.6), we obtain

C2(g, h, x) = C4(g, h, x)L
\tau (g, h, x)

=
1

(2\pi )2

\int 
\BbbR 2

eig\cdot \xi c4 (h, x, \xi )L
\tau (g, h, x)d\xi =

1

(2\pi )2

\int 
\BbbR 2

eig\cdot \xi c5(h, x, \xi )d\xi ,(4.8)

where we have used Lemma 18.2.1 in [16] again and the fact that the function
L\tau (g, h, x) is smooth in the domain \tau (\scrO \theta ). Similar to the asymptotic expansion
of c3, we have

c5(h, x, \xi ) \sim 
\infty \sum 
j=0

\langle  - iDg, D\xi \rangle j

j!
(c4 (h, x, \xi )L

\tau (g, h, x))
\bigm| \bigm| \bigm| 
g=0

.

Using (4.7) and the expression of L\tau defined in (4.6), we obtain the principal symbol

cp5(h, x, \xi ) = cp4 (h, x, \xi )L
\tau (0, h, x)

= \mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)

\bigm| \bigm| (\gamma \prime 11(0, h, x)) - \top \xi 
\bigm| \bigm|  - 2s | det((\tau  - 1)\prime (0, h, x))| 

| det(\gamma \prime 11(0, h, x))| (h \cdot e1)1+l1+l2
,(4.9)

and residual r5 := c5  - cp5 \in S - 2s - 1.
Let \alpha = h2

h1
. Simple calculations show that

\gamma \prime 11(0, h, x) =
\partial v

\partial g
(0, h, x) =

\Biggl[ 
\partial v1

\partial g1
\partial v1
\partial g2

\partial v2

\partial g1
\partial v2
\partial g2

\Biggr] 
(0, h, x)

= 2

\biggl[ 
sin\alpha  - \alpha cos\alpha cos\alpha 
cos\alpha + \alpha sin\alpha  - sin\alpha 

\biggr] 
is invertible since det(\gamma \prime 11(0, h, x)) =  - 4 and \gamma 2(0, h, x) = (w(0, h, x), x) with

(4.10) w(0, h, x) =
\Bigl( 
2h1 sin

\Bigl( h2
h1

\Bigr) 
+ 2x1, 2h1 cos

\Bigl( h2
h1

\Bigr) 
+ 2x2

\Bigr) 
.

Moreover, a straightforward calculation gives

\bigl( 
\tau  - 1

\bigr) \prime 
(0, h, x) =

\partial (y, z, x)

\partial (g, h, x)

\bigm| \bigm| \bigm| \bigm| \bigm| 
g=0

=

\left[        
sin\alpha  - \alpha cos\alpha cos\alpha sin\alpha  - \alpha cos\alpha cos\alpha 1 0
cos\alpha + \alpha sin\alpha  - sin\alpha cos\alpha + \alpha sin\alpha  - sin\alpha 0 1
 - sin\alpha + \alpha cos\alpha  - cos\alpha sin\alpha  - \alpha cos\alpha cos\alpha 1 0
 - cos\alpha  - \alpha sin\alpha sin\alpha cos\alpha + \alpha sin\alpha  - sin\alpha 0 1

0 0 0 0 1 0
0 0 0 0 0 1

\right]        
and det((\tau  - 1)\prime (0, h, x)) = 4.
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INVERSE RANDOM SOURCE SCATTERING 497

Combining (4.5) and (4.8)--(4.9), we obtain

Il1,l2(x; k) =

\int 
\BbbR 2

\int 
\BbbR 2

ei2\kappa r(e1\cdot g) - 2\kappa i(e1\cdot h)

\times 
\biggl[ 

1

(2\pi )2

\int 
\BbbR 2

eig\cdot \xi 
\Bigl( 
cp4(h, x, \xi )L

\tau (0, h, x) + r5(h, x, \xi )
\Bigr) 
d\xi 

\biggr] 
dgdh

=

\int 
\BbbR 2

\int 
\BbbR 2

e - 2\kappa i(e1\cdot h)
\Bigl[ 
cp4(h, x, \xi )L

\tau (0, h, x) + r5(h, x, \xi )
\Bigr] 
\delta (2\kappa re1 + \xi )d\xi dh

=

\int 
\BbbR 2

e - 2\kappa i(e1\cdot h)
\Bigl[ 
cp4 (h, x, - 2\kappa re1)L

\tau (0, h, x) + r5(h, x, - 2\kappa re1)
\Bigr] 
dh

=

\biggl[ \int 
\BbbR 2

e - 2\kappa i(e1\cdot h)\mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)

\bigm| \bigm| (\gamma \prime 11(0, h, x)) - \top ( - 2\kappa re1)
\bigm| \bigm|  - 2s

\times 1

(e1 \cdot h)1+l1+l2
dh+O(\kappa  - 2s - 1

r )

\biggr] 
=

\biggl[ \int 
\BbbR 2

e - 2\kappa i(e1\cdot h)

(e1 \cdot h)1+l1+l2
\mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)dh

\biggr] 
\kappa  - 2s
r +O(\kappa  - 2s - 1

r )

= :M\kappa 
l1,l2(x)\kappa 

 - 2s
r +O(\kappa  - 2s - 1

r ),(4.11)

where we have used the fact that \delta (\xi ) = 1
(2\pi )d

\int 
\BbbR d e

ix\cdot \xi dx in the second step and

M\kappa 
l1,l2(x) =

\int 
\BbbR 2

e - 2\kappa i(e1\cdot h)

(e1 \cdot h)1+l1+l2
\mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)dh.

To simplify the expression of M\kappa 
l1,l2

(x), we consider the following coordinate transfor-
mation from h to \zeta :

\zeta =

\biggl( 
h1 sin

\biggl( 
h2
h1

\biggr) 
, h1 cos

\biggl( 
h2
h1

\biggr) \biggr) 
+ x,

which has the Jacobian

det

\biggl( 
\partial \zeta 

\partial h

\biggr) 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| sin
\Bigl( 

h2

h1

\Bigr) 
 - h2

h1
cos

\Bigl( 
h2

h1

\Bigr) 
cos

\Bigl( 
h2

h1

\Bigr) 
cos

\Bigl( 
h2

h1

\Bigr) 
+ h2

h1
sin

\Bigl( 
h2

h1

\Bigr) 
 - sin

\Bigl( 
h2

h1

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =  - 1.

Noting also that | x - \zeta | = e1 \cdot h and w(0, h, x) = 2\zeta according to (4.10), we obtain for
x \in \scrU that

M\kappa 
l1,l2(x) =

\int 
\BbbR 2

e - 2\kappa i(e1\cdot h)

(e1 \cdot h)1+l1+l2
\mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)dh

=

\int 
\BbbR 2

e - 2\kappa i| x - \zeta | 

| x - \zeta | 1+l1+l2
\mu (\zeta ) \theta (x)

\bigm| \bigm| \bigm| \bigm| \bigm| det
\biggl( 
\partial \zeta 

\partial h

\biggr)  - 1
\bigm| \bigm| \bigm| \bigm| \bigm| d\zeta 

=

\int 
\BbbR 2

e - 2\kappa i| x - \zeta | 

| x - \zeta | 1+l1+l2
\mu (\zeta ) d\zeta .

By the definition of Il1,l2 defined in (4.4) and its estimate given in (4.11), the
energy \BbbE | u2(x; k)| 2 given in (4.3) turns to be
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498 PEIJUN LI AND XU WANG

\BbbE | u2(x; k)| 2 =
| a0| 2

16| \kappa | 
I0,0(x; k) + \Re 

\biggl[ 
a0\=a1
8| \kappa | \kappa 

I0,1(x; k)

\biggr] 
+

| a1| 2

16| \kappa | 3
I1,1(x; k)

+\Re 
\biggl[ 
a0\=a2
8| \kappa | \kappa 2

I0,2(x; k)

\biggr] 
+ \Re 

\biggl[ 
a1\=a2
8| \kappa | 3\kappa 

I1,2(x; k)

\biggr] 
+

| a2| 2

16| \kappa | 5
I2,2(x; k)

=
| a0| 2

16| \kappa | 
\bigl[ 
M\kappa 

0,0(x)\kappa 
 - 2s
r +O(\kappa  - 2s - 1

r )
\bigr] 

+\Re 
\biggl[ 
a0\=a1
8| \kappa | \kappa 

\bigl( 
M\kappa 

0,1(x)\kappa 
 - 2s
r +O(\kappa  - 2s - 1

r )
\bigr) \biggr] 

+
| a1| 2

16| \kappa | 3
\bigl[ 
M\kappa 

1,1(x)\kappa 
 - 2s
r +O(\kappa  - 2s - 1

r )
\bigr] 

+\Re 
\biggl[ 
a0\=a2
8| \kappa | \kappa 2

\bigl( 
M\kappa 

0,2(x)\kappa 
 - 2s
r +O(\kappa  - 2s - 1

r )
\bigr) \biggr] 

+\Re 
\biggl[ 
a1\=a2
8| \kappa | 3\kappa 

\bigl( 
M\kappa 

1,2(x)\kappa 
 - 2s
r +O(\kappa  - 2s - 1

r )
\bigr) \biggr] 

+
| a2| 2

16| \kappa | 5
\bigl[ 
M\kappa 

2,2(x)\kappa 
 - 2s
r +O(\kappa  - 2s - 1

r )
\bigr] 

=
| a0| 2

16
M\kappa 

0,0(x)| \kappa |  - 1\kappa  - 2s
r +O(\kappa  - 2s - 2

r ),

which completes the proof.

Theorem 4.2. Let d = 2 and assumptions in Theorem 3.2 hold. For any x \in \scrU ,
it holds

lim
k\rightarrow \infty 

k2s+1\BbbE | u(x; k)| 2 =
1

23\pi 

\int 
\BbbR 2

e - \sigma | x - y| 

| x - y| 
\mu (y) dy =: T (2)(x).

Proof. Note that

k2s+1\BbbE | u(x; k)| 2 = k2s+1\BbbE | u2(x; k)| 2 + 2k2s+1\BbbE \Re 
\Bigl[ 
u2(x; k)(u(x; k) - u2(x; k))

\Bigr] 
+k2s+1\BbbE 

\bigm| \bigm| u(x; k) - u2(x; k)
\bigm| \bigm| 2

= : V1(k) + V2(k) + V3(k).

Next we calculate the limits of V1, V2, and V3, respectively.
Using the asymptotic expansions of the Hankel function in (4.1), we get\bigm| \bigm| H(1)

n (\kappa | x - y| ) - H
(1)
n,N (\kappa | x - y| )

\bigm| \bigm| = O
\bigl( 
| \kappa | x - y| |  - (N+ 3

2 )
\bigr) 
, k \rightarrow \infty .

Noting H
(1)\prime 

0 (z) =  - H(1)
1 (z), we have\bigm| \bigm| \bigm| \partial yi

H
(1)
0 (\kappa | x - y| ) - \partial yi

H
(1)
0,N (\kappa | x - y| )

\bigm| \bigm| \bigm| = O
\bigl( 
| \kappa |  - (N+ 1

2 )| x - y|  - (N+ 3
2 )
\bigr) 
, k \rightarrow \infty .

Hence

\BbbE | u(x; k) - u2(x; k)| 2 = \BbbE 
\bigm| \bigm| \bigm| \bigm| \int 

\scrO 

\bigl( 
\Phi \kappa (x, y) - \Phi 2

\kappa (x, y)
\bigr) 
f(y)dy

\bigm| \bigm| \bigm| \bigm| 2
\lesssim \| \Phi \kappa (x, \cdot ) - \Phi 2

\kappa (x, \cdot )\| 2W 1,q(\scrO )\BbbE \| f\| 
2
W - 1,p(\scrO )

\lesssim \| \Phi \kappa (x, \cdot ) - \Phi 2
\kappa (x, \cdot )\| 2W 1,q(\scrO )\BbbE \| f\| 

2
WH - \epsilon ,p(\scrO ) \lesssim | \kappa |  - 5,
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INVERSE RANDOM SOURCE SCATTERING 499

where f \in L2(\Omega ,WH - \epsilon ,p(\scrO )) \subset L2(\Omega ,W - 1,p(\scrO )) for H \in ( 2p  - 2, 0] and p \in (1, 2]

and 1
q + 1

p = 1 according to Theorem 3.2 with d = 2. It then indicates that

V3(k) \lesssim k2s+1| \kappa |  - 5 = k2s+1(k4 + k2\sigma 2) - 
5
4 \rightarrow 0

as k \rightarrow \infty since s < 2 for d = 2.
For V2(k), we have

V2(k) \leq 2
\bigl( 
k2s+1\BbbE | u2(x; k)| 2

\bigr) 1
2
\bigl( 
k2s+1\BbbE | u(x; k) - u2(x; k)| 2

\bigr) 1
2 = 2V1(k)

1
2V3(k)

1
2 ,

which converges to 0 if the limit of V1(k) exists.
For V1(k), by Proposition 4.1,

V1(k) = T\kappa (x)k
2s+1| \kappa |  - 1\kappa  - 2s

r +O(k2s+1\kappa  - 2s - 2
r ).

We have from (3.1) that

lim
k\rightarrow \infty 

V1(k) = lim
k\rightarrow \infty 

T\kappa (x) =
| a0| 2

16

\int 
\BbbR 2

e - \sigma | x - y| 

| x - y| 
\mu (y) dy,

which completes the proof.

Remark 4.3. It can be seen from the above proof that only two terms are needed
in the truncation of (4.1) if the source is extremely rough with s \in [0, d2 ). More
precisely, it suffices to consider the approximate solution

u1(x; k) :=  - 
\int 
\BbbR d

\Phi 1
\kappa (x, y)f(y)dy

instead of u2, where V3(k) \lesssim k2s+1| \kappa |  - 3 \rightarrow 0 as k \rightarrow \infty since s < d
2 = 1.

Next, we show that the strength \mu is uniquely determined by the measurement
T (2)(x) in the bounded open set \scrU given in Theorem 4.2. To have the three-dimensional
case included, the following uniqueness result is given for the d-dimensional case with
d = 2, 3.

Theorem 4.4. The strength \mu is uniquely determined by

T (d)(x) = Cd

\int 
\BbbR d

e - \sigma | x - y| 

| x - y| d - 1
\mu (y) dy, x \in \scrU \subset \BbbR d,

where Cd = 1
22(2\pi )d - 1 and d = 2, 3.

Proof. Denote g(x) := e - \sigma | x| /| x| d - 1 such that T (d)(x) = Cd(g \ast \mu )(x). We claim
that g \in L1

loc(\BbbR d), and hence T (d) = Cd(g \ast \mu ) \in C\infty (\BbbR d) for \mu \in C\infty 
0 (\BbbR d). In fact, for

any compact set K \subset \BbbR d, there exists a positive constant R such that K \subset B(0, R),
where B(0, R) denotes the open ball centered at 0 with radius R, and\int 

K

| g(x)| dx \lesssim 
\int R

0

e - \sigma r

rd - 1
rd - 1dr \leq R,

which completes the proof of the claim.
To ensure that the Fourier transform can be applied to T (d), we next show that

T (d) is real analytic in the open set \scrU and hence can be uniquely extended to \BbbR d.
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500 PEIJUN LI AND XU WANG

As an alternative characterization of real analytic functions, we only need to show
equivalently that T (d) \in C\infty (\scrU ) and for any compact set K \subset \scrU , there exist constants
C1 and C2 such that

\| \Delta mT (d)\| L2(K) \leq C1(C2m)2m

for any m \in \BbbN (cf. [18]). Note that

\Delta 

\biggl( 
e - \sigma | x| 

| x| j

\biggr) 
=

\biggl[ 
j2

| x| j+2
+

(2j  - 1)\sigma 

| x| j+1
+

\sigma 2

| x| j

\biggr] 
e - \sigma | x| \forall j \in \BbbN 

and that | x  - y| > r0 = dist(\scrU ,\scrO ) > 0 for any x \in K \subset \scrU and y \in \scrO . Without loss
of generality, we assume that r0 < 1. If r0 > 1, we can always find a positive constant
\~r0 < 1 such that | x - y| > \~r0 for any x \in K \subset \scrU and y \in \scrO . For simplicity, we denote
l := d - 1, and derive for any x \in K that\bigm| \bigm| \bigm| \bigm| \Delta mT (d)(x)

Cd

\bigm| \bigm| \bigm| \bigm| = \Delta m - 1

\int 
\BbbR d

\biggl( 
l2

| x - y| l+2
+

(2l  - 1)\sigma 

| x - y| l+1
+

\sigma 2

| x - y| l

\biggr) 
e - \sigma | x - y| \mu (y) dy

= \Delta m - 2

\int 
\BbbR d

\biggl[ 
l2
\biggl( 

(l + 2)2

| x - y| l+2+2
+

(2(l + 2) - 1)\sigma 

| x - y| l+2+1
+

\sigma 2

| x - y| l+2

\biggr) 
+(2l  - 1)\sigma 

\biggl( 
(l + 1)2

| x - y| l+1+2
+

(2(l + 1) - 1)\sigma 

| x - y| l+1+1
+

\sigma 2

| x - y| l+1

\biggr) 
+\sigma 2

\biggl( 
l2

| x - y| l+2
+

(2l  - 1)\sigma 

| x - y| l+1
+

\sigma 2

| x - y| l

\biggr) \biggr] 
e - \sigma | x - y| \mu (y) dy

=

\int 
\BbbR d

\biggl[ 
l2(l + 2)2 \cdot \cdot \cdot (l + 2(m - 2))2

\biggl( 
(l + 2(m - 1))2

| x - y| l+2m

+
(2(l + 2(m - 1)) - 1)\sigma 

| x - y| l+2m - 1
+

\sigma 2

| x - y| l+2m - 2

\biggr) 
+ \cdot \cdot \cdot 

+\sigma 2(m - 1)

\biggl( 
l2

| x - y| l+2
+

(2l  - 1)\sigma 

| x - y| l+1
+

\sigma 2

| x - y| l

\biggr) \biggr] 
e - \sigma | x - y| \mu (y) dy

\leq 
\biggl[ 
l2(l + 2)2 \cdot \cdot \cdot (l + 2(m - 2))2

\biggl( 
(l + 2(m - 1))2

rl+2m
0

+
(2(l + 2(m - 1)) - 1)\sigma 

rl+2m - 1
0

+
\sigma 2

rl+2m - 2
0

\biggr) 
+ \cdot \cdot \cdot 

+\sigma 2(m - 1)

\biggl( 
l2

rl+2
0

+
(2l  - 1)\sigma 

rl+1
0

+
\sigma 2

rl0

\biggr) \biggr] \int 
\scrO 
\mu (y)dy.(4.12)

Note also that

j2

rj+2
0

+
(2j  - 1)\sigma 

rj+1
0

+
\sigma 2

rj0
\leq 1

rj0

\biggl( 
j

r0
+ \sigma 

\biggr) 2

\forall j \in \BbbN 

and

(2j  - 1)\sigma \leq j2 + \sigma 2 \forall j \in \BbbN .

Hence, (4.12) leads to
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\| \Delta mT (d)\| L2(K)

\lesssim 
l2 \cdot \cdot \cdot (l + 2(m - 2))2

rl+2m - 2
0

\biggl( 
l + 2m - 2

r0
+ \sigma 

\biggr) 2

+ \cdot \cdot \cdot +\sigma 
2(m - 1)

rl0

\biggl( 
l

r0
+ \sigma 

\biggr) 2

\lesssim 3m
max\{ l2 \cdot \cdot \cdot (l + 2(m - 2))2, \cdot \cdot \cdot , \sigma 2(m - 1)\} 

rl+2m - 2
0

\biggl( 
l + 2m - 2

r0
+ \sigma 

\biggr) 2

\lesssim 

\biggl( 
3

r20

\biggr) m

l2 \cdot \cdot \cdot (l + 2(m - 2))2
\Bigl( 
1 \vee \sigma 2(m - 1)

\Bigr) \Biggl[ \biggl( 
l + 2m - 2

r0

\biggr) 2

+ \sigma 2

\Biggr] 

\lesssim 

\biggl( 
3

r20

\biggr) m

((2m - 2)!!)2
\bigl( 
1 \vee \sigma 2m

\bigr) 
\lesssim (Cm)2m.

Finally, we conclude that the Fourier transform of \mu can be uniquely determined
by

\^\mu (\xi ) =
\scrF [T (d)](\xi )

\scrF [g](\xi )
,

provided that \scrF [g] is a well-defined nonzero function. It is clear from the Fourier
transform of g that \scrF [g] is positive for any \xi \in \BbbR d. Next is to show that \scrF [g] is well
defined. In fact, for any constant R > 0, we may verify from simple calculations that

| \scrF [g](\xi )| =
\bigm| \bigm| \bigm| \Bigl( \scrF [e - \sigma | x| ] \ast \scrF [| x|  - (d - 1)]

\Bigr) 
(\xi )

\bigm| \bigm| \bigm| 
\lesssim 

\int 
\BbbR d

1

\sigma 2 + | \tau | 2
| \xi  - \tau |  - 1d\tau 

\lesssim 
\int 
\{ | \xi  - \tau | <R\} 

1

\sigma 2
| \xi  - \tau |  - 1d\tau +

\int 
\{ | \xi  - \tau | >R,| \tau | >R\} 

1

| \tau | 2
R - 1d\tau 

+

\int 
\{ | \xi  - \tau | >R,| \tau | <R\} 

1

\sigma 2R
d\tau 

\lesssim 
\int R

0

r - 1rd - 1dr +

\int \infty 

R

r - 2rd - 1dr +

\int 
B(0,R)

1d\tau <\infty ,

which completes the proof.

4.2. Three-dimensional case. Now we consider d = 3. By Theorem 3.2, the
solution of the direct problem is

(4.13) u(x; k) =  - 1

4\pi 

\int 
\BbbR 3

ei\kappa | x - y| 

| x - y| 
f(y)dy.

Following the same procedure as that for the two-dimensional case, we first show that
the strength \mu is uniquely determined by the variance of the solution u.

Theorem 4.5. Let d = 3 and assumptions in Theorem 3.2 hold. For any x \in \scrU ,
it holds

lim
k\rightarrow \infty 

k2s\BbbE | u(x; k)| 2 =
1

24\pi 2

\int 
\BbbR 3

e - \sigma | x - y| 

| x - y| 2
\mu (y) dy =: T (3)(x).

Moreover, the strength \mu is uniquely determined by T (3) in \scrU .
Proof. Using the formula given in (4.13), we have for any x \in \scrU that
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\BbbE | u(x; k)| 2 =
1

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| | x - z| 
\BbbE [f(y)f(z)]dydz

=
1

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

ei\kappa | x - y|  - i\=\kappa | x - z| 

| x - y| | x - z| 
Kf (y, z)\theta (x)dydz

=
1

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

ei\kappa r(| x - y|  - | x - z| ) - \kappa i(| x - y| +| x - z| ) C1(y, z, x)

| x - y| | x - z| 
dydz,(4.14)

where \theta \in C\infty 
0 such that \theta | \scrU \equiv 1 and supp(\theta ) \subset \BbbR 3\setminus \scrO ,

C1(y, z, x) := Kf (y, z)\theta (x) =
1

(2\pi )3

\int 
\BbbR 3

ei(y - z)\cdot \xi c1(y, x, \xi )d\xi .

Here c1(y, x, \xi ) := c(y, \xi )\theta (x) with the symbol c(y, \xi ) satisfying (2.1). Then the prin-
cipal symbol of c1 has the form

cp1(y, x, \xi ) = \mu (y)\theta (x)| \xi |  - 2s.

We first define an invertible transformation \tau : \BbbR 9 \rightarrow \BbbR 9 by \tau (y, z, x) = (g, h, x),
where g = (g1, g2, g3) and h = (h1, h2, h3) with

g1 =
1

2
(| x - y|  - | x - z| ) , h1 =

1

2
(| x - y| + | x - z| ) ,

g2 =
1

2

\biggl[ 
| x - y| arccos

\Bigl( y3  - x3
| x - y| 

\Bigr) 
 - | x - z| arccos

\Bigl( z3  - x3
| x - z| 

\Bigr) \biggr] 
,

h2 =
1

2

\biggl[ 
| x - y| arccos

\Bigl( y3  - x3
| x - y| 

\Bigr) 
+ | x - z| arccos

\Bigl( z3  - x3
| x - z| 

\Bigr) \biggr] 
,

g3 =
1

2

\biggl[ 
| x - y| arctan

\Bigl( y2  - x2
y1  - x1

\Bigr) 
 - | x - z| arctan

\Bigl( z2  - x2
z1  - x1

\Bigr) \biggr] 
,

h3 =
1

2

\biggl[ 
| x - y| arctan

\Bigl( y2  - x2
y1  - x1

\Bigr) 
+ | x - z| arctan

\Bigl( z2  - x2
z1  - x1

\Bigr) \biggr] 
.

Under the transformation defined above, (4.14) turns to be

(4.15) \BbbE | u(x; k)| 2 =
1

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

e2i\kappa r(e1\cdot g) - 2\kappa i(e1\cdot h)C2(g, h, x)dgdh,

where e1 = (1, 0, 0) and

C2(g, h, x) = C1(\tau 
 - 1(g, h, x))

| det
\bigl( 
(\tau  - 1)\prime (g, h, x)

\bigr) 
| 

((g + h) \cdot e1)((h - g) \cdot e1)
= : C1(\tau 

 - 1(g, h, x))L\tau (g, h, x).(4.16)

Next is to get an explicit expression of C2 with respect to (g, h, x). We define
another invertible transformation \eta : \BbbR 9 \rightarrow \BbbR 9 by \eta (y, z, x) = (v, w, x) with v = y - z
and w = y + z, and define the diffeomorphism \gamma := \eta \circ \tau  - 1 : (g, h, x) \mapsto \rightarrow (v, w, x).
Following the same procedure as that used in Proposition 4.1, by defining C3 :=
C1 \circ \eta  - 1, we obtain
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C3(v, w, x) = C1(\eta 
 - 1(v, w, x)) = C1

\Bigl( v + w

2
,
w  - v

2
, x

\Bigr) 
=

1

(2\pi )3

\int 
\BbbR 3

eiv\cdot \xi c1

\Bigl( v + w

2
, x, \xi 

\Bigr) 
d\xi =

1

(2\pi )3

\int 
\BbbR 3

eiv\cdot \xi c3 (w, x, \xi ) d\xi ,

where c3 has the principal symbol cp3(w, x, \xi ) = cp1
\bigl( 
v+w
2 , x, \xi 

\bigr) 
| v=0 = \mu (w2 )| \xi | 

 - 2s\theta (x).
By Theorem 18.2.9 in [16],

C4(g, h, x) := C3 \circ \gamma (g, h, x) =
1

(2\pi )3

\int 
\BbbR 3

eig\cdot \xi c4(h, x, \xi )d\xi ,(4.17)

where c4 has the principal symbol

cp4(h, x, \xi ) = cp3

\Bigl( 
\gamma 2(0, h, x), (\gamma 

\prime 
11(0, h, x))

 - \top 
\xi 
\Bigr) 
| det (\gamma \prime 11(0, h, x))| 

 - 1
,

and \gamma 2(0, h, x) = (w(0, h, x), x), \gamma \prime 11(0, h, x) =
\partial v
\partial g (0, h, x). Noting that C4 = C3 \circ \gamma =

(C1 \circ \eta  - 1) \circ (\eta \circ \tau  - 1) = C1 \circ \tau  - 1, we are able to give the expression of C2 defined in
(4.16) based on the expression of C4 in (4.17):

C2(g, h, x) = C1 \circ \tau  - 1(g, h, x)L\tau (g, h, x)

=
1

(2\pi )3

\int 
\BbbR 3

eig\cdot \xi c4(h, x, \xi )L
\tau (g, h, x)d\xi =

1

(2\pi )3

\int 
\BbbR 3

eig\cdot \xi c5(h, x, \xi )d\xi ,(4.18)

where the principal symbol of c5, according to the asymptotic expansion of c4, is

cp5(h, x, \xi ) = cp4(h, x, \xi )L
\tau (0, h, x)

= \mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)

\bigm| \bigm| \bigm| \Bigl( \partial v
\partial g

(0, h, x)
\Bigr)  - \top 

\xi 
\bigm| \bigm| \bigm|  - 2s\bigm| \bigm| \bigm| det\Bigl( \partial v

\partial g
(0, h, x)

\Bigr) \bigm| \bigm| \bigm|  - 1

L\tau (0, h, x)(4.19)

and the residual r5 := c5  - cp5 \in S - 2s - 1.
It then suffices to calculate cp5. Noting that

h1 + g1 = | x - y| , h1  - g1 = | x - z| ,
h2 + g2
h1 + g1

= arccos
\Bigl( y3  - x3
| x - y| 

\Bigr) 
,

h2  - g2
h1  - g1

= arccos
\Bigl( z3  - x3
| x - z| 

\Bigr) 
,

h3 + g3
h1 + g1

= arctan
\Bigl( y2  - x2
y1  - x1

\Bigr) 
,

h3  - g3
h1  - g1

= arctan
\Bigl( z2  - x2
z1  - x1

\Bigr) 
,

we get

y1 = x1 + (h1 + g1) sin

\biggl( 
h2 + g2
h1 + g1

\biggr) 
cos

\biggl( 
h3 + g3
h1 + g1

\biggr) 
,

y2 = x2 + (h1 + g1) sin

\biggl( 
h2 + g2
h1 + g1

\biggr) 
sin

\biggl( 
h3 + g3
h1 + g1

\biggr) 
,

y3 = x3 + (h1 + g1) cos

\biggl( 
h2 + g2
h1 + g1

\biggr) 
,

z1 = x1 + (h1  - g1) sin

\biggl( 
h2  - g2
h1  - g1

\biggr) 
cos

\biggl( 
h3  - g3
h1  - g1

\biggr) 
,

z2 = x2 + (h1  - g1) sin

\biggl( 
h2  - g2
h1  - g1

\biggr) 
sin

\biggl( 
h3  - g3
h1  - g1

\biggr) 
,

z3 = x3 + (h1  - g1) cos

\biggl( 
h2  - g2
h1  - g1

\biggr) 
.
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A simple calculation yields that

\partial v

\partial g
(0, h, x)=2

\left[  sin\alpha cos\beta  - \alpha cos\alpha cos\beta + \beta sin\alpha sin\beta cos\alpha cos\beta  - sin\alpha sin\beta 
sin\alpha sin\beta  - \alpha cos\alpha sin\beta  - \beta sin\alpha cos\beta cos\alpha sin\beta sin\alpha cos\beta 

cos\alpha + \alpha sin\alpha  - sin\alpha 0

\right]  ,
where \alpha := h2

h1
, \beta := h3

h1
, and

(\tau  - 1)\prime (0, h, x) =

\left[   
1
2
\partial v
\partial g

1
2
\partial v
\partial g I

 - 1
2
\partial v
\partial g

1
2
\partial v
\partial g I

0 0 I

\right]   .
Here I is the 3\times 3 identity matrix. It can be verified that

det

\biggl( 
\partial v

\partial g
(0, h, x)

\biggr) 
= 8 sin\alpha , L\tau (0, h, x) =

| det
\bigl( 
(\tau  - 1)\prime (0, h, x)

\bigr) 
| 

(h \cdot e1)2
=

8 sin2 \alpha 

(h \cdot e1)2
,

and\biggl( 
\partial v

\partial g
(0, h, x)

\biggr)  - \top 

=
1

2

\left[   sin\alpha cos\beta cos\alpha cos\beta + \alpha sin\alpha cos\beta  - sin \beta 
sin\alpha + \beta sin\alpha cos\beta 

sin\alpha sin\beta cos\alpha sin\beta + \alpha sin\alpha sin\beta cos \beta 
sin\alpha + \beta sin\alpha sin\beta 

cos\alpha  - cos \beta 
sin\alpha  - \beta sin\alpha sin\beta \beta cos\alpha 

\right]   .
By (4.18)--(4.19) and the above estimates on \partial v

\partial g (0, h, x) and L\tau (0, h, x), the energy

\BbbE | u(x; k)| 2 in (4.15) can be written as

\BbbE | u(x; k)| 2
(4.20)

=
1

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

e2i\kappa r(e1\cdot g) - 2\kappa i(e1\cdot h)C2(g, h, x)dgdh

=
1

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

e2i\kappa r(e1\cdot g) - 2\kappa i(e1\cdot h) 1

(2\pi )3

\int 
\BbbR 3

eig\cdot \xi c5(h, x, \xi )d\xi dgdh

=
1

16\pi 2

\int 
\BbbR 3

e - 2\kappa i(e1\cdot h)c5(h, x, - 2\kappa re1)dh

=
1

16\pi 2

\int 
\BbbR 3

e - 2\kappa i(e1\cdot h)
\biggl[ 
\mu 
\Bigl( w(0, h, x)

2

\Bigr) 
\theta (x)\kappa  - 2s

r

| sin\alpha | 
(h \cdot e1)2

+ r5(h, x, - 2\kappa re1)

\biggr] 
dh,

where
w(0, h, x)

2
= (h1 sin\alpha cos\beta , h1 sin\alpha sin\beta , h1 cos\alpha ) + x.

Define another coordinate transform \rho : \BbbR 3 \rightarrow \BbbR 3 by

\rho (h) = \zeta := (h1 sin\alpha cos\beta , h1 sin\alpha sin\beta , h1 cos\alpha ) + x.

By noting that | \zeta  - x| = h1 = h \cdot e1 and det((\rho  - 1)\prime ) = 1
det(\rho \prime ) with

\rho \prime =

\left[  sin\alpha cos\beta  - \alpha cos\alpha cos\beta + \beta sin\alpha sin\beta cos\alpha cos\beta  - sin\alpha sin\beta 
sin\alpha sin\beta  - \alpha cos\alpha sin\beta  - \beta sin\alpha cos\beta cos\alpha sin\beta sin\alpha cos\beta 

cos\alpha + \alpha sin\alpha  - sin\alpha 0

\right]  ,
we obtain from (4.20) that

\BbbE | u(x; k)| 2 =

\biggl[ 
1

24\pi 2

\int 
\BbbR 3

e - 2\kappa i| \zeta  - x| 

| \zeta  - x| 2
\mu (\zeta )\theta (x)d\zeta 

\biggr] 
\kappa  - 2s
r +O(\kappa  - 2s - 1

r ).
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Finally, for any x \in \scrU , we have from (3.1) that

lim
k\rightarrow \infty 

k2s\BbbE | u(x; k)| 2 = lim
k\rightarrow \infty 

1

24\pi 2

\int 
\BbbR 3

e - 2\kappa i| \zeta  - x| 

| \zeta  - x| 2
\mu (\zeta )d\zeta 

\biggl( 
k

\kappa r

\biggr) 2s

= T (3)(x).

Moreover, the strength \mu is uniquely determined by T (3)(x) for x \in \scrU according to
Theorem 4.4, which completes the proof.

4.3. The case \bfitsigma = 0 and ergodicity. If \sigma = 0, the model (1.1) reduces to
the one considered in [20]. In this case, the ergodicity of the solution can be obtained
by following the same way which was investigated in [19, 20]. This result makes it
possible to uniquely recover the strength \mu by a single realization of the measurements.

Proposition 4.6. Assume that f \in L2(\Omega ,WH - \epsilon ,p(\scrO )) with H, \epsilon , and p satisfy-
ing the conditions given in Theorem 3.2. Let s = H + d

2 . Then
(i) if d = 2,

lim
K\rightarrow \infty 

1

K  - 1

\int K

1

k2s+1| u(x; k)| 2dk = T (2)(x) almost surely,

(ii) if d = 3,

lim
K\rightarrow \infty 

1

K  - 1

\int K

1

k2s| u(x; k)| 2dk = T (3)(x) almost surely,

where T (2) and T (3) are defined in Theorems 4.2 and 4.5, respectively.

Proof. If \sigma = 0, following the same procedure as that of Lemma 3.4 in [20] or
Proposition 4.1, we may obtain for any k1, k2 \geq 1 that\bigm| \bigm| \bigm| \BbbE \Bigl[ 

u2(x; k1)u2(x; k2)
\Bigr] \bigm| \bigm| \bigm| \leq C(1 + | k1  - k2| ) - 2s,\bigm| \bigm| \BbbE \bigl[ 

u2(x; k1)u
2(x; k2)

\bigr] \bigm| \bigm| \leq C(1 + | k1  - k2| ) - 2s,

which, together with the fact that

lim
K\rightarrow \infty 

1

K  - 1

\int K

1

X(t)dt = 0, almost surely,

if | \BbbE X(t1)X(t2)| \leq C(1 + | t1  - t2| ) - \varepsilon for a centered real-valued stochastic process X
with continuous paths and some \varepsilon > 0 (cf. [11, 19, 20]), one can get the desired results
by following the proof in Theorem 3.10 in [20]. The details are omitted for brevity.

5. Conclusion. We have studied the inverse random source scattering problem
for the Helmholtz equations with attenuation. The source is assumed to be a frac-
tional Gaussian random field. The relationship is established between the FGFs and
the generalized Gaussian random fields. The well-posedness of the direct problem is
examined. For the inverse problem, we show that the microcorrelation strength of the
random source can be uniquely determined by the passive measurement of the wave
fields.

There are some future works which can be considered. For instance, if the medium
is inhomogeneous, the solution cannot be expressed explicitly through the fundamen-
tal solution. The present method is not applicable, a new approach is needed. Another
interesting problem is to consider that both the medium and the source are random
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506 PEIJUN LI AND XU WANG

functions. Similar problems for the Schr\"odinger equation were investigated in [22, 23].
The Helmholtz equation is more difficult because of the coupling of the medium with
the wavenumber. It is an open problem for the Maxwell equations with a random
source. The singularity of Green's tensor may limit the roughness of the source. We
hope to be able to report the progress on these problems elsewhere in the future.
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