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Abstract
This paper is concerned with the stability of the inverse source problem for
the damped biharmonic plate equation in three dimensions. The stability esti-
mate consists of the Lipschitz type data discrepancy and the high frequency
tail of the source function, where the latter decreases as the upper bound of
the frequency increases. The stability also shows exponential dependence on
the damping coefficient. The ingredients of the analysis include Carleman esti-
mates and time decay estimates for the damped plate wave equation to obtain
an exact observability bound, and the study of the resonance-free region and
an upper bound of the resolvent for the biharmonic operator with respect to the
complex wavenumber.

Keywords: inverse source problem, the biharmonic operator, the damped bihar-
monic plate equation, stability

1. Introduction

Consider the damped biharmonic plate equation in three dimensions

Δ2u(x, k) − k2u(x, k) − ikσu(x, k) = f (x), x ∈ R3, (1.1)

where k > 0 is the wavenumber, σ > 0 is the damping coefficient, and f ∈ L2(R3) is an
assumed to be a real-valued function with a compact support contained in BR = {x ∈ R3 : |x| <
R}, where R > 0 is a constant. Let ∂BR be the boundary of BR. Since the problem is formulated
in the open domain, the Sommerfeld radiation condition is imposed on u and Δu to ensure the
well-posedness of the problem [18]. This paper is concerned with the inverse source problem
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of determining f from the boundary measurements

u(x, k), ∇u(x, k), Δu(x, k), ∇Δu(x, k), x ∈ ∂BR

corresponding to the wavenumber k given in a finite interval.
In general, there is no uniqueness for inverse source problems of the wave equations at a

fixed frequency [3, 13]. Computationally, a more serious issue is the lack of stability, i.e., a
small variation of the data might lead to a huge error in the reconstruction. Hence it is crucial
to examine the stability of inverse source problems. In [3], the authors initialized the study of
the inverse source problem for the Helmholtz equation by using multi-frequency data. Since
then, it has become an active research topic on inverse source problems via multiple frequency
data to overcome the non-uniqueness issue and enhance stability. The increasing stability was
investigated for inverse source problems of various wave equations which include the acous-
tic, elastic, and electromagnetic wave equations [4–7, 14, 15] and the Helmholtz equation with
attenuation [9]. On the other hand, it has generated sustained interest in the mathematics com-
munity on boundary value problems for higher-order elliptic operators [8]. The biharmonic
operator, which can be encountered in models originating from elasticity for example, appears
as a natural candidate for such a study [16, 17]. Compared with the equations involving the sec-
ond order differential operators, the model equations with the biharmonic operators are much
less studied in the community of inverse problems. We refer to [1, 10–12, 18] and the refer-
ences cited therein on the recovery of the lower-order coefficients by using either the far-field
pattern or the Dirichlet-to-Neumann map on the boundary. In a recent paper [13], the authors
demonstrated the increasing stability for the inverse source problem of the biharmonic operator
with a zeroth order perturbation by using multi-frequency near-field data. The main ingredi-
ent of the analysis relies on the study of an eigenvalue problem for the biharmonic operator
with the hinged boundary conditions. But the method is not applicable directly to handle the
biharmonic operator with a damping coefficient.

Motivated by [5, 9], we use the Fourier transform in time to reduce the inverse source
problem into the identification of the initial data for the initial value problem of the damped
biharmonic plate wave equation by lateral Cauchy data. The Carleman estimate is utilized to
obtain an exact observability bound for the source function in the framework of the initial
value problem for the corresponding wave equation, which connects the scattering data and
the unknown source function by taking the inverse Fourier transform. An appropriate rate of
time decay for the damped plate wave equation is proved in order to justify the Fourier trans-
form. Then applying the results in [13] on the resolvent of the biharmonic operator, we obtain
a resonance-free region of the data with respect to the complex wavenumber and the bound of
the analytic continuation of the data from the given data to the higher wavenumber data. By
studying the dependence of analytic continuation and of the exact observability bound for the
damped plate wave equation on the damping coefficient, we show the exponential dependence
of increasing stability on the damping constant. The stability estimate consists of the Lips-
chitz type of data discrepancy and the high wavenumber tail of the source function. The latter
decreases as the wavenumber of the data increases, which implies that the inverse problem
is more stable when the higher wavenumber data is used. But the stability deteriorates as the
damping constant becomes larger. It should be pointed out that due to the existence of the
damping coefficient, we can not obtain a sectorial resonance-free region for the data as that in
[5, 14]. Instead, we choose a rectangular resonance-free region as that in [15], which leads to
a double logarithmic type of the high wavenumber tail for the estimate.

This paper is organized as follows. In section 2, the direct source problem is discussed; the
resolvent is introduced for the elliptic operator, and its resonance-free region and upper bound
are obtained. Section 3 is devoted to the stability analysis of the inverse source problem by
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using multi-frequency data. In appendix A, we use the Carleman estimate to derive an exact
observability bound with exponential dependence on the damping coefficient. In appendix B,
we prove an appropriate rate of time decay for the damped plate wave equation to justify the
Fourier transform.

2. The direct source problem

In this section, we discuss the solution of the direct source problem and study the resolvent of
the biharmonic operator with a damping coefficient.

Theorem 2.1. Let f ∈ L2(R3) with a compact support. Then there exists a unique solution
u of Schwartz distribution to (1.1) for every k > 0. Moreover, the solution satisfies

|u(x, k)| � C(k, f )e−c(k,σ)|x|

as |x| →∞, where C(k, f ) and c(k, σ) are positive constants depending on k, f and k, σ,
respectively.

Proof. Taking the Fourier transform of u(x, k) formally with respect to the spatial variable
x, we define

u∗(x, k) =
∫
R3

eix·ξ 1
|ξ|4 − k2 − ikσ

f̂ (ξ)dξ, x ∈ R3,

where

f̂ (ξ) =
1

(2π)3

∫
R3

f (x)e−ix·ξ dx.

It follows from the Plancherel theorem that for each k > 0 we have that u∗(·, k) ∈ H4(R3) and
satisfies the equation (1.1) in the sense of Schwartz distribution.

Denote

G(x, k) =
∫
R3

eix·ξ 1
|ξ|4 − k2 − ikσ

dξ.

By a direct calculation we can write u∗(x, k) as

u∗(x, k) = (G ∗ f )(x) =
1

2κ2

∫
R3

(
eiκ|x−y|

4π|x − y| −
e−κ|x−y|

4π|x − y|

)
f (y)dy, (2.1)

where κ = (k2 + ikσ)
1
4 such that Rκ > 0 and �κ > 0. Since f has a compact support, we

obtain from (2.1) that the solution u∗(x, k) satisfies the estimate

|u∗(x, k)| � C(k, f )e−c(k,σ)|x|

as |x| →∞, where C(k, f ) and c(k, σ) are positive constants depending on k, f and k, σ, respec-
tively. By direct calculations, we may also show that ∇u∗ and Δu∗ have similar exponential
decay estimates.

Next is show the uniqueness. Let ũ∗(x, k) be another Schwartz distributional solution to
(1.1). Clearly we have

(Δ2 − k2 − ikσ)(u∗ − ũ∗) = 0.
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Taking the Fourier transform on both sides of the above equation yields

(|ξ|4 − k2 − ikσ)(û∗ − ũ∗)(ξ) = 0.

Notice that for k > 0 we have |ξ|4 − k2 − ikσ �= 0 for all ξ ∈ R3. Taking the generalized
inverse Fourier transform gives u∗ − ũ∗ = 0, which proves the uniqueness. �

To study the resolvent we let

u∗(x,κ) := u(x, k), κ = (k2 + ikσ)
1
4 ,

where Rκ > 0 and �κ > 0. By (1.1), u∗ satisfies

Δ2u∗ − κ4u∗ = f .

Denote by R = {z ∈ C : (δ,+∞) × (−d, d)} the infinite rectangular slab, where δ is any
positive constant and d 	 1. For k ∈ R, denote the resolvent

R(k) := (Δ2 − k2 − ikσ)−1.

Then we have R(κ) = (Δ2 − κ4)−1. Hereafter, the notation a � b stands for a � Cb, where
C > 0 is a generic constant which may change step by step in the proofs.

Lemma 2.2. For each k ∈ R and ρ ∈ C∞
0 (BR) the resolvent operator R(k) is analytic and

has the following estimate:

‖ρR(k)ρ‖L2(BR)→H j(BR) � |k|
j
2 e2R(σ+1)|k|

1
2 , j = 0, 1, 2, 3, 4.

Proof. It is clear to note that for a sufficiently small d, the set {(k2 + ikσ)
1
4 : k ∈ R} belongs

to the first quadrant. Consequently, (k2 + ikσ)
1
4 is analytic with respect to k ∈ R. By [13,

theorem 2.1], the resolvent R(κ) is analytic in C\{0} and the following estimate holds:

‖ρR(κ)ρ‖L2(BR)→H j(BR) � |κ|−2〈κ〉 j(e2R(�κ)− + e2R(Rκ)−), j = 0, 1, 2, 3, 4,

(2.2)

where x− := max{−x, 0} and 〈κ〉 = (1 + |κ|2)1/2. On the other hand, letting k = k1 + ik2, we
have from a direct calculation that

k2 + ikσ = k2
1 − k2

2 − k2σ + (2k1k2 + k1σ)i.

It is easy to see that if d is sufficiently small, which gives that |k2| is sufficiently small, there is
a positive lower bound for |k2 + ikσ| with k ∈ R and then |κ| > c for some positive constant
c. The proof is completed by replacing κ with (k2 + ikσ)

1
4 in (2.2). �

3. The inverse source problem

In this section, we address the inverse source problem of the damped biharmonic plate equation
and present an increasing stability estimate by using multi-frequency scattering data.

Denote the boundary measurement by

‖u(x, k)‖2
∂BR

:=
∫
∂BR

(
(k4 + k2)|u(x, k)|2 + k2|∇u(x, k)|2

+ (k2 + 1)|Δu(x, k)|2 + |∇Δu(x, k)|2
)

ds(x). (3.1)
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The following lemma provides a relation between the unknown source function and the
boundary measurements (3.1). Hereafter, by remark B.3, we assume that f ∈ Hn(BR) where
n � 4.

Lemma 3.1. Let u be the solution to the direct scattering problem (1.1). Then

‖ f ‖2
L2(BR) � 2eCσ2

∫ +∞

0
‖u(x, k)‖2

∂BR
dk.

Proof. Consider the initial value problem for the damped biharmonic plate wave equation{
∂2

t U(x, t) +Δ2U(x, t) + σ∂tU(x, t) = 0, (x, t) ∈ BR × (0,+∞),

U(x, 0) = 0, ∂tU(x, 0) = f (x), x ∈ BR.
(3.2)

We define U(x, t) = 0 when t < 0 and denote UT (x, t) = U(x, t)χ[0,T](t) and

ÛT(x, k) =
∫ T

0
U(x, t)eikt dt.

By the decay estimate (B.2) we have that U(x, t) ∈ L2
t (0,+∞) and limT→∞UT (x, t) = U(x, t) in

L2
t (R) uniformly for all x ∈ R3. It follows from the Plancherel theorem that ÛT also converges

in L2
k (R) to a function u∗(x, k) ∈ L2

k (R) uniformly for all x ∈ R3, which implies that u∗(x, k) is
the Fourier transform of U(x, t).

Denote by 〈·, ·〉 and S the usual scalar inner product of L2(R3) and the space of Schwartz
functions, respectively. We take u∗(x, k) as a Schwartz distribution such that u∗(x, k)(ϕ) =
〈u∗,ϕ〉 for each ϕ ∈ S. In what follows, we show that u∗(x, k) satisfies the equation (1.1) in
the sense of Schwartz distribution.

First we multiply both sides of the wave equation (3.2) by a Schwartz function ϕ and take
integration over R3. Using the wave equation (3.2) and the integration by parts with respect to
the t variable over [0, T] for T > 0, we obtain

0 =

∫ T

0
〈∂2

t U +Δ2U + σ∂tU,ϕ〉eikt dt

= eikT〈∂tU(x, T),ϕ〉 − ik eikT〈U(x, T),ϕ〉+ σ eikT〈U(x, T),ϕ〉

− 〈∂tU(x, 0),ϕ〉+
〈∫ T

0
(Δ2U − k2U − ikσU)eikt dt,ϕ

〉
. (3.3)

It follows from the decay estimate (B.2) that |∂tU(x, t)|, |U(x, t)| � (1 + t)−
3
4 uniformly for all

x ∈ R3, which give

lim
T→∞

eikT〈∂tU(x, T),ϕ〉 = lim
T→∞

ik eikT〈U(x, T),ϕ〉

= lim
T→∞

σeikT〈U(x, T),ϕ〉 = 0.

On the other hand, we have from the integration by parts that〈∫ T

0
(Δ2U − k2U − ikσU)eikt dt,ϕ

〉
=

〈∫ T

0
Udt,Δ2ϕ

〉
+

〈∫ T

0
(−k2U − ikσU)eikt dt,ϕ

〉
. (3.4)
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Since limT→+∞ ÛT (x, k) = u∗(x, k) in L2
k (R) uniformly for x ∈ R3, we can choose a positive

sequence {Tn}∞n=1 such that limn→∞Tn = +∞ and limn→∞ ÛTn(x, k) = u∗(x, k) pointwisely
for a.e. k ∈ R and uniformly for all x ∈ R3. Define a sequence of Schwartz distributions
{Dn}∞n=1 ⊂ S′ as follows

Dn(ϕ) := 〈ÛTn ,ϕ〉, ϕ ∈ S.

Since limn→∞ ÛTn(x, k) = u∗(x, k) for a.e. k ∈ R and uniformly for all x ∈ R3, we have

lim
n→∞

Dn(ϕ) = 〈u∗,ϕ〉.

Consequently, replacing T by Tn in (3.4) and letting n →∞, we get

lim
n→∞

(〈∫ Tn

0
U dt,Δ2ϕ

〉
+

〈∫ Tn

0
(−k2U − ikσU)eikt dt,ϕ

〉)
= u∗(Δ2ϕ) − k2u∗(ϕ) − ikσu∗(ϕ)

= (Δ2 − k2 − ikσ)u∗(ϕ),

which further implies by (3.3) that

(Δ2 − k2 − ikσ)u∗(ϕ) = 〈 f ,ϕ〉

for every ϕ ∈ S. Then u∗(x, k) is a solution to the equation (1.1) as a Schwartz distribution.
Furthermore, it follows from the uniqueness of the direct problem that we obtain u∗(x, k) =
u(x, k), which gives that u(x, k) is the Fourier transform of U(x, t).

By theorem B.1, we have the estimates

|∂2
t U|, |∂tU|, |∂t∇U|, |∂tΔU|, |ΔU|, |∇ΔU| � (1 + t)−

3
4 .

Moreover, they are continuous and belong to L2
t (R) uniformly for all x ∈ R3. Similarly, we

may show that

∂̂2
t U = −k2u, ∂̂tU = iku, ∂̂t∇U = ik∇u,

∂̂tΔU = ikΔu, Δ̂U = Δu, ∇̂ΔU = ∇Δu.

It follows from Plancherel’s theorem that∫ +∞

0

(
|∂2

t U|2 + |∂tU|2 + |∂t∇U|2 + |∂tΔU|2 + |ΔU|2 + |∇ΔU|2
)

dt

=

∫ +∞

−∞

(
|k2u|2 + |ku|2 + |k∇u|2 + |kΔu|2 + |Δu|2 + |∇Δu|2

)
dk. (3.5)

By (3.5) and the exact observability bounds (A.1), we obtain

‖ f ‖2
L2(BR) � eCσ2

∫ +∞

−∞

∫
∂BR

(
(k4 + k2)|u(x, k)|2 + k2|∇u(x, k)|2

+ (k2 + 1)|Δu(x, k)|2 + |∇Δu(x, k)|2
)

ds(x)dk

� eCσ2
∫ ∞

−∞
‖u(x, k)‖2

∂BR
dk.
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Since f (x) is real-valued, we have u(x, k) = u(x,−k) for k ∈ R and then∫ ∞

−∞
‖u(x, k)‖2

∂BR
dk = 2

∫ ∞

0
‖u(x, k)‖2

∂BR
dk,

which completes the proof. �

Let δ be a positive constant and define

I(k) =
∫ k

δ

‖u(x,ω)‖2
∂BR

ds(x)dω.

The following lemma gives a link between the values of an analytical function for small and
large arguments (cf [15, lemma A.1] and [2]).

Lemma 3.2. Let p(z) be analytic in the infinite rectangular slab

R = {z ∈ C : (δ,+∞) × (−d, d)},

where δ is a positive constant, and continuous in R satisfying{|p(z)| � ε1, z ∈ (δ, K],

|p(z)| � M, z ∈ R,

where δ, K, ε1 and M are positive constants. Then there exists a functionμ(z) with z ∈ (K,+∞)
satisfying

μ(z) � 64ad
3π2(a2 + 4d2)

e
π
2d ( a

2−z),

where a = K − δ, such that

|p(z)| � Mεμ(z) ∀ z ∈ (K,+∞).

Lemma 3.3. Let f be a real-valued function and ‖ f ‖L2(BR) � Q. Then there exist positive
constants d and δ, K satisfying 0 < δ < K, which do not depend on f and Q, such that

|I(k)| � Q2e4R(σ+2)κε2μ(k)
1 ∀ k ∈ (K,+∞)

and

ε2
1 =

∫ K

δ

∫
∂BR

‖u(x, k)‖2
∂BR

ds(x)dk, μ(k) � 64ad
3π2(a2 + 4d2)

e
π
2d ( a

2−k),

where a = K − δ.

Proof. Let

I1(k) =
∫ k

δ

∫
∂BR

(
(ω4 + ω2)u(x,ω)u(x,−ω)+ ω2∇u(x,ω) · ∇u(x,−ω)

+ (ω2 + 1)Δu(x,ω)Δu(x,−ω)

+∇Δu(x,ω) · ∇Δu(x,−ω)) ds(x)dω,
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where k ∈ R. Following similar arguments as those in the proof of lemma 2.2, we may show
that R(−k) is also analytic for k ∈ R. Since f is real-valued, we have u(x, k) = u(x,−k) for
k ∈ R, which gives

I1(k) = I(k), k > 0.

It follows from lemma 2.2 that

|I1(k)| � Q2eCσ2
e4R(σ+1)|k|, k ∈ R,

which gives

e−4R(σ+2)|k||I1(k)| � Q2eCσ2
, k ∈ R.

An application of lemma 3.2 leads to∣∣∣e−4R(σ+2)|k|I(k)
∣∣∣ � Q2ε2μ(k) ∀ k ∈ (K,+∞),

where

μ(k) � 64ad
3π2(a2 + 4d2)

e
π
2d ( a

2−k),

which completes the proof. �

Here we state a simple uniqueness result for the inverse source problem.

Theorem 3.4. Let f ∈ L2(BR) and I ⊂ R+ be an open interval. Then the
source function f can be uniquely determined by the multi-frequency Cauchy data
{u(x, k),∇u(x, k),Δu(x, k),∇Δu(x, k) : x ∈ ∂BR, k ∈ I}.

Proof. Let u(x, k) = ∇u(x, k) = Δu(x, k) = ∇Δu(x, k) = 0 for all x ∈ ∂BR and k ∈ I. It
suffices to prove that f (x) = 0. By lemma 2.2, u(x, k) is analytic in the infinite slab R for any
δ > 0, which implies that u(x, k) = Δu(x, k) = 0 for all k ∈ R+. We conclude from lemma 3.1
that f = 0. �

The following result concerns the estimate of u(x, k) for high wavenumbers.

Lemma 3.5. Let f ∈ Hn(BR) and ‖ f ‖Hn(BR) � Q. Then the following estimate holds:∫ ∞

s
‖u(x, k)‖2

∂BR
dk � 1

sn−3
‖ f ‖2

Hn(BR).

Proof. Recall the identity∫ ∞

s
‖u(x, k)‖2

∂BR
dk =

∫ ∞

s

∫
∂BR

(
(k4 + k2)|u(x, k)|2 + k2|∇u(x, k)|2

+ (k2 + 1)|Δu(x, k)|2 + |∇Δu(x, k)|2
)

ds(x)dk. (3.6)

Using the decomposition

R(κ) = (Δ2 − κ4)−1 =
1

2κ2

[
(−Δ− κ2)−1 − (−Δ+ κ2)−1

]
,
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we obtain

u(x) =
∫

BR

1
2κ2

(
eiκ|x−y|

4π|x − y| −
e−κ|x−y|

4π|x − y|

)
f (y)dy, x ∈ ∂BR.

For instance, we consider one of the integrals on the right-hand side of (3.6)

J :=
∫ ∞

s
k4|u(x, k)|dk

=

∫ ∞

s
k4

∣∣∣∣∫
BR

1
2κ2

(
eiκ|x−y|

4π|x − y| −
e−κ|x−y|

4π|x − y|

)
f (y)dy

∣∣∣∣2dk.

Using the spherical coordinates r = |x − y| originated at y, we have

J =
1

8π

∫ ∞

s

∫
∂BR

k2

∣∣∣∣∫ 2π

0
dθ
∫ π

0
sin ϕ dϕ

∫ ∞

0
(eiκr − e−κr) f r dr

∣∣∣∣2ds(x)dk.

By the integration by parts and noting x ∈ ∂BR and supp f ⊂ BR̂ ⊂ BR for some R̂ < R, we
obtain

J =
1

4π

∫ ∞

s

∫
∂BR

k2

∣∣∣∣∫ 2π

0
dθ
∫ π

0
sin ϕ dϕ

×
∫ 2R

R−R̂

(
eiκr

(iκ)n
− e−κr

(−κ)n

)
∂n( f r)
∂rn

dr

∣∣∣∣2ds(x)dk.

Since x ∈ ∂BR and |κ| � k1/2 for k > 0, we get from direction calculations that

J � ‖ f ‖2
Hn(BR)

∫ ∞

s
k2−n dk � 1

sn−3
‖ f ‖2

Hn(BR).

The other integrals on the right-hand side of (3.6) can be estimated similarly. The details are
omitted for brevity. �

Define a real-valued function space

CQ = { f ∈ Hn(BR) : n � 4, ‖ f ‖Hn(BR) � Q, supp f ⊂ BR̂ ⊂ BR, f : BR → R},

where R̂ < R. Now we are in the position to present the main result of this paper.

Theorem 3.6. Let u(x,κ) be the solution of the scattering problem (1.1) corresponding to
the source f ∈ CQ. Then for ε sufficiently small, the following estimate holds:

‖ f ‖2
L2(BR) � eCσ2

(
ε2 +

Q2

K
1
2 (n−3)(ln | ln ε|) 1

2 (n−3)

)
, (3.7)

where

ε :=
∫ K

0
‖u(x, k)‖2

∂BR
dk =

∫ δ

0
‖u(x, k)‖2

∂BR
dk + ε2

1,

and the boundary measurement ‖u(x, k)‖2
∂BR

is defined in (3.1).
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Proof. We can assume that ε � e−1, otherwise the estimate is obvious.
First, we link the data I(k) for large wavenumber k satisfying k � L with the given data ε1

of small wavenumber by using the analytic continuation in lemma 3.3, where L is some large
positive integer to be determined later. It follows from lemma 3.3 that

I(k) � Q2ec|κ|εμ(κ)
1

� Q2 exp

{
cκ− c2a

a2 + c3
ec1( a

2−κ)| ln ε1|
}

� Q2 exp

{
− c2a

a2 + c3
ec1( a

2−κ)| ln ε1|

×
(

1 − c4κ(a2 + c3)
a

ec1(κ− a
2 )| ln ε1|−1

)}
� Q2 exp

{
− c2a

a2 + c3
ec1( a

2−L)| ln ε1|

×
(

1 − c4L(a2 + c3)
a

ec1(L− a
2 )| ln ε1|−1

)}
� Q2 exp{−b0e−c1L| ln ε1|(1 − b1Lec1L| ln ε1|−1)},

where c, ci, i = 1, 2 and b0, b1 are constants. Let

L =

⎧⎪⎪⎨⎪⎪⎩
[

1
2c1

ln | ln ε1|
]

, k � 1
2c1

ln | ln ε1|,

k, k >
1

2c1
ln | ln ε1|.

If K � 1
2c1

ln | ln ε1|, we obtain for sufficiently small ε1 that

I(k) � Q2 exp{−b0e−c1L| ln ε1|(1 − b1Lec1L| ln ε1|−1)}

� Q2 exp

{
−1

2
b0e−c1L| ln ε1|

}
.

Noting e−x � (2n+3)!
x2n+3 for x > 0, we have

I(L) � Q2e(2n+3)c1L| ln ε1|−(2n+3).

Taking L = 1
2c1

ln | ln ε1|, combining the above estimates, lemmas 3.1 and 3.5, we get

‖ f ‖2
L2(BR) � eCσ2

(
ε2 + I(L) +

∫ ∞

L

∫
∂BR

‖u(x, k)‖2
∂BR

dk

)
� eCσ2

(
ε2 + Q2e(2n+3)c1L| ln ε1|−(2n+3) +

Q2

Ln−3

)
� eCσ2

(
ε2 + Q2

(
| ln ε1|

2n+3
2 | ln ε1|−(2n+3) + (ln | ln ε1|)3−n

))
� eCσ2

(
ε2 + Q2

(
| ln ε1|−

2n+3
2 + (ln | ln ε1|)3−n

))
10
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� eCσ2 (
ε2 + Q2(ln | ln ε1|)3−n

)
� eCσ2

(
ε2 +

Q2

K
1
2 (n−3)(ln | ln ε1|)

1
2 (n−3)

)

� eCσ2

(
ε2 +

Q2

K
1
2 (n−3)(ln | ln ε|) 1

2 (n−3)

)
,

where we have used |ln ε1|1/2 � ln | ln ε1| for sufficiently small ε1 and ln | ln ε1| � ln | ln ε|.
If K > 1

2c1
ln | ln ε1|, we have from lemma 3.5 that

‖ f ‖2
L2(BR) � eCσ2

(
ε2 +

∫ ∞

K

∫
∂BR

‖u(x, k)‖2
∂BR

dk

)
� eCσ2

(
ε2 +

Q2

Kn−3

)

� eCσ2

(
ε2 +

Q2

K
1
2 (n−3)(ln | ln ε|) 1

2 (n−3)

)
,

which completes the proof. �

It can be observed that for a fixed damping coefficient σ, the stability (3.7) consists of two
parts: the data discrepancy and the high frequency tail. The former is of the Lipschitz type. The
latter decreases as K increases which makes the problem have an almost Lipschitz stability. But
the stability deteriorates exponentially as the damping coefficient σ increases.
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Appendix A. An exact observability bound

Consider the initial value problem for the damped biharmonic plate wave equation

{
∂2

t U(x, t) +Δ2U(x, t) + σ∂tU(x, t) = 0, (x, t) ∈ BR × (0,+∞),

U(x, 0) = 0, ∂tU(x, 0) = f (x), x ∈ BR.
(A.1)

11
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The following theorem presents an exact observability bound for the above equation. The proof
follows closely from that in [9, theorem 3.1].

Theorem A.1. Let the observation time 4(2R + 1) < T < 5(2R + 1). Then there exists a
constant C depending on the domain BR such that

‖ f ‖2
L2(BR) � CeCσ2

(
‖∂2

t U‖2
L2(∂BR×(0,T)) + ‖∂tU‖2

L2(∂BR×(0,T))

+ ‖∂t∇U‖2
L2(∂BR×(0,T)) + ‖∂tΔU‖2

L2(∂BR×(0,T))

+ ‖ΔU‖2
L2(∂BR×(0,T)) + ‖∇ΔU‖2

L2(∂BR×(0,T))

)
. (A.2)

Before showing the proof, we introduce the energies

E(t) =
1
2

∫
BR

(
|∂tU(x, t)|2 + |ΔU(x, t)|2 + |U(x, t)|2

)
dx,

E0(t) =
1
2

∫
BR

(
|∂tU(x, t)|2 + |ΔU(x, t)|2

)
dx,

and denote

F2 =

∫
∂BR×(t1,t2)

(
|∂2

t U(x, t)|2 + |∂tU(x, t)|2 + |∂t∇U(x, t)|2

+ |∂tΔU(x, t)|2 + |ΔU(x, t)|2 + |∇ΔU(x, t)|2
)

ds(x)dt.

Lemma A.2. Let U be a solution of the damped biharmonic plate wave equation (A.1) with
the initial value f ∈ H1(BR), suppf ⊂ BR. Let 0 � t1 < t2 � T and 1 � 2σ. Then the following
estimates holds:

E(t2) � e4(t2−t1)2
(2E(t1) + F2), (A.3)

E(t2) � e(2σ+4(t2−t1))(t2−t1)(E(t2) + F2). (A.4)

Proof. Multiplying both sides of (A.1) by (∂tU)eθt and integrating over BR × (t1, t2) give∫
BR×((t1,t2)

(
1
2
∂t(∂tU)2 +Δ2U∂tU + σ(∂tU)2

)
eθt dx dt = 0.

Using the integrationΔ2U∂tU by parts over BR and notingΔU∂t(ΔU) = 1
2∂t|ΔU|2, we obtain∫ t2

t1

(∂tE0(t))eθt dt +
∫

BR×(t1,t2)
σ(∂tU)2eθt dx dt

+

∫
∂BR×(t1,t2)

(∂ν(ΔU)∂tU −ΔU∂t(∂νU))eθt ds(x)dt = 0.

Hence,

E0(t2)eθt2 − E0(t1)eθt1 =

∫
BR×(t1,t2)

(
θ

2
((∂tU)2 + |ΔU|2) − σ(∂tU)2

)
× eθtdxdt −

∫
∂BR×(t1,t2)

(∂ν(ΔU)∂tU

−ΔU∂t(∂νU)) eθt ds(x)dt = 0.

12
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Letting θ = 0, using Schwartz’s inequality, and noting σ > 0, we get

E0(t2) � E0(t1) +
∫

BR×(t1,t2)
(−σ)(∂tU)2dx dt

+
1
2

∫
∂BR×(t1,t2)

(
(∂tU)2 + (∂t(∂νU))2

)
ds(x)dt

+
1
2

∫
∂BR×(t1,t2)

(
(ΔU)2 + (∂ν(ΔU))2

)
ds(x)dt

� E0(t1) + F2.

Similarly, letting θ = 2σ, we derive

E0(t1)e2σt1 � E0(t2)e2σt2 +

∫
BR×(t2,t1)

− σ(ΔU)2dx dt

+
1
2

∫
∂BR×(t1,t2)

(
(∂tU)2 + (∂t(∂νU))2

)
e2σt ds(x)dt

+
1
2

∫
∂BR×(t1,t2)

(
(ΔU)2 + (∂ν(ΔU))2

)
e2σtds(x)dt

� E0(t2)e2σt2 +
1
2

∫
∂BR×(t1,t2)

(
(∂tU)2 + (∂t(∂νU))2

)
× e2σt ds(x) dt +

1
2

∫
∂BR×(t1,t2)

(
(ΔU)2 + (∂ν(ΔU))2

)
× e2σtds(x)dt,

which gives

E0(t1) � e2σ(t2−t1)(E0(t2) + F2).

The proof is completed by following similar arguments as those in [9, lemma 3.2]. �

Now we return to the proof of theorem A.2

Proof of Theorem A.2. Let ϕ(x, t) = |x − a|2 − θ2(t − T
2 )2, where dist(a, BR) = 1, θ = 1

2 .
Denote Q = BR × [0, T]. Using the Carleman-type estimate in [19, theorem 2.1], we obtain

τ 6
∫
Q
|U|2e2τϕ dx dt + τ 3

∫
Q
|∂tU|2e2τϕ dx dt + τ

∫
Q
|ΔU|2e2τϕ dx dt

�
∫
Q

((
∂2

t +Δ2
)

U
)2

e2τϕ dx dt

+

∫
∂Q

τ 6
(
|∂νΔU|2 + |∂tΔU|2 +

∣∣∂2
t U)

∣∣2) e2τϕ ds(x)dt. (A.5)

13
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It is easy to see that 1 − θ2ε2
0 � ϕ on BR × {|t − T

2 | < ε0} for some positive ε0 < 1. Then we
have from (A.4) that

τ 6
∫
Q
|U|2e2τϕ dx dt + τ 3

∫
Q
|∂tU|2e2τϕ dx dt + τ

∫
Q
|ΔU|2e2τϕ dx dt

� τ 6
∫

BR×( T
2 −ε0, T

2 +ε0)
|U|2e2τ (1−θ2ε2

0)dx dt

+ τ 3
∫

BR×( T
2 −ε0, T

2 +ε0)
|∂tU|2e2τ (1−θ2ε2

0)dx dt

+ τ

∫
BR×( T

2 −ε0, T
2 +ε0)

|ΔU|2e2τ (1−θ2ε2
0)dx dt

� τe2τ (1−θ2ε2
0)
∫

BR×( T
2 −ε0, T

2 +ε0)
E(t)dt

� τe2τ (1−θ2ε2
0)ε0(2e−(2σ+4T)TE(0) − F2). (A.6)

Moreover, it follows from (A.4) and ϕ � (2R + 1)2 − θ2T2/4 on BR × (0, T) that

τ 6
∫
Q
|U|2e2τϕ dx dt + τ 3

∫
Q
|∂tU|2e2τϕ dx dt + τ

∫
Q
|ΔU|2e2τϕ dx dt

� τ 6e2τ ((2R+1)2−θ2T2/4)(E(0) + E(T))

� τ 6e2τ ((2R+1)2−θ2T2/4)((e4T2
+ 1)E(0) + e4T2

F2).

By (A.5) and (A.6), we obtain

τe2τ (1−θ2ε2
0)ε0e−(2σ+1+4T)TE(0)

+ τ 6
∫
Q
|U|2e2τϕ dx dt + τ 3

∫
Q
|∂tU|2e2τϕ dx dt + τ

∫
Q
|ΔU|2e2τϕ dx dt

�
(
σ2
∫
Q
|∂tU|2e2τϕ dx dt +

∫
∂Q

τ 6(|∂νΔU|2 + |∂tΔU|2 + |∂2
t U)|2 )

× e2τϕ ds(x) dt + (τe2τ (1−θ2ε2
0) + τ 6e2τ ((2R+1)2−θ2T2/4)e4T2

)F2

+ τ 6e2τ ((2R+1)2−θ2T2/4)e4T2
E(0)

)
. (A.7)

Choosing τ sufficiently large, we may remove the first integral on the right-hand side of (A.7).
We also choose T2 = 4 (2R+1)2

θ2 + 4ε2
0 and τ = (2σ + 8T)T + ln(2(ε0)−1C) + Cσ2. Noting

τ 5e−τ � 5!, we have

τ 5e2τ ((2R+1)2−θ2T2/4−1+θ2ε2
0)+(2σ+8T)T = τ 5e−2τ+(2σ+8T)T

� 5!e−τ+(2σ+8T)T � ε0

2C
.

14
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In addition, since T � 5(2R + 1), it follows that

τ 5e2τ((2R+1)2−1+θ2ε2
0+(2σ+4T)T) � τ 5e2 ((2σ + 8T)T

+ Cσ2 + C
)

(2R + 1)2 + (2σ + 4T)T

� CeCσ2
.

Using the above inequality and the inequality ϕ < (2R + 1)2 on Q and dividing both sides in
(A.7) by the factor of E(0) on the left-hand side, we obtain

E(0) � CeCσ2
F2.

Since f is supported in BR, there holds ‖U‖L2(∂BR×(0,T)) � C‖∂tU‖L2(∂BR×(0,T)), which completes
the proof. �

Appendix B. A decay estimate

We prove a decay estimate for the solution of the initial value problem of the damped plate
wave equation {

∂2
t U(x, t) +Δ2U(x, t) + σ∂tU(x, t) = 0, (x, t) ∈ R3 × (0,+∞),

U(x, 0) = 0, ∂tU(x, 0) = f (x), x ∈ R3,
(B.1)

where f (x) ∈ L1(R3) ∩ Hs(R3). By the Fourier transform, the solution U(x, t) of (B.1) is given
as

U(x, t) = F−1(mσ(t, ξ) f̂ (ξ))(x),

where F−1 denotes the inverse Fourier transform,

mσ(t, ξ) =
e−

σ
2 t√

σ2 − 4|ξ|4
(

e
1
2 t
√

σ2−4|ξ|4 − e−
1
2 t
√

σ2−4|ξ|4
)

,

and f̂ (ξ) is the Fourier transform of f , i.e.,

f̂ (ξ) =
1

(2π)3

∫
R3

e−ix·ξ f (x)dx.

Let
√
σ2 − 4|ξ|4 = i

√
4|ξ|4 − σ2 when |ξ|4 > σ2

4 . Then we have

mσ (t, ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−

σ
2 t

sinh
(

t
2

√
σ2 − 4|ξ|4

)
√
σ2 − 4|ξ|4

, |ξ|4 <
σ2

4
,

e−
σ
2 t

sin
(

t
2

√
4|ξ|4 − σ2

)
√

4|ξ|4 − σ2
, |ξ|4 >

σ2

4
.

It is clear to note from the representation of mσ(t, ξ) that the solution U(x, t) depends on both
of the low and high frequency of ξ. In fact, the solution U(x, t) behaves as a ‘parabolic type’ of

15
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e−tΔ2
f for the low frequency part, while for the high frequency part it behaves like a ‘dispersive

type’ of eitΔ2
f .

Theorem B.1. Let U(x, t) be the solution of (B.1). Then U(x, t) satisfies the decay estimate

sup
x∈R3

|∂α
x ∂

j
t U(x, t)| � (1 + t)−

3+|α|
4 ‖ f ‖L1(R3) + e−ct‖ f ‖Hs(R3), (B.2)

where j ∈ N, α is a multi-index vector in N3 such that ∂α = ∂α1
x1

∂α2
x2

∂
α3
x3 , s > 2 j + |α| − 1

2 and
c > 0 is some positive constant. In particular, for |α| = s = 0, the following estimate holds:

sup
x∈R3

|U(x, t)| � (1 + t)−
3
4 (‖ f ‖L1(R3) + ‖ f ‖L2(R3)). (B.3)

Remark B.2. The estimate (B.3) provides a time decay of the order O((1 + t)−
3
4 ) for U(x, t)

uniformly for all x ∈ R3, which gives

sup
x∈R3

∫ ∞

0
|U(x, t)|2dt �

∫ ∞

0
(1 + t)−3/2 dt < +∞.

Hence, let U(x, t) = 0 when t < 0, then U(x, t) has a Fourier transform Û(x, k) ∈ L2(R) for
each x ∈ R3. Moreover, the following Plancherel equality holds:∫ +∞

0
|U(x, t)|2dt =

∫ +∞

−∞
|Û(x, k)|2dk.

Remark B.3. To study the inverse source problem, it suffices to assume that f ∈ H4(R3). In
this case, it follows from the above theorem that both ∂2

t U(x, t) and Δ2U(x, t) are continuous
functions. Moreover, we have from (B.2) that the following estimate holds:

sup
x∈R3

|∂ j
t U(x, t)| � (1 + t)−

3
4 ‖ f ‖L1(R3) + e−ct‖ f ‖Hs(R3), j = 1, 2,

sup
x∈R3

|∂α
x U(x, t)| � (1 + t)−

3+|α|
4 ‖ f ‖L1(R3) + e−ct‖ f ‖Hs(R3), |α| � 4.

Proof. Without loss of generality, we may assume that σ = 1, and then

mσ(t, ξ) =
e−

1
2 t√

1 − 4|ξ|4
(

e
1
2 t
√

1−4|ξ|4 − e−
1
2 t
√

1−4|ξ|4
)
.

First we prove (B.2) for j = 0. Chooseχ ∈ C∞
0 (R3) such that suppχ ⊂ B(0, 1

2 ) andχ(ξ) = 1
for |ξ| � 1

4 . Let

U(x, t) = F−1(m(t, ξ)χ(ξ) f̂ ) + F−1(m(t, ξ)(1 − χ(ξ)) f̂ )

:=U1(x, t) + U2(x, t).

For U1(x, t), since
√

1 − 4|ξ|4 � 1 − 2|ξ|4 when 0 � |ξ| � 1
2 , we have for |ξ| � 1

2 that

m(t, ξ) =
1√

1 − 4|ξ|4
e−

t
2 (1±

√
1−4|ξ|4) � 2e−t|ξ|4, t � 0.

For each x ∈ R3 we have
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∂αU1(x, t) =
∫
R3

eix·ξ(iξ)αm(t, ξ)χ(ξ) f̂ (ξ)dξ,

which gives

sup
x∈R3

|∂α
x U1(x, t)| �

∫
|ξ|� 1

2

|ξ|αe−t|ξ|4 | f̂ (ξ)|dξ � ‖ f̂ ‖L∞(R3)

×
∫
|ξ|� 1

2

|ξ|αe−t|ξ|4dξ.

Since ∫
|ξ|� 1

2

|ξ|αe−t|ξ|4dξ �

⎧⎨⎩C, 0 � t � 1,

t−
3+|α|

4 , t � 1,

and ‖ f̂ ‖L∞(R3) � ‖ f ‖L1(R3), we obtain

sup
x∈R3

|∂α
x U1(x, t)| � (1 + t)−

3+|α|
4 | f ‖L1(R3) ∀α ∈ N3. (B.4)

To estimate U2(x, t), noting

(1 −Δ)
p
2 U2(x, t) =

∫
R3

eix·ξ(1 + |ξ|2)
p
2 m(t, ξ)(1 − χ(ξ)) f̂ (ξ)dξ,

we have from Plancherel’s theorem that∫
R3
|(1 −Δ)

p
2 U2(x, t)|2dx =

∫
R3

(1 + |ξ|2)p|m(t, ξ)(1 − χ(ξ)) f̂ (ξ)|2dξ. (B.5)

It holds that

|m(t, ξ)| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

te−
t
2 (1−

√
1−4|ξ|4)

∣∣∣∣∣1 − e−t
√

1−4|ξ|4

t
√

1 − 4|ξ|4

∣∣∣∣∣ � e−
t
8 ,

1
2
< |ξ| �

√
2

2
,

1
2

e−
t
2

sin t
2

√
4|ξ|4 − 1

t
2

√
4|ξ|4 − 1

� e−
t
8 ,

√
2

2
< |ξ| � 1,

e−
t
2√

4|ξ|4 − 1
| sin

t
2

√
4|ξ|4 − 1| � e−

t
2√

4|ξ|4 − 1
, |ξ| > 1.

Hence, when |ξ| � 1
2 we have

|(1 + |ξ|2)m(t, ξ)| � e−
t
8 .

It follows from (B.5) that

‖U2(x, t)‖2
Hp(R3) �

∫
|ξ|� 1

2

|(1 + |ξ|2)
p
2 m(t, ξ) f̂ (ξ)|2dξ

� e−
t
4

∫
R3
|(1 + |ξ|2)−1+ p

2 f̂ (ξ)|2dξ = e−
t
4 ‖ f ‖2

Hp−2(R3).
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On the other hand, by Sobolev’s theorem, we have for p > 3
2 that

sup
x∈R3

|U2(x, t)| � ‖U2(·, t)‖Hp(R3) � e−
t
8 ‖ f ‖Hp−2(R3).

More generally, for any α ∈ N3 it holds that

(1 −Δ)
p
2 ∂α

x U2(x, t) = F−1((1 + |ξ|2)
p
2 m(t, ξ)(1 − χ(ξ))∂̂α f ),

which leads to

sup
x∈R3

|∂α
x U2(x, t)| � e−

t
8 ‖∂α f ‖Hp−2(R3) � e−

t
8 ‖ f ‖Hs(R3). (B.6)

Here s = p− 2 + |α| > |α| − 1
2 by choosing p > 3

2 . Combining the estimate (B.4) with (B.6)
yields (B.2) for j = 0.

Next we consider the general case with j �= 0. Noting

∂ j
t U(x, t) =

∫
R3

eix·ξ ∂ j
t m(t, ξ) f̂ (ξ)dξ,

we obtain from direct calculations that

∂ j
t m(t, ξ) = ∂ j

(
e−

1
2 t√

1 − 4|ξ|4
(

e
1
2 t
√

1−4|ξ|4 − e−
1
2 t
√

1−4|ξ|4
))

=

j∑
l=0

2− j(
√

1 − 4|ξ|4)l−1e−
t
2

(
e

1
2 t
√

1−4|ξ|4

+ (−1)l+1e−
1
2 t
√

1−4|ξ|4
)

:=
j∑

l=0

ml(t, ξ).

Hence we can write ∂ j
t U(x, t) as

∂ j
t U(x, t) =

j∑
l=0

∫
R3

eix·ξ ml(t, ξ) f̂ (ξ)dξ :=
j∑

l=0

Wl(x, t). (B.7)

For each 0 � l � j, j �= 0, using similar arguments for the case j = 0 we obtain

sup
x∈R3

|∂α
x Wl(x, t)| � (1 + t)−

3+|α|
4 ‖ f ‖L1(R3) + e−

t
8 ‖ f ‖Hs(R3) (B.8)

for s > 2l + |α| − 1
2 . Combining (B.7) and (B.8), we obtain the general estimate (B.2). �

Remark B.4. For the damped biharmonic plate wave equation, besides the decay estimate
(B.2), we can deduce other decay estimates of the Lp–Lq type and time–space estimates by
more sophisticated analysis for the Fourier multiplier m(t, ξ). For example, it can be proved
that

‖U(x, t)‖Lq(R3) � (1 + t)
− 3

4

(
1
p−

1
q

)
‖ f ‖Lp(R3) + e−ct‖ f ‖Wq,s(R3),
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where 1 < p � q < +∞ and s � 3( 1
q − 1

2 ) − 2. We hope to present the proofs of these Lp–Lq

estimates and their applications elsewhere.
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