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STABILITY FOR AN INVERSE SOURCE PROBLEM OF THE
BIHARMONIC OPERATOR\ast 
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Abstract. In this paper, we study for the first time the stability of the inverse source problem
for the biharmonic operator with a compactly supported potential in \BbbR 3. An eigenvalue problem
is considered for the bi-Schr\"odinger operator \Delta 2 + V (x) on a ball which contains the support of
the potential V . A Weyl-type law is proved for the upper bounds of spherical normal derivatives
of both the eigenfunctions \phi and their Laplacian \Delta \phi corresponding to the bi-Schr\"odinger operator.
These types of upper bounds was proved by Hassell and Tao [Math. Res. Lett., 9 (2012), pp. 289--
305] for the Schr\"odinger operator. The meromorphic continuation is investigated for the resolvent
of the bi-Schr\"odinger operator, which is shown to have a resonance-free region and an estimate of
L2
comp - L2

loc type for the resolvent. As an application, we prove a bound of the analytic continuation
of the data with respect to the frequency. Finally, the stability estimate is derived for the inverse
source problem. The estimate consists of the Lipschitz-type data discrepancy and the high-frequency
tail of the source function, where the latter decreases as the upper bound of the frequency increases.
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1. Introduction. Consider the scattering problem for the biharmonic operator
in three dimensions

Hu(x, \kappa ) - \kappa 4u(x, \kappa ) = f(x), x \in \BbbR 3,(1.1)

where H := \Delta 2 + V , \Delta is the Laplacian and V (x) is the potential, \kappa > 0 is
the wavenumber, and f is the real-valued source term. We assume that V (x) \in 
C\infty 

c (\BbbR 3), V (x) \geq 0 and that both f and V have a compact support contained in
BR = \{ x \in \BbbR 3 : | x| < R\} , where R > 0 is a constant. Let \partial BR be the boundary
of BR. An analogue of the Sommerfeld radiation condition is imposed to ensure the
well-posedness of the problem (cf. [26])

(1.2) lim
r\rightarrow \infty 

r(\partial ru - i\kappa u) = 0, lim
r\rightarrow \infty 

r(\partial r(\Delta u) - i\kappa (\Delta u)) = 0

uniformly in all directions \^x = x/| x| with r = | x| . This paper is concerned with an
inverse source problem, which is to determine f from the boundary measurements of
u(x, \kappa ),\Delta u(x, \kappa ) on \partial BR corresponding to the wavenumber \kappa given in a finite interval.

The inverse scattering problems have played a fundamental role in diverse sci-
entific areas such as radar and sonar, geophysical exploration, and medical imaging.
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2504 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

The inverse problems for biharmonic operators have important applications in elas-
ticity and the theory of vibration of beams, e.g., the beam equation [12], the hinged
plate configurations [12], and the scattering by grating stacks [23]. Compared with
the inverse scattering problems for acoustic, elastic, and electromagnetic waves, the
inverse scattering problems for the biharmonic operators are much less studied. In
fact, not only the increase of the order leads to the failure of the methods which work
for the second-order equations, but also the properties of the solutions themselves
become more involved [22]. We refer the reader to [1, 16, 17, 25, 26] for the inverse
scattering problems of higher-order operators. The inverse boundary value problems
for bi- and polyharmonic operators can be found in [2, 7, 15, 18, 19, 28]. The available
results are mainly concerned with the inverse problem of determining the first-order
perturbation of the form A(x) \cdot \nabla + q(x) of the bi- and polyharmonic operators by
using either the far-field pattern or the Dirichlet-to-Neumann map on the boundary.
A numerical study can be found in [13] for an inverse random source for the bihar-
monic equation. To the best of our knowledge, the uniqueness and stability are open
on the inverse source problem for the biharmonic operators.

In general, it is known that there is no uniqueness for the inverse source prob-
lems at a fixed frequency. For example, if the source term f := H\varphi  - \kappa 4\varphi , where
\varphi \in C\infty 

0 (BR), it is easy to know that the uniqueness does not hold in this case.
Computationally, a more serious issue is the lack of stability; i.e., a small variation
of the data might lead to a huge error in the reconstruction. Hence, it is crucial
to study the stability of the inverse source problems. Recently, it has been realized
that the use of multifrequency data is an effective approach to overcome the diffi-
culties of nonuniqueness and instability which are encountered at a single frequency.
The first stability result was obtained in [5] for the inverse source problem of the
Helmholtz equation by using multifrequency data. The increasing stability was stud-
ied for the inverse source problems of the acoustic, elastic, and electromagnetic wave
equations [4, 6, 9, 10, 20, 21]. A topic review can be found in [3] on the general inverse
scattering problems with multifrequency.

Motivated by [21], we intend to study the stability on the inverse source prob-
lem for the perturbed biharmonic operator by using multifrequency data. First,
we consider an eigenvalue problem for the biharmonic operator with a zeroth-order
perturbation and deduce an integral equation which connects the scattering data
u(x, \kappa )| \partial BR ,\Delta u(x, \kappa )| \partial BR and the unknown source function f . Then we study the
corresponding resolvent of the biharmonic operator to obtain a resonance-free region
of the data with respect to the complex wavenumber \kappa and examine the bound of
the analytic continuation of the data with respect to the wavenumber. It is worth
mentioning that we obtain a resonance-free region for the resolvent and prove the
resolvent estimate in this region. As a consequence, the well-posedness of the direct
scattering problem follows. Moreover, the results on the resolvent play a crucial role
in the study of the inverse scattering problem, and they are also interesting in them-
selves. The stability estimate consists of the Lipschitz type of data discrepancy and
the high-frequency tail of the source function. The latter decreases as the wavenum-
ber of the data increases, which implies that the inverse problem is more stable when
the higher-wavenumber data are used. We also mention that only the Dirichlet data
are required for the analysis.

The paper is organized as follows. In section 2, we show the increasing stability of
the inverse source problem for the biharmonic operator without the zeroth-order per-
turbation. Section 3 is devoted to the general case where the biharmonic operator has
a nontrivial potential. In both sections, the resolvent is studied for the corresponding

D
ow

nl
oa

de
d 

01
/1

2/
22

 to
 1

28
.2

10
.1

07
.1

29
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY FOR AN INVERSE SOURCE PROBLEM 2505
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Fig. 1. The holomorphic map of F .

biharmonic operator, and its resonance-free region and upper bound are obtained,
which lead to the well-posedness of the direct scattering problems and are crucial for
the stability analysis of the inverse source problem. The paper concludes with some
general remarks in section 4.

2. Stability without zeroth-order perturbation. In this section, we discuss
the well-posedness of the direct and inverse problems for the biharmonic operator
without the zeroth-order perturbation.

2.1. Resolvent estimate. We begin with the resolvent estimate of H0 := \Delta 2,
which is the biharmonic operator without the zeroth-order perturbation. Clearly, the
operator H0 is self-adjoint on L2(\BbbR 3) with the Sobolev domain H4(\BbbR 3). It follows
from the Fourier transform that\widehat H0f(\xi ) = | \xi | 4 \^f(\xi ), f \in H4(\BbbR 3),

which immediately deduces the spectrum of H0:

\sigma (H0) = \{ z = | \xi | 4 : \xi \in \BbbR 3\} = [0,+\infty ).

Hence, the resolvent (H0 - z) - 1 of H0 is analytic for z \in \BbbC \setminus [0,+\infty ) in the uniform op-
erator topology of \scrB (L2, L2), where \scrB (L2, L2) denotes the set of all bounded operators
of L2(\BbbR 3).

It is clear to note that the holomorphic map F : \lambda \rightarrow \lambda 4 takes the first quadrant

\Sigma :=
\Bigl\{ 
\lambda \in \BbbC : 0 < arg\lambda <

\pi 

2

\Bigr\} 
bijectively onto the set \sigma (H0) = \BbbC \setminus [0,+\infty ), which is shown in Figure 1.

Let z = \lambda 4. The family of operators R0(\lambda ) := (H0  - \lambda 4) - 1 are analytical on the
first quadrant \Sigma and satisfy the resolvent estimate

\| R0(\lambda )\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq 
1

dist(\lambda 4, [0,\infty ))
, \lambda \in \Sigma .

Recall that the operator ( - \Delta  - \lambda 2) - 1 is well-defined on L2(\BbbR 3) for \Im \lambda > 0 via the
explicit expression

( - \Delta  - \lambda 2) - 1(f) =

\int 
\BbbR 3

ei\lambda | x - y| 

4\pi | x - y| 
f(y)dy.

For \lambda \in \Sigma , using the identity (cf. [11])

R0(\lambda ) = (\Delta 2  - \lambda 4) - 1 =
1

2\lambda 2
[( - \Delta  - \lambda 2) - 1  - ( - \Delta + \lambda 2) - 1],
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2506 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

we have a bounded operator L2(\BbbR 3) \rightarrow L2(\BbbR 3) for \lambda \in \Sigma such that

(R0(\lambda )f)(x) =

\int 
\BbbR 3

R0(x, y, \lambda )f(y)dy,

where

R0(\lambda , x, y) =
1

2\lambda 2

\Bigl( ei\lambda | x - y| 

4\pi | x - y| 
 - e - \lambda | x - y| 

4\pi | x - y| 

\Bigr) 
, \lambda \in \Sigma .(2.1)

It is easy to verify that the kernel R0(\lambda , x, y) satisfies the radiation condition (1.2)
for fixed x or y and \lambda > 0. Furthermore, we can see from (2.1) that for fixed x and
y, R0(\lambda ) is a meromorphic function of \lambda on \BbbC and defines an operator C\infty 

0 (\BbbR 3) \rightarrow 
C\infty (\BbbR 3), which is unbounded on L2(\BbbR 3) for \Im \lambda \leq 0 or \Re \lambda \leq 0. However, if we
consider R0(\lambda ) as an operator mapping L2

comp(\BbbR 3) onto L2
loc(\BbbR 3) in the sense that for

any fixed \chi \in C\infty 
0 (\BbbR 3) the operator \chi R0(\lambda )\chi : L2(\BbbR 3) \rightarrow L2(\BbbR 3) is bounded, then

the operator R0(\lambda ) can be extended into a meromorphic family of operators for all
\lambda \in \BbbC . We mention that meromorphic families of operators are defined on Banach
spaces. Here \chi R0(\lambda )\chi : L2(\BbbR 3) \rightarrow L2(\BbbR 3) is a meromorphic family for any fixed
\chi \in C\infty 

0 (\BbbR 3).
The following theorem concerns a resonance-free region and an estimate for the

resolvent R0(\lambda ), which play a crucial role in the stability analysis for the inverse
problem. Hereafter, the notation a \lesssim b stands for a \leq Cb, where C > 0 is a generic
constant which may change step-by-step in the proofs.

Theorem 2.1. The resolvent operator R0(\lambda ) for \lambda \in \Sigma has the following estimate:

\| R0(\lambda )\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq 
1

| \lambda | 2(\Im \lambda )(\Re \lambda )
, \lambda \in \Sigma .(2.2)

Moreover, the operator R0(\lambda ) can be extended into an analytic family of operators for
all \lambda \in \BbbC \setminus \{ 0\} as

R0(\lambda ) : L
2
comp(\BbbR 3) \rightarrow L2

loc(\BbbR 3)

such that for each \rho 1 \in C\infty 
0 (\BbbR 3) with supp(\rho 1) \subset BR and \lambda \not = 0,

\| \rho 1R0(\lambda )\rho 1\| L2(BR)\rightarrow Hj(BR)

\lesssim | \lambda |  - 2(1 + \lambda 2)
j
2

\bigl( 
e2R(\Im \lambda ) - + e2R(\Re \lambda ) - 

\bigr) 
, j = 0, 1, 2, 3, 4,(2.3)

where t - := max\{  - t, 0\} .
Proof. First, we show (2.2). Following the identity

\lambda 4 = (\Re \lambda )4 + (\Im \lambda )4  - 6(\Re \lambda )2(\Im \lambda )2 + 4i(\Re \lambda )(\Im \lambda )((\Re \lambda )2  - (\Im \lambda )2),

we have

dist(\lambda 4, [0,\infty ))

=

\Biggl\{ 
4(\Re \lambda )(\Im \lambda )| (\Re \lambda )2  - (\Im \lambda )2| if (\Re \lambda )4 + (\Im \lambda )4 \geq 6(\Re \lambda )2(\Im \lambda )2,
| \lambda | 4 if (\Re \lambda )4 + (\Im \lambda )4 < 6(\Re \lambda )2(\Im \lambda )2.

Note that when (\Re \lambda )4 + (\Im \lambda )4 \geq 6(\Re \lambda )2(\Im \lambda )2, one has

| \lambda | 4 = ((\Re \lambda )2 + (\Im \lambda )2)2 \leq 2((\Re \lambda )2  - (\Im \lambda )2)2,
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STABILITY FOR AN INVERSE SOURCE PROBLEM 2507

which yields | \lambda | 2 \leq 
\surd 
2| (\Re \lambda )2  - (\Im \lambda )2| . On the other hand, when (\Re \lambda )4 + (\Im \lambda )4 <

6(\Re \lambda )2(\Im \lambda )2, we have

| \lambda | 2 = (\Re \lambda )2 + (\Im \lambda )2 \geq 2(\Re \lambda )(\Im \lambda ), \lambda \in \Sigma ,

which gives (2.2).
Next is to show the analytical extension. Let \rho 1 \in C\infty 

0 (\BbbR 3). Then for each \lambda \not = 0,
we define the operator \rho 1R0(\lambda )\rho 1 by

(\rho 1R0(\lambda )\rho 1f)(x) =
1

8\pi \lambda 2

\int 
\BbbR 3

\rho 1(x)
ei\lambda | x - y|  - e - \lambda | x - y| 

| x - y| 
\rho 1(y)f(y)dy.(2.4)

It can be verified that \rho 1R0(\lambda )\rho 1 is bounded on L2(\BbbR 3) and satisfies the estimate

\| \rho 1R0(\lambda )\rho 1\| L2(BR)\rightarrow L2(BR) \leq 
1

8\pi | \lambda | 2
\Bigl( 
e2R(\Im \lambda ) - + e2R(\Re \lambda ) - 

\Bigr) 
\times 
\Bigl( \int 

BR

\int 
BR

\rho 21(x)
1

| x - y| 2
\rho 21(y)dxdy

\Bigr) 1/2

\leq C| \lambda |  - 2(e2R(\Im \lambda ) - + e2R(\Re \lambda ) - ),(2.5)

which actually implies that the operator \rho 1R0(\lambda )\rho 1 belongs to the Hilbert--Schmidt
class. Moreover, for any f, g \in L2(\BbbR 3), by the explicit expression (2.4) of \rho 1R0(\lambda )\rho 1,
it is easy to prove that the function I0(\lambda ) := \langle \rho 1R0(\lambda )\rho 1f, g\rangle L2(\BbbR 3) is an analytic
function in \BbbC \setminus \{ 0\} and \lambda = 0 is the only simple pole. Thus, \rho 1R0(\lambda )\rho 1 is weak
analytic, which further implies the strong analyticity. Consequently, \rho 1R0(\lambda )\rho 1 is an
analytic family of compact operators for \lambda \in \BbbC \setminus \{ 0\} .

It suffices to prove the case j = 4 in order to prove (2.3). Taking \~\rho 1 \in C\infty 
0 (BR)

such that \~\rho 1 = 1 near the support of \rho 1, we obtain from [24, equation (7.13)] that

\| \rho 1u\| H4(BR) \leq C
\bigl( 
\| \~\rho 1u\| L2(\BbbR 3) + \| \~\rho 1\Delta 2u\| L2(\BbbR 3)

\bigr) 
.

Thus, letting u = R0(\lambda )(\rho 1f), f \in L2(BR) gives

\| \rho 1R0(\lambda )(\rho 1f)\| H4(BR) \leq C
\bigl( 
\| \~\rho 1R0(\lambda )(\rho 1f)\| L2(\BbbR 3) + \| \~\rho 1\Delta 2(R0(\lambda )(\rho 1f))\| L2(\BbbR 3)

\bigr) 
.

Noting

\| \~\rho 1\Delta 2(R0(\lambda )(\rho 1f))\| L2(\BbbR 3) = \| \rho 1f + \~\rho 1\lambda 
4R0(\lambda )(\rho 1f)\| L2(\BbbR 3)

\lesssim (1 + | \lambda | 2)2
\bigl( 
e2R(\Im \lambda ) - + e2R(\Re \lambda ) - 

\bigr) 
\| f\| L2(BR),

we obtain

\| \rho 1R0(\lambda )\rho 1\| L2(BR)\rightarrow H4(BR) \lesssim | \lambda |  - 2(1 + \lambda 2)2
\bigl( 
e2R(\Im \lambda ) - + e2R(\Re \lambda ) - 

\bigr) 
.

Finally, the cases for j = 1, 2, 3 follow by the interpolation between j = 0 and j = 4.

It follows from Theorem 2.1 that the scattering problem (1.1)--(1.2) has a unique
solution for all the positive wavenumbers when V (x) \equiv 0, which is stated in the
following result.

Corollary 2.2. Let V (x) \equiv 0. For any \kappa > 0, the scattering problem (1.1)--(1.2)
admits a unique solution u \in H4(BR) such that

\| u\| H4(BR) \lesssim \| f\| L2(BR).
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2.2. Inverse problem. In this section, we discuss the uniqueness and stability
of the inverse problem without zeroth-order perturbation, i.e., V (x) \equiv 0.

First, we study the spectrum of the operator H0 with the Navier boundary con-
dition. Let \{ \lambda j , \varphi j\} \infty j=1 be the positive increasing eigenvalues and eigenfunctions of
H0 in BR, where \varphi j and \lambda j satisfy\Biggl\{ 

\Delta 2\varphi j(x) = \lambda j\varphi j(x) in BR,

\Delta \varphi j(x) = \varphi j(x) = 0 on \partial BR.

In fact, we can take \{ \lambda 1/2j , \varphi j\} \infty j=1 to be the spectrum of the Laplacian operator such
that \Biggl\{ 

 - \Delta \varphi j(x) = \lambda 
1/2
j \varphi j(x) in BR,

\varphi j(x) = 0 on \partial BR,

where the eigenfunctions \{ \varphi j\} \infty j=1 form a complete basis in L2(BR). Assume that \varphi j

is normalized such that \int 
BR

| \varphi j(x)| 2dx = 1.

Consequently, we obtain the spectral decomposition of f ,

f(x) =

\infty \sum 
j=1

fj\varphi j(x),

where

fj =

\int 
BR

f(x) \=\varphi j(x)dx.

It is clear that

\| f\| 2L2(BR) =
\sum 
j

| fj | 2.(2.6)

The following lemma gives a link between the values of an analytical function for
small and large arguments. The proof can be found in [6, Lemma 3.2].

Lemma 2.3. Denote S = \{ z = x+iy \in \BbbC :  - \pi 
4 < argz < \pi 

4 \} . Let J(z) be analytic
in S and continuous in \=S satisfying\left\{     

| J(z)| \leq \epsilon , z \in (0, K],

| J(z)| \leq M, z \in S,

| J(0)| = 0.

Then there exists a function \beta (z) satisfying\Biggl\{ 
\beta (z) \geq 1

2 , z \in (K, 2
1
4K),

\beta (z) \geq 1
\pi ((

z
K )4  - 1) - 

1
2 , z \in (2

1
4K, \infty )

such that
| J(z)| \leq M\epsilon \beta (z) \forall z \in (K, \infty ).

Let \kappa 4j = \lambda j . The following result concerns an estimate for the normal derivatives
of the eigenfunctions on \partial BR. The proof can be found in [21, Lemma A.2].

D
ow

nl
oa

de
d 

01
/1

2/
22

 to
 1

28
.2

10
.1

07
.1

29
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY FOR AN INVERSE SOURCE PROBLEM 2509

Lemma 2.4. The following estimate holds:

\| \partial \nu \varphi j\| L2(\partial BR) \leq C\kappa j ,

where the positive constant C is independent of j. Moreover, the following Weyl-type
inequality holds for the Dirichlet eigenvalues \{ \lambda n\} \infty n=1:

E1n
4/3 \leq \lambda n \leq E2n

4/3,

where E1 and E2 are two positive constants independent of n.

Let u(x, \kappa j) be the solution to (1.1)--(1.2) with \kappa = \kappa j .

Lemma 2.5. The following estimate holds:

| fj | 2 \lesssim \kappa 6j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 2j\| \Delta u(x, \kappa j)\| 2L2(\partial BR)

for j = 1, 2, 3, . . . .

Proof. Multiplying both sides of (1.1) by \=\varphi j and using the integration by parts
yields \int 

BR

f(x) \=\varphi j(x)dx =

\int 
\partial BR

(\partial \nu (\Delta u(x, \kappa j)) \=\varphi j  - \Delta u(x, \kappa j)\partial \nu \=\varphi j) ds

+

\int 
\partial BR

(\partial \nu u(x, \kappa j)\Delta \=\varphi j  - u(x, \kappa j)\partial \nu (\Delta \=\varphi j)) ds.

Noting \Delta \=\varphi j = \=\varphi j = 0 and \partial \nu (\Delta \=\varphi j) =  - \kappa 2j\partial \nu \=\varphi j on \partial BR, we obtain\int 
BR

f(x) \=\varphi j(x)dx =  - 
\int 
\partial BR

\Delta u(x, \kappa j)\partial \nu \=\varphi jds+ \kappa 2j

\int 
\partial BR

u(x, \kappa j)\partial \nu \=\varphi jds.

The proof is completed by using Lemma 2.4 and the Schwartz inequality.

Let \tau be a small positive constant such that \tau < \kappa 1, and denote \Omega \tau := \BbbC \setminus B\tau . The
following lemma gives the analytic continuation of the data from small wavenumber
to large wavenumber. The proof is based on the crucial result in Theorem 2.1.

Lemma 2.6. Let f be a real-valued function and \| f\| L2(BR) \leq Q. Then for any
two positive constants A and A1 satisfying A1 = A + \tau < \kappa 1, there exists a function
\beta (\kappa ) such that

\kappa 6\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 2\| \Delta u(x, \kappa )\| 2L2(\partial BR) \lesssim Q2e6R\kappa \epsilon 
2\beta (\kappa )
1 \forall \kappa \in (A1,+\infty ),

where

\epsilon 21 : = sup\kappa \in (\tau ,A1)

\Bigl( 
\kappa 6\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 2\| \Delta u(x, \kappa )\| 2L2(\partial BR)

\Bigr) 
and \beta (\kappa ) satisfies\Biggl\{ 

\beta (\kappa ) \geq 1
2 , \kappa \in (A1, \tau + 2

1
4A),

\beta (\kappa ) \geq 1
\pi ((

\kappa  - \tau 
A )4  - 1) - 

1
2 , \kappa \in (\tau + 2

1
4A, \infty ).

(2.7)

Proof. Let

I(\kappa ) :=

\int 
\partial BR

\bigl( 
\kappa 6u(x, \kappa )u(x, i\kappa ) + \kappa 2\Delta u(x, \kappa )\Delta u(x, i\kappa )

\bigr) 
ds, \kappa \in \BbbC .
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2510 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

Since f(x) is a real-valued function, it holds that u(x, \kappa ) = u(x, i\kappa ) and \Delta u(x, \kappa ) =
\Delta u(x, i\kappa ) for \kappa \in \BbbR +. Thus, we have

I(\kappa ) = \kappa 6\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 2\| \Delta u(x, \kappa )\| 2L2(\partial BR), \kappa \in \BbbR +.

It follows from Theorem 2.1 that I(\kappa ) is analytic in the sector domain S\tau := \{ z :
 - \pi 

4 < arg(z  - \tau ) < \pi 
4 \} . By the estimate (2.3) in Theorem 2.1, we have for \kappa \in S\tau 

that

| \kappa | 3\| u(x, \kappa )\| L2(\partial BR) + | \kappa | \| \Delta u(x, \kappa )\| L2(\partial BR)

\leq | \kappa | 3\| u(x, \kappa )\| H1/2(\partial BR) + | \kappa | \| \Delta u(x, \kappa )\| H3/2(\partial BR)

\leq (| \kappa | 3 + | \kappa | )\| u\| H4(\BbbR 3) \leq e3R| \kappa | \| f\| L2(BR).

Since

| I(\kappa )| \leq | \kappa | 3\| u(x, \kappa )\| L2(\partial BR)| \kappa | 3\| u(x, - \kappa )\| L2(\partial BR)

+ | \kappa | \| \Delta u(x, \kappa )\| L2(\partial BR)| \kappa | \| \Delta u(x, - \kappa )\| L2(\partial BR)

\lesssim e6R| \kappa | \| f\| 2L2(BR), \kappa \in S\tau ,

we get
| e - 6R| \kappa | I(\kappa )| \lesssim Q2, \kappa \in S\tau .

It follows from Lemma 2.3 by shifting the interval [0,\infty ) to the right by \tau and a
change of variables that there exists a function \beta (\kappa ) satisfying (2.7) such that\bigm| \bigm| e - 6R\kappa I(\kappa )

\bigm| \bigm| \lesssim Q2\epsilon 
2\beta (\kappa )
1 \forall \kappa \in (A1,+\infty ),

which completes the proof.

We state a simple uniqueness result for the inverse problem.

Theorem 2.7. Let f \in L2(BR) and I \subset \BbbR + be an open interval. Then the source
term can be uniquely determined by the multifrequency data \{ u(x, \kappa ),\Delta u(x, \kappa ) : x \in 
\partial BR, \kappa \in I\} .

Proof. Let u(x, \kappa ) = \Delta u(x, \kappa ) = 0 for all x \in \partial BR and \kappa \in I. It suffices to prove
that f(x) = 0. Since by Theorem 2.1 it holds that u(x, \kappa ) is analytic in the whole
complex plane minus the origin, i.e., \BbbC \setminus \{ 0\} , we obtain that u(x, \kappa ) = \Delta u(x, \kappa ) = 0
for all \kappa \in \BbbC \setminus \{ 0\} . Hence, we have u(x, \kappa j) = \Delta u(x, \kappa j) = 0 for all j = 1, 2, 3 . . . .

Then by (2.6) and Lemma 2.5, we have f = 0.

The following lemma is important in the stability analysis. The proof can be
found in [21, Lemma 3.4].

Lemma 2.8. Let f \in Hn+1(BR) and \| f\| Hn+1(BR) \leq Q. The following estimate
holds: \sum 

j\geq s

| fj | 2 \lesssim 
Q2

s
2
3 (n+1)

.

Define a real-valued function space

\scrC Q = \{ f \in Hn+1(BR) : \| f\| Hn+1(BR) \leq Q, suppf \subset BR, f : BR \rightarrow \BbbR \} .

Now we are in the position to present the stability of the inverse source problem.
Let f \in \scrC Q. The inverse source problem is to determine f from the boundary data
u(x, \kappa ),\Delta u(x, \kappa ), x \in \partial BR, \kappa \in (\tau ,A1)\cup \cup N

j=1\kappa j , where 1 \leq N \in \BbbN , \tau and A1 are the
constants given in Lemma 2.6.
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STABILITY FOR AN INVERSE SOURCE PROBLEM 2511

Theorem 2.9. Let u(x, \kappa ) be the solution of the scattering problem (1.1)--(1.2)
corresponding to the source f \in \scrC Q. Then for sufficiently small \epsilon 1, the following
estimate holds:

\| f\| 2L2(BR) \lesssim \epsilon 2(N) +
Q2\bigl( 

| ln \epsilon 1| 
1
9N

5
8

\bigr) 2
3 (2n+1)

,(2.8)

where

\epsilon 2(N) =

N\sum 
j=1

\kappa 6j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 2j\| \Delta u(x, \kappa j)\| 2L2(\partial BR),

\epsilon 21 = sup\kappa \in (\tau ,A1)\kappa 
6\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 2\| \Delta u(x, \kappa )\| 2L2(\partial BR).

Proof. For brevity, we write \epsilon instead of \epsilon (N) in the following proof. We can
assume that \epsilon 1 < e - 1; otherwise, the estimate is obvious. Let

L =

\left\{   [N
3
4 | ln \epsilon 1| 

1
9 ], N

3
8 < 1

2
5
6 \pi 

2
3
| ln \epsilon 1| 

1
9 ,

N, N
3
8 \geq 1

2
5
6 \pi 

2
3
| ln \epsilon 1| 

1
9 .

Using Lemmas 2.5 and 2.6 leads to

| fj | 2 \lesssim \kappa 6j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 2j\| \Delta u(x, \kappa j)\| 2L2(\partial BR)

\lesssim Q2e6R\kappa \epsilon 
2\beta (\kappa )
1 \lesssim Q2e4\kappa e - 2\beta (\kappa )| ln \epsilon 1| 

\leq CQ2e4\kappa e - 
2
\pi (\kappa 

4 - 1) - 
1
2 | ln \epsilon 1| \lesssim Q2e4\kappa  - 

2
\pi \kappa 

 - 2| ln \epsilon 1| 

\leq CQ2e - 
2
\pi \kappa 

 - 2| ln \epsilon 1| (1 - 2\pi \kappa 3| ln \epsilon 1|  - 1) \forall \kappa \in (\tau + 2
1
4A, \infty ).

Hence, we have

(2.9) | fj | 2 \lesssim Q2e - 
2

\pi L2 L - 2| ln \epsilon 1| (1 - 2\pi L3| ln \epsilon 1|  - 1) \forall j \in (\tau + 2
1
4A, L].

If N
3
8 < 1

2
5
6 \pi 

2
3
| ln \epsilon 1| 

1
9 , then 2\pi L3| ln \epsilon 1|  - 1 < 1

2 and

(2.10)

e - 
2
\pi 

| ln \epsilon 1| 
L2 \leq e

 - 2
\pi 

| ln \epsilon 1| 

N
3
2 | ln \epsilon 1| 

2
9 \leq e

 - 2
\pi 

| ln \epsilon 1| 
7
9

N
3
2 \leq e

 - 2
\pi 

25\pi 4| ln \epsilon 1| 
1
9 N

9
4

N
3
2 = e - 64\pi 3| ln \epsilon 1| 

1
9 N

3
4 .

Combining (2.9) and (2.10), we obtain

| fj | 2 \lesssim Q2e - 32\pi 3| ln \epsilon 1| 
1
9 N

3
4 \forall \kappa \in (\tau + 2

1
4A, L].

It is easy to note that

e - x \leq (6(n+ 1) - 3)!

x3(2(n+1) - 1)
for x > 0.

We have

| fj | 2 \lesssim Q2 1\biggl( 
| ln \epsilon 1| 

1
3 N

9
4

(6n - 3)3

\biggr) 2n+1 , j = 1, . . . , L.
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2512 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

Consequently, we obtain

| fj | 2 \lesssim Q2 L\biggl( 
| ln \epsilon 1| 

1
3 N

9
4

(6n - 3)3

\biggr) 2n+1 \lesssim Q2 N
3
4 | ln \epsilon 1| 

1
9\biggl( 

| ln \epsilon 1| 
1
3 N

9
4

(6n - 3)3

\biggr) 2n+1

\lesssim Q2 1\biggl( 
| ln \epsilon 1| 

2
9 N

3
2

(6n - 3)3

\biggr) 2n+1 \lesssim Q2 1\biggl( 
| ln \epsilon 1| 

1
9 N

3
2

(6n - 3)3

\biggr) 2n+1 ,

where we have used | ln \epsilon 1| > 1 when N
3
8 < 1

2
5
6 \pi 

2
3
| ln \epsilon 1| 

1
9 . If N

3
8 < 1

2
5
6 \pi 

2
3
| ln \epsilon 1| 

1
9 , we

also have

1\Bigl( \bigl[ 
| ln \epsilon 1| 

1
9N

3
4

\bigr] 
+ 1

\Bigr) 2n+1 \leq 1\Bigl( 
| ln \epsilon 1| 

1
9N

3
4

\Bigr) 2n+1 .

If N
3
8 \geq 1

2
5
6 \pi 

2
3
| ln \epsilon 1| 

1
9 , then L = N . It follows from Lemma 2.5 that

L\sum 
j=1

| fj | 2 \lesssim \epsilon 2.

Combining the above estimates, we obtain

\infty \sum 
j=1

| fj | 2 \lesssim \epsilon 2 +
Q2\biggl( 

| ln \epsilon 1| 
1
9 N

3
2

(6n - 3)3

\biggr) 2n+1

+
Q2\bigl( 

| ln \epsilon 1| 
1
9N

3
4

\bigr) 2
3 (2n+1)

+
Q2\Bigl( 

| ln \epsilon 1| 
1
9N

5
8

\Bigr) 2
3 (2n+1)

\lesssim \epsilon 2 +
Q2\Bigl( 

| ln \epsilon 1| 
1
9N

5
8

\Bigr) 2
3 (2n+1)

,

which completes the proof.

It can be observed that the stability estimate (2.8) consists of two parts: the
data discrepancy and the high-frequency tail. The former is of the Lipschitz type.
The latter decreases as N increases, which makes the problem an almost Lipschitz
stability. The result reveals that the problem becomes more stable when higher-
frequency data are used. Moreover, the stability estimate (2.8) implies the uniqueness
result of Theorem 2.7. In fact, if \epsilon 1 = 0, then it means that the high-frequency tail
part of (2.8) vanishes. On the other hand, it follows from Theorem 2.1 that u(x, \kappa )
is analytic for \kappa \in \BbbC \setminus \{ 0\} , which gives that \epsilon (N) = 0 and proves the uniqueness.

It is worth mentioning that the proof of Theorem 2.9 depends on Lemmas 2.5 and
2.6, where the constants are independent of the number of frequencies N . Therefore,
the constant implied in the stability estimate (2.8) is also independent of N . In
addition, it is possible to combine the two terms on the right-hand side of (2.8) into
a whole logarithmic-type estimate. Let E(N) = \epsilon (N) + \epsilon 1, \beta =  - 4n+2

27 ,\Biggl\{ 
ln+(t) := | ln(t)| , \alpha 1 = 45

8 , \alpha 2 = 0 if t < e - 1,

ln+(t) := t, \alpha 1 = 0, \alpha 2 = 4n+2
27 + 1 if t \geq e - 1.
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STABILITY FOR AN INVERSE SOURCE PROBLEM 2513

Then it is easy to verify that the right-hand side of (2.8) can be combined into the
following logarithmic-type estimate:

\| f\| 2L2(BR) \lesssim 
\bigl[ 
N\alpha 1 ln+(E(N))

\bigr] \beta +\alpha 2
.

3. Stability with zeroth-order perturbation. In this section, we discuss the
well-posedness of the direct and inverse problems for the biharmonic operator with a
general potential, i.e., H = \Delta 2 + V (x), where V (x) \in L\infty 

comp(\BbbR 3,\BbbC ).

3.1. Resolvent estimate. Denote by T : L2
comp(\BbbR 3) \rightarrow L2

loc(\BbbR 3) an operator T
such that for any \chi \in C\infty 

0 (\BbbR 3), the operator \chi T\chi : L2(\BbbR 3) \rightarrow L2(\BbbR 3) is bounded.
Below is the analytic Fredholm theory. The result is classical, and the proof may be
found in many references, e.g., [8, Theorem 8.26].

Theorem 3.1. Let D be a domain in \BbbC , and let \scrA : D \rightarrow \scrL (X) be an operator-
valued analytic function such that \scrA (z) is compact for each z \in D. Then either

(a) (I  - \scrA (z)) - 1 does not exist for any z \in D or
(b) (I  - \scrA (z)) - 1 exists for all z \in D\setminus S, where S is a discrete subset of D.

Here X is a Banach space, and \scrL (X) denotes the Banach space of bounded linear
operators mapping the Banach space X into itself.

The following theorem gives a meromorphic continuation of the resolvent of the
biharmonic operator H.

Theorem 3.2. The resolvent

RV = (\Delta 2 + V  - \lambda 4) - 1 : L2(\BbbR 3) \rightarrow L2(\BbbR 3)

is a meromorphic family of operators with a finite number of poles on the first quadrant
\Sigma . Moreover, the family RV (\lambda ) can be extended into a meromorphic family of the
whole complex plane \BbbC in the sense that \rho 2RV (\lambda )\rho 2 : L2(\BbbR 3) \rightarrow H4(\BbbR 3) is bounded
for any \rho 2 \in C\infty 

0 (\BbbR 3) satisfying \rho 2V = V .

Proof. First, we consider the case RV (\lambda ) for \Re \lambda \gg 1 and \Im \lambda \gg 1. Noting the
equality

(\Delta 2 + V (x) - \lambda 4)R0(\lambda ) = (\Delta 2  - \lambda 4)R0(\lambda ) + V (x)R0(\lambda ) = I + V (x)R0(\lambda )(3.1)

and recalling the free resolvent estimate (2.2)

\| R0(\lambda )\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq 
1

| \lambda | 2(\Im \lambda )(\Re \lambda )
\leq (\Im \lambda ) - 2(\Re \lambda ) - 2, \lambda \in \Sigma ,

we obtain for \Re \lambda \gg 1 and \Im \lambda \gg 1 that

\| V R0(\lambda )\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq \| V \| L\infty (\BbbR 3)\| R0(\lambda )\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq 
\| V \| L\infty (\BbbR 3)

(\Im \lambda )2(\Re \lambda )2
\leq 1

2
.

Hence, the operator I + V R0(\lambda ) is invertible, and the Neumann series reads

(I + V R0(\lambda ))
 - 1 =

\infty \sum 
k=0

( - 1)k(V R0(\lambda ))
k.

Combining with (3.1) gives that

RV (\lambda ) = R0(\lambda )(I + V R0(\lambda ))
 - 1
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are well-defined bounded operators of \scrB (L2, L2) for \Re \lambda \gg 1 and \Im \lambda \gg 1. Moreover,
it is easy to see that V R0(\lambda ) is an analytic family of compact operators on \Sigma . Conse-
quently, it follows from the analytic Fredholm theorem that (I+V R0(\lambda ))

 - 1 is in fact
a meromorphic family of operators for \lambda \in \Sigma , which implies that RV (\lambda ) : L

2(\BbbR 3) \rightarrow 
L2(\BbbR 3) is a meromorphic family of operators in \Sigma .

Next, we consider the extension of RV (\lambda ) from \Sigma to the whole complex plane \BbbC as
the operator L2

comp(\BbbR 3) \rightarrow H4
loc(\BbbR 3). To this end, we define the following meromorphic

family of operators:

T (\lambda ) = V R0(\lambda ) : L
2
comp(\BbbR 3) \rightarrow L2

comp(\BbbR 3).

Since V \in L\infty 
comp(\BbbR 3) with a compact support, we can choose \rho 2 \in C\infty 

0 (\BbbR 3) such that
\rho 2(x) = 1 on suppV . Thus, by checking \rho 2T (\lambda ) = \rho 2V R0(\lambda ) = V R0(\lambda ) = T (\lambda ), we
know that (1 - \rho 2)T (\lambda ) = 0,

(I + T (\lambda )(1 - \rho 2))
 - 1 = I  - T (\lambda )(1 - \rho 2),

and

(I + T (\lambda )) - 1 = (I + T (\lambda )\rho 2)
 - 1(I  - T (\lambda )(1 - \rho 2)).

Therefore,

RV (\lambda ) = R0(\lambda )(I + T (\lambda )) - 1 = R0(\lambda )(I + T (\lambda )\rho 2)
 - 1(I  - T (\lambda )(1 - \rho 2)).(3.2)

Note that

I  - T (\lambda )(1 - \rho 2) : L
2
comp(\BbbR 3) \rightarrow L2

comp(\BbbR 3)

and

R0(\lambda ) : L
2
comp(\BbbR 3) \rightarrow H4

loc(\BbbR 3)

are both meromorphic for \lambda \in \BbbC . Hence, in order to obtain the meromorphic extension
of RV (\lambda ) to \BbbC , it suffices to prove

(I + T (\lambda )\rho 2)
 - 1 : L2

comp(\BbbR 3) \rightarrow L2
comp(\BbbR 3)

is a meromorphic family of operators on \BbbC . Since V (x) = V (x)\rho 2(x), we have
T (\lambda )\rho 2 = V \rho 2R0(\lambda )\rho 2 and

\| T (\lambda )\rho 2\| L2
comp\rightarrow L2

comp
= \| V \rho 2R0(\lambda )\| L2

comp(\BbbR 3)\rightarrow L2
comp(\BbbR 3)

\leq \| V \| L\infty \| \rho 2R0(\lambda )\rho 2\| L2
comp(\BbbR 3)\rightarrow L2

comp(\BbbR 3)

\leq C| \lambda |  - 2(e2R(\Im \lambda ) - + e2R(\Re \lambda ) - )

\leq 1

2

for \Re \lambda \gg 1 and \Im \lambda \gg 1. Hence, it follows from the Neumann series that the operator
(I + T (\lambda )\rho 2)

 - 1 : L2(\BbbR 3) \rightarrow L2(\BbbR 3) exists for \Re \lambda \gg 1 and \Im \lambda \gg 1. Moreover,
for any \lambda \in \BbbC \setminus \{ 0\} , the operator T (\lambda )\rho 2 = V \rho 2R0(\lambda )\rho 2 is compact on L2(\BbbR 3) by
(2.3). Therefore, it follows from the analytic Fredholm theorem that (I+T (\lambda )\rho 2)

 - 1 :
L2(\BbbR 3) \rightarrow L2(\BbbR 3) is meromorphic on \BbbC .

Finally, it remains to show that (I+T (\lambda )\rho 2)
 - 1 is L2

comp(\BbbR 3) \rightarrow L2
comp(\BbbR 3). In fact,

we can choose \chi 1, \~\chi 1 \in C\infty 
0 such that \chi 1\rho 2 = \rho 2 and \~\chi 1\chi 1 = \chi 1. Then (1 - \~\chi 1)\rho 2 = 0.
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STABILITY FOR AN INVERSE SOURCE PROBLEM 2515

Moreover, when \Re \lambda \gg 1,\Im \lambda \gg 1, by the Neumann series argument and V \rho 2 = V ,
we have

(1 - \~\chi 1)(I + T (\lambda )\rho 2)
 - 1\chi 1 = (1 - \~\chi 1)\chi 1 +

\infty \sum 
k=1

( - 1)k(1 - \~\chi 1)(T (\lambda )\rho 2)
k\chi 

=

\infty \sum 
k=1

( - 1)k(1 - \~\chi 1)(V \rho 2R0(\lambda )\rho 2)
k\chi 1

=

\infty \sum 
k=1

( - 1)k(1 - \~\chi 1)(V \rho 2R0(\lambda )\rho 2)(V \rho 2R0(\lambda )\rho 2)
k - 1\chi 1

= 0,(3.3)

where the last equality uses (1  - \~\chi 1)\rho 2 = 0. By the analytic continuation, (3.3)
remains true for all \lambda \in \BbbC . Therefore, by the expression (3.2) of RV , we obtain that
RV (\lambda ) is meromorphic of \lambda on \BbbC as a family of operators L2

comp(\BbbR 3) \rightarrow H4
loc(\BbbR 3),

which completes the proof.

In the following theorem, we further give a resonance-free region and a resolvent
estimate of \rho 3RV (\lambda )\rho 3 : L2(\BbbR 3) \rightarrow H4(\BbbR 3) for a given \rho 3 \in C\infty 

0 (\BbbR 3), which play a
crucial role in the stability analysis for the inverse problem.

Theorem 3.3. Let V (x) \in L\infty 
comp(\BbbR 3,\BbbC ). Then for any given \rho 3 \in C\infty 

0 (\BbbR 3)
satisfying \rho 3V = V , i.e., supp(V ) \subset supp(\rho 3) \subset \subset BR, there exists a positive constant
C depending on \rho 3 and V such that

\| \rho 3RV (\lambda )\rho 3\| L2(BR)\rightarrow Hj(BR)

\leq C| \lambda |  - 2+j(e2R(\Re \lambda ) - + e2R(\Im \lambda ) - ), j = 0, 1, 2, 3, 4,(3.4)

where \lambda \in \Omega \delta . Here \Omega \delta denotes the resonance-free region defined as

\Omega \delta :=
\Bigl\{ 
\lambda : \Im \lambda \geq  - A - \delta log(1 + | \lambda | ), \Re \lambda \geq  - A - \delta log(1 + | \lambda | ), | \lambda | \geq C0

\Bigr\} 
,

where A and C0 are two positive constants and \delta satisfies 0 < \delta < 1
2R .

Proof. By the estimate (2.5), we obtain

\| \rho 3R0(\lambda )\rho 3\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq C| \lambda |  - 2(e2R(\Re \lambda ) - + e2R(\Im \lambda ) - )(3.5)

for a given \rho 3 \in C\infty 
0 (\BbbR 3) such that \rho 3V = V . Then we have

\| V R0(\lambda )\rho 3\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) = \| V \rho 3R0(\lambda )\rho 3\| L2(\BbbR 3)\rightarrow L2(\BbbR 3)

\lesssim \| V \| L\infty (\BbbR 3)| \lambda |  - 2(e2R(\Re \lambda ) - + e2R(\Im \lambda ) - )

\lesssim \| V \| L\infty (\BbbR 3)| \lambda |  - 2e2R(A+\delta log(1+| \lambda | ))

\lesssim \| V \| L\infty (\BbbR 3)| \lambda |  - 1 \leq 1

2

provided that \lambda \in \Omega \delta with \Omega \delta being defined by

\Omega \delta :=
\Bigl\{ 
\lambda : \Im \lambda \geq  - A - \delta log(1 + | \lambda | ), \Re \lambda \geq  - A - \delta log(1 + | \lambda | ), | \lambda | \geq C0

\Bigr\} 
,

D
ow

nl
oa

de
d 

01
/1

2/
22

 to
 1

28
.2

10
.1

07
.1

29
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2516 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

-C
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Im =-A-  log(1+| |)

Re =-A-  log(1+| |)

Re 

Im 

Fig. 2. The resonance-free region \Omega \delta .

which is shown in Figure 2. Here we let A be a positive constant, C0 \gg 1 and \delta < 1
2R .

Hence, by the Neumann series argument, we can prove that the inverse operator
(I + V R0(\lambda )\rho 1)

 - 1 exists for all \lambda \in \Omega \delta and

\| (I + V R0(\lambda )\rho 3)
 - 1\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) = \| (I + V \rho 1R0(\lambda )\rho 3)

 - 1\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq 2.(3.6)

Then we have

\rho 3RV (\lambda )\rho 3 = \rho 3R0(\lambda )\rho 3(I + V R0(\lambda )\rho 3)
 - 1(I  - V R0(\lambda )(1 - \rho 3))\rho 3.

Consequently, combining (3.5) and (3.6), we obtain the desired estimate for j = 0 as

\| \rho 3RV (\lambda )\rho 3\| L2(\BbbR 3)\rightarrow L2(\BbbR 3) \leq C| \lambda |  - 2
\bigl( 
e2R(\Re \lambda ) - + e2R(\Im \lambda ) - 

\bigr) 
.

For the case j = 4, let \~\rho 3 \in C\infty 
0 (\BbbR 3) such that \~\rho 3 = 1 on supp\rho 3 and supp\~\rho 3 \subset BR.

Then it holds that

\| \rho 3RV \rho 3f\| H4(BR) \lesssim 
\bigl( 
\| \~\rho 3RV (\lambda )\rho 3f\| L2(BR) + \| \~\rho 3\Delta 2RV (\lambda )\rho 3f\| L2(BR)

\bigr) 
\lesssim 

\bigl( 
\| \~\rho 3RV (\lambda )\rho 3f\| L2(BR) + \| \~\rho 3HRV (\lambda )\rho 3f\| L2(BR)

+ \| \~\rho 3V RV (\lambda )\rho 3f\| L2(BR)

\bigr) 
\lesssim (1 + \lambda 2)2\| \~\rho 3RV (\lambda )\rho 3f\| L2(BR)

\lesssim (1 + \lambda 2)2| \lambda |  - 2
\bigl( 
e2R(\Re \lambda ) - + e2R(\Im \lambda ) - 

\bigr) 
\| f\| L2(BR)

for \lambda \in \Omega \delta . Finally, the cases of j = 1, 2, 3 follow by an application of the interpolation
between j = 0 and j = 4.

By Theorem 3.3, the scattering problem (1.1)--(1.2) has a unique solution for all
positive wavenumbers \kappa \geq C0, which is stated below.

Corollary 3.4. Let V (x) \in L\infty 
comp(\BbbR 3,\BbbC ). For all positive wavenumbers \kappa \geq C0

where C0 is specified in Theorem 3.3, the scattering problem (1.1)--(1.2) admits a
unique solution u \in H4(BR) such that

\| u\| H4(BR) \lesssim \| f\| L2(BR).

3.2. Inverse problem. In this section, we discuss the uniqueness and stability
of the inverse problem for the general case with a nontrivial potential V (x) \geq 0.

Again, we begin with the spectrum of the operator H with the Navier boundary
condition. Let \{ \mu j , \phi j\} \infty j=1 be the positive increasing eigenvalues and eigenfunctions
of H in BR, where \phi j and \mu j satisfy\Biggl\{ 

(\Delta 2 + V (x))\phi j(x) = \mu j\phi j(x) in BR,

\Delta \phi j(x) = \phi j(x) = 0 on \partial BR.
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STABILITY FOR AN INVERSE SOURCE PROBLEM 2517

Assume that \phi j is normalized such that\int 
BR

| \phi j(x)| 2dx = 1.

Consequently, we obtain the spectral decomposition of f ,

f(x) =

\infty \sum 
j=1

fj\phi j(x),

where

fj =

\int 
BR

f(x)\=\phi j(x)dx.

It is clear that

\| f\| 2L2(BR) =
\sum 
j

| fj | 2.

The following lemma gives a link between the values of an analytical function for
small and large arguments. The proof can be found in [21, Lemma A.1].

Lemma 3.5. Let p(z) be analytic in the infinite rectangular slab

D = \{ z \in \BbbC : ( \~A,+\infty )\times ( - d, d)\} ,

where \~A is a positive constant and continuous in D satisfying\Biggl\{ 
| p(z)| \leq \~\epsilon , z \in ( \~A, \~A1],

| p(z)| \leq M, z \in R,

where \~A, \~A1, \~\epsilon , and M are positive constants. Then there exists a function \eta (z) with
z \in ( \~A1,+\infty ) satisfying

\eta (z) \geq 64ad

3\pi 2(a2 + 4d2)
e
\pi 
2d (

a
2 - z),

where a = \~A1  - \~A such that

| p(z)| \leq M\~\epsilon \eta (z) \forall z \in ( \~A1,+\infty ).

The following lemma gives an estimate for the normal derivatives of the eigen-
functions on \partial BR and a Weyl-type inequality for the Dirichlet eigenvalues.

Lemma 3.6. The following estimate holds:

\| \partial \nu \phi j\| L2(\partial BR) \leq C\kappa 2j , \| \partial \nu (\Delta \phi j)\| L2(\partial BR) \leq C\kappa 4j ,(3.7)

where the positive constant C is independent of j. Moreover, the following Weyl-type
inequality holds for the Dirichlet eigenvalues \{ \mu n\} \infty n=1:

E1n
4/3 \leq \mu n \leq E2n

4/3,(3.8)

where E1 and E2 are two positive constants independent of n.

D
ow

nl
oa

de
d 

01
/1

2/
22

 to
 1

28
.2

10
.1

07
.1

29
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2518 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

Proof. We begin with the estimate (3.7) for the eigenfunctions on the boundary.
Let u be an eigenfunction with eigenvalue \mu such that\Biggl\{ 

Hu = \mu u, x \in BR,

u = \Delta u = 0, x \in \partial BR.

Define a differential operator

A =
1

2
(x \cdot \nabla +\nabla \cdot x) = x \cdot \nabla +

3

2
= | x| \partial \nu +

3

2
.

Denote the commutator of two differential operators by [\cdot , \cdot ] such that [O1, O2] =
O1O2  - O2O1 for two differential operators O1 and O2. Then we have

[\Delta k, A] = 2k\Delta k, k \in \BbbN +.(3.9)

Denote B = A\Delta . A simple calculation gives\int 
BR

u[H,B]udx =

\int 
BR

\bigl( 
u(\Delta 2 + V )(Bu) - uB(\Delta 2 + V )u

\bigr) 
dx

=

\int 
BR

(\Delta 2u+ V u - \mu u)Budx+

\int 
\partial BR

(u\partial \nu (\Delta Bu) - \partial \nu u\Delta (Bu)) ds

+

\int 
\partial BR

(\Delta u\partial \nu (Bu) - \partial \nu (\Delta u)Bu) ds

=  - 
\int 
\partial BR

(\partial \nu u\Delta (Bu) + \partial \nu (\Delta u)Bu) ds

=  - 
\int 
\partial BR

\bigl( 
\partial \nu u\Delta (Bu) +R| \partial \nu (\Delta u)| 2

\bigr) 
ds,

where we have used u = \Delta u = 0 on \partial BR and Green's formula. Since by (3.9) we have

\Delta Bu = \Delta A\Delta = (A\Delta + 2\Delta )\Delta = A\Delta 2 + 2\Delta 2,

it holds that \int 
\partial BR

\partial \nu u\Delta (Bu)ds =

\int 
\partial BR

\partial \nu u(A\Delta 
2 + 2\Delta 2)uds

=

\int 
\partial BR

\biggl( 
\partial \nu u

\Bigl( \Bigl( 
R\partial \nu +

3

2

\Bigr) 
\Delta 2u

\Bigr) 
+ 2\Delta 2u\partial \nu u

\Bigr) 
ds

= R

\int 
\partial BR

\partial \nu u \partial \nu (\Delta 
2u)ds = R

\int 
\partial BR

\partial \nu u \partial \nu (\mu u - V u)ds,

where we have used \Delta 2u =  - V u+ \mu u = 0 and u = 0 on \partial BR. Hence, we have\bigm| \bigm| \bigm| \bigm| \int 
\partial BR

\partial \nu u\Delta (Bu)ds

\bigm| \bigm| \bigm| \bigm| \geq (\mu  - \| V \| L\infty (BR))

\int 
\partial BR

| \partial \nu u| 2ds.(3.10)

On the other hand, we have\int 
\partial BR

\partial \nu (\Delta u)Buds =

\int 
\partial BR

\partial \nu (\Delta u)Buds = R

\int 
\partial BR

| \partial \nu (\Delta u)| 2ds.(3.11)
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STABILITY FOR AN INVERSE SOURCE PROBLEM 2519

Moreover, since by (3.9) it holds that [H,B] = 4\Delta 3 + [V,A\Delta ], we obtain\bigm| \bigm| \bigm| \bigm| \int 
BR

u[H,B]udx

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 
BR

\bigl( 
4u\Delta 3u+ [V,A\Delta ]u

\bigr) 
dx

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \int 
BR

(4u\Delta ( - V u+ \mu u) + [V,A\Delta ]u) dx

\bigm| \bigm| \bigm| \bigm| 
\leq C\mu \| u\| 2H2(BR) \leq C\mu 2.(3.12)

Here we have used the fact that the commutator [V,A\Delta ] has order of 2 at most. Using
(3.10)--(3.12), we obtain

\| \partial \nu u\| 2L2(\partial BR) \leq \mu , \| \partial \nu (\Delta u)\| 2L2(\partial BR) \leq \mu 2,

which completes the proof of (3.7).
Next, we prove the Weyl-type inequality (3.8). Assume \mu 1 < \mu 2 < \cdot \cdot \cdot are the

eigenvalues of the operator H. Then we have following min-max principle:

\mu n = max
\phi 1,...,\phi n - 1

min
\psi \in [\phi 1,...,\phi n - 1]\bot 

\psi \in H2
0(BR)

\int 
BR

| \Delta \psi | 2 + V | \psi | 2dx\int 
BR

\psi 2dx
.

Assume that \mu 
(1)
1 < \mu 

(1)
2 < \cdot \cdot \cdot are the eigenvalues for the operator \Delta 2. By the

min-max principle, we have

C1\mu 
(1)
n < \mu n < C2\mu 

(1)
n , n = 1, 2, . . . ,

where C1 and C2 are two positive constants depending on \| V \| L\infty (BR). We have from
Weyl's law [27] for \Delta 2 that

lim
n\rightarrow +\infty 

\mu 
(1)
n

n4/3
= D,

where D is a constant. Therefore, there exist two constants E1 and E2 such that

E1n
4/3 \leq \mu n \leq E2n

4/3,

which completes the proof.

Denote \kappa 4j = \mu j . Let u(x, \kappa j) be the solution to (1.1)--(1.2) with \kappa = \kappa j . In
general, due to the presence of the potential function V (x), the resolvent RV (\kappa ) may
have poles on \BbbR + which are restricted in the set \{ x : 0 < x < C0\} by Theorem 3.3.
However, a recent result [11] shows that for a certain class of nonnegative potential
functions, the resolvent has no poles on \BbbR +. On the other hand, since the first
eigenvalue \mu 1 of H in BR increases as the radius R decreases, if the supports of
the source f(x) and potential V (x) are small, we may shrink the ball BR to make
\mu 1 \geq C0. Thus, in the following study of the inverse problem, we assume that the
resolvent RV (\kappa ) has no poles in the set \{ \kappa j : \kappa j < C0\} .

Lemma 3.7. The following estimate holds:

| fj | 2 \lesssim \kappa 8j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 4j\| \Delta u(x, \kappa j)\| 2L2(\partial BR)

for j = 1, 2, 3, . . . .
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-C
0

C
0

R

Im =-A-  log(1+| |)

Re =-A-  log(1+| |)

Re 

Im 

Fig. 3. The region \scrR .

Proof. Multiplying both sides of (1.1) by \=\phi j and using the integration by parts
yields \int 

BR

f(x)\=\phi j(x)dx =

\int 
\partial BR

\bigl( 
\partial \nu (\Delta u(x, \kappa j))\=\phi j  - \Delta u(x, \kappa j)\partial \nu \=\phi j

\bigr) 
ds

+

\int 
\partial BR

\bigl( 
\partial \nu u(x, \kappa j)\Delta \=\phi j  - u(x, \kappa j)\partial \nu (\Delta \=\phi j)

\bigr) 
ds.

Moreover, noting that \Delta \=\phi j = \=\phi j = 0, we arrive at\int 
BR

f(x)\=\phi j(x)dx =  - 
\int 
\partial BR

\bigl( 
\Delta u(x, \kappa j)\partial \nu \=\phi j + u(x, \kappa j)\partial \nu (\Delta \=\phi j)

\bigr) 
ds.

The proof is completed by using Lemma 3.6 and the Schwartz inequality.

Lemma 3.8. Let f be a real-valued function and \| f\| L2(BR) \leq Q. There exist

positive constant d and positive constants \~A, \~A1 satisfying C0 < \~A < \~A1, which do
not depend on f and Q, such that

\kappa 8\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 4\| \Delta u(x, \kappa )\| 2L2(\partial BR) \lesssim Q2e6R\kappa \~\epsilon 
2\eta (\kappa )
1 \forall \kappa \in ( \~A1,+\infty ).

Here C0 is specified in Theorem 3.3 and

\~\epsilon 21 := \kappa 8\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 4\| \Delta u(x, \kappa )\| 2L2(\partial BR),

\eta (\kappa ) \geq 64ad

3\pi 2(a2 + 4d2)
e
\pi 
2d (

a
2 - \kappa ).

Here a = \~A1  - \~A.

Proof. Let

I(\kappa ) :=

\int 
\partial BR

\bigl( 
\kappa 8u(x, \kappa )u(x, i\kappa ) + \kappa 4\Delta u(x, \kappa )\Delta u(x, i\kappa )

\bigr) 
ds, \kappa \in \BbbC .

By Theorem 3.3, we have that u(x, \kappa ) is analytic in the domain

\Omega \delta :=
\Bigl\{ 
\lambda : \Im \lambda \geq  - A - \delta log(1 + | \lambda | ), \Re \lambda \geq  - A - \delta log(1 + | \lambda | ), | \lambda | \geq | C0| 

\Bigr\} 
.

Moreover, there exist d > 0 and \~A > C0 such that \scrR = ( \~A,+\infty ) \times ( - d, d) \subset \Omega \delta 

and i\scrR = \{ iz : z \in \scrR \} \subset \Omega \delta . The geometry of the domain \scrR is shown in Figure 3.
Therefore, I(\kappa ) is analytic in \scrR . Moreover, since f(x) and V (x) are both real-valued
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STABILITY FOR AN INVERSE SOURCE PROBLEM 2521

functions, we have u(x, \kappa ) = u(x, i\kappa ) and \Delta u(x, \kappa ) = \Delta u(x, i\kappa ) for \kappa \geq C0. Hence, we
have

I(\kappa ) = \kappa 8\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 4\| \Delta u(x, \kappa )\| 2L2(\partial BR), \kappa \geq C0.

By the estimate (3.4) in Theorem 3.3, we have for \kappa \in \scrR that

| \kappa | 4\| u(x, \kappa )\| L2(\partial BR) + | \kappa | 2\| \Delta u(x, \kappa )\| L2(\partial BR)

\leq | \kappa | 4\| u(x, \kappa )\| H1/2(\partial BR) + | \kappa | 2\| \Delta u(x, \kappa )\| H3/2(\partial BR)

\leq 2| \kappa | 4\| u\| H4(\BbbR 3) \leq e3R| \kappa | \| f\| L2(BR).

Since

| I(\kappa )| \leq | \kappa | 4\| u(x, \kappa )\| L2(\partial BR)| \kappa | 4\| u(x, - \kappa )\| L2(\partial BR)

+ | \kappa | 2\| \Delta u(x, \kappa )\| L2(\partial BR)| \kappa | 2\| \Delta u(x, - \kappa )\| L2(\partial BR)

\lesssim e6R| \kappa | \| f\| 2L2(BR), \kappa \in \scrR ,

we have

| e - 6R| \kappa | I(\kappa )| \lesssim Q2, \kappa \in \scrR .

An application of Lemma 3.5 shows that there exists a function \eta (\kappa ) such that\bigm| \bigm| e - 6R\kappa I(\kappa )
\bigm| \bigm| \lesssim Q2\~\epsilon 

2\eta (\kappa )
1 \forall \kappa \in ( \~A1,+\infty ),

where

\eta (\kappa ) \geq 64ad

3\pi 2(a2 + 4d2)
e
\pi 
2d (

a
2 - \kappa ),

which completes the proof.

Here we state the uniqueness result for the inverse problem.

Theorem 3.9. Let f \in L2(BR) and I := (C0, C0 + \zeta ) \subset \BbbR + be an open inter-

val, where C0 is the constant given in the definition of \widetilde \Omega \delta in Lemma 3.8 and \zeta is
any positive constant. Then the source term f can be uniquely determined by the
multifrequency data \{ u(x, \kappa ),\Delta u(x, \kappa ) : x \in \partial BR, \kappa \in I\} \cup \{ u(x, \kappa j),\Delta u(x, \kappa j) : x \in 
\partial BR, \kappa j \in (0, C0]\} .

Proof. Let u(x, \kappa ) = 0 for x \in \partial BR and \kappa \in I \cup \{ \kappa j : \kappa j \in (0, C0])\} . It suffices to

show that f(x) = 0. Since u(x, \kappa ) and \Delta u(x, \kappa ) are both analytic in \widetilde \Omega \delta for x \in \partial BR,
it holds that u(x, \kappa ) = \Delta u(x, \kappa ) = 0 for all eigenvalues \kappa > C0. Then we have that
u(x, \kappa j) = 0 for all \kappa j , j = 1, 2, 3, . . . . Hence, it follows from Lemma 3.7 that\int 

BR

f(x)\=\phi j(x)dx = 0, j = 1, 2, 3, . . . ,

which implies f = 0.

The following lemma is important in the stability analysis.

Lemma 3.10. Let f \in Hn+1(BR) and \| f\| Hn+1(BR) \leq Q. It holds that

\sum 
j\geq s

| fj | 2 \lesssim 
Q2

s
2
3 (n+1)

.
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2522 PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

Proof. A simple calculation yields\sum 
j\geq s

| fj | 2 \leq 
\sum 
j\geq s

\kappa 2n+2
j

\kappa 2n+2
s

| fj | 2 \leq 1

\kappa 2n+2
s

\sum 
j\geq s

\kappa 2n+2
j | fj | 2 \lesssim 

Q2

\kappa 2n+2
s

.

Noting

\| f\| 2Hs(BR)
\sim =

\infty \sum 
j=1

(\kappa 2j + 1)s| fj | 2

and using the Weyl-type inequality in Lemma 3.6, we have \kappa 2s \geq E2s
2
3 and complete

the proof.

Define a real-valued function space

\scrC Q = \{ f \in Hn+1(BR) : \| f\| Hn+1(BR) \leq Q, suppf \subset BR, f : BR \rightarrow \BbbR \} .

Now we are in the position to discuss the inverse source problem for the biharmonic
operator with a general potential. Let f \in \scrC Q. The inverse source problem is to

determine f from the boundary data u(x, \kappa ),\Delta u(x, \kappa ), x \in \partial BR, \kappa \in ( \~A, \~A1)\cup \cup N
j=1\kappa j ,

where 1 \leq N \in \BbbN and \kappa N > \~A1, \~A, and \~A1 are the constants specified in Lemma 3.8.
The following stability estimate is the main result of this paper.

Theorem 3.11. Let u(x, \kappa ) be the solution of the scattering problem (1.1)--(1.2)
corresponding to the source f \in \scrC Q. Then for sufficiently small \~\epsilon 1, the following
estimate holds:

\| f\| 2L2(BR) \lesssim \~\epsilon 2(N) +
Q2

N
1
3 (n+1)(ln | ln \~\epsilon 1| )

1
3 (n+1)

,(3.13)

where

\~\epsilon 2(N) =

N\sum 
j=1

\kappa 8j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 4j\| \Delta u(x, \kappa j)\| 2L2(\partial BR),

\~\epsilon 21 = sup\kappa \in ( \~A, \~A1)
\kappa 8\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 4\| \Delta u(x, \kappa )\| 2L2(\partial BR).

Proof. For brevity, we write \~\epsilon instead of \~\epsilon (N) in the following proof. We can
assume that \~\epsilon 1 \leq e - 1; otherwise, the estimate is obvious. First, we link the data
\kappa 4\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 8\| \Delta u(x, \kappa )\| 2L2(\partial BR) for large wavenumber \kappa satisfying \kappa \leq \~L
with the given data \~\epsilon 1 of small wavenumber by using the analytic continuation in
Lemma 3.8, where \~L is some large positive integer to be determined later. By Lemma
3.8, we obtain

\kappa 8\| u(x, \kappa )\| 2\~L2(\partial BR)
+ \kappa 4\| \Delta u(x, \kappa )\| 2\~L2(\partial BR)

\lesssim Q2e6R| \kappa | \~\epsilon 
\eta (\kappa )
1

\lesssim Q2exp

\biggl\{ 
6R\kappa  - c2a

a2 + c3
ec1(

a
2 - \kappa )| ln\~\epsilon 1| 

\biggr\} 
\lesssim Q2exp

\biggl\{ 
 - c2a

a2 + c3
ec1(

a
2 - \kappa )| ln\~\epsilon 1| 

\biggl( 
1 - c4\kappa (a

2 + c3)

a
ec1(\kappa  - 

a
2 )| ln\~\epsilon 1|  - 1

\biggr) \biggr\} 
\lesssim Q2exp

\biggl\{ 
 - c2a

a2 + c3
ec1(

a
2 - \~L)| ln\~\epsilon 1| 

\biggl( 
1 - c4 \~L(a

2 + c3)

a
ec1(

\~L - a
2 )| ln\~\epsilon 1|  - 1

\biggr) \biggr\} 
\lesssim Q2exp

\biggl\{ 
 - b0e

 - c1 \~L| ln\~\epsilon 1| 
\biggl( 
1 - b1 \~Le

c1 \~L| ln\~\epsilon 1|  - 1

\biggr) \biggr\} 
,
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where c, ci, i = 1, 2 and b0, b1 are constants. Let

\~L =

\Biggl\{ \Bigl[ 
1

2c1
ln | ln \~\epsilon 1| 

\Bigr] 
, N \leq 1

2c1
ln | ln \~\epsilon 1| ,

N, N > 1
2c1

ln | ln \~\epsilon 1| .

If N \leq 1
2c1

ln | ln \~\epsilon 1| , we obtain for \~\epsilon 1 sufficiently small that

\kappa 8\| u(x, \kappa )\| 2L2(\partial BR) + \kappa 4\| \Delta u(x, \kappa )\| 2L2(\partial BR)

\lesssim Q2exp\{  - b0e - c1 \~L| ln\~\epsilon 1| (1 - b1 \~Le
c1 \~L| ln\~\epsilon 1|  - 1)\} 

\lesssim Q2 exp

\biggl\{ 
 - 1

2
b0e

 - c1 \~L| ln \~\epsilon 1| 
\biggr\} 
.

Noting e - x \leq (2n+3)!
x2n+3 for x > 0, we obtain

\~L\sum 
j=N+1

\Bigl( 
\kappa 8j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 4j\| \Delta u(x, \kappa j)\| 2L2(\partial BR)

\Bigr) 
\lesssim Q2 \~Le(2n+3)c1 \~L| ln \~\epsilon 1|  - (2n+3).

Taking \~L = 1
2c1

ln | ln \~\epsilon 1| , combining the above estimates and Lemma 3.10, we get

\| f\| 2L2(BR) \lesssim 
N\sum 
j=1

| fj | 2 +
\~L\sum 

j=N+1

| fj | 2 +
+\infty \sum 

j=\~L+1

| fj | 2

\lesssim 
N\sum 
j=1

\Bigl( 
\kappa 8j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 4j\| \Delta u(x, \kappa j)\| 2L2(\partial BR)

\Bigr) 

+

\~L\sum 
j=N+1

\Bigl( 
\kappa 8j\| u(x, \kappa j)\| 2L2(\partial BR) + \kappa 4j\| \Delta u(x, \kappa j)\| 2L2(\partial BR)

\Bigr) 
+

1

\~L
2
3 (n+1)

\| f\| 2Hn+1(BR)

\lesssim \~\epsilon 2 + \~LQ2e(2n+3)c1 \~L| ln \~\epsilon 1|  - (2n+3) +
Q2

\~L
2
3 (n+1)

\lesssim \~\epsilon 2 +Q2
\Bigl( 
(ln | ln \~\epsilon 1| )| ln \~\epsilon 1| 

2n+3
2 | ln \~\epsilon 1|  - (2n+3) + (ln | ln \~\epsilon 1| ) - 

2
3 (n+1)

\Bigr) 
\lesssim \~\epsilon 2 +Q2

\Bigl( 
(ln | ln \~\epsilon 1| )| ln \~\epsilon 1|  - 

2n+3
2 + (ln | ln \~\epsilon 1| ) - 

2
3 (n+1)

\Bigr) 
\lesssim \~\epsilon 2 +Q2(ln | ln \~\epsilon 1| ) - 

2
3 (n+1)

\lesssim \~\epsilon 2 +
Q2

N
1
3 (n+1)(ln | ln \~\epsilon 1| )

1
3 (n+1)

,

where we have used | ln \~\epsilon 1| 1/2 \geq ln | ln \~\epsilon 1| for sufficiently small \~\epsilon 1.
If N > 1

2c1
ln | ln \~\epsilon 1| , we have from Lemma 2.8 that

\| f\| 2L2(BR) \lesssim 
N\sum 
j=1

| fj | 2 +
+\infty \sum 

j=N+1

| fj | 2 \lesssim \~\epsilon 2 +
Q2

N
2
3 (n+1)

\lesssim \~\epsilon 2 +
Q2

N
1
3 (n+1)(ln | ln \~\epsilon 1| )

1
3 (n+1)

,

which completes the proof.
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It is also clear to note that the stability (3.13) consists of two parts: the data
discrepancy and the high-wavenumber tail. The former is of the Lipschitz type. The
latter decreases as N increases, which makes the problem have an almost Lipschitz
stability. The result reveals that the problem becomes more stable when higher-
wavenumber data are used. Compared with (2.8), the stability (3.13) has a double
logarithmic-type high-frequency tail, which makes the problem more ill-posed. The
reason is that, in the presence of the zeroth-order perturbation, the resonance-free
region obtained in Theorem 3.3 is not as good as that obtained in Theorem 2.1.

Similarly, it is also possible to combine the two terms on the right-hand side of
(3.13) into one logarithmic-type term. Let \~E(N) = \~\epsilon (N) + \~\epsilon 1, \gamma =  - n+1

3 ,\Biggl\{ 
ln+ ln+(t) := ln | ln(t)| , \alpha 3 = 1, \alpha 4 = 0 for t < e - 1,

ln+ ln+(t) := t, \alpha 3 = 0, \alpha 4 = n+1
3 + 1 for t \geq e - 1.

Then we may verify that the following estimate holds:

\| f\| 2L2(BR) \lesssim 
\bigl[ 
N\alpha 3 ln+ ln+( \~E(N))

\bigr] \gamma +\alpha 4
.

4. Conclusion. We have presented stability results on the inverse source prob-
lem for the biharmonic operators without and with a zeroth-order perturbation. The
analysis requires the Dirichlet data only at multiple wavenumbers. The increasing
stability is achieved to reconstruct the source term, and it consists of the data dis-
crepancy and the high-frequency tail of the source function. The result shows that
the ill-posedness of the inverse source problem decreases as the wavenumber increases
for the data. A possible continuation of this work is to extend the stability to the
case of polyharmonic operators. A related but more challenging problem is to study
the stability of the inverse potential problem, which is to determine V .
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