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Abstract
This paper is concerned with an inverse source problem for the three-
dimensional Helmholtz equation by a single boundary measurement at a fixed
frequency. We show the uniqueness and a Lipschitz-type stability estimate
under the assumption that the source function is piecewise constant on a domain
which is made of a union of disjoint convex polyhedral subdomains.
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1. Introduction

The inverse source scattering problems arise in diverse scientific and industrial areas such as
antenna design and synthesis, medical imaging [28]. In general there is no uniqueness for the
inverse source scattering problems with the boundary data at a fixed frequency [20]. This is
clear since a single near-field or far-field measurement gives a function of n − 1 independent
variables in an n-dimensional space, while the source function has n independent variables. An
effective approach to overcome the non-uniqueness issue is the use of multi-frequency data.
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More interestingly, the use of multi-frequency data may enhance the stability of the problems
[1, 7–10, 24, 33, 34].

Nevertheless, with single-frequency data, it is proved in [32, 39] that the support of the
source can still be determined in certain cases. In [31], it was shown that the convex hull of
a polygonal source can be determined from a single measurement. For sources with a convex
polygonal support, it has been proved that the support and the values of the source function at
corner points can be uniquely determined by a single measurement in homogeneous [17] and
inhomogeneous media [30]. In [19], the authors addressed the absence of real non-scattering
energies by examining the phenomenon that corners always scatter. Related studies can be
found in [26, 27] on the uniqueness of the shape identification by using a single measurement
in the inverse conductivity and medium scattering problems, respectively. We refer to [5, 6] for
the uniqueness and numerical results for recovering point and dipole sources.

Consider the three-dimensional Helmholtz equation

Δu(x) + κ2u(x) = f (x), x ∈ R
3, (1)

where κ > 0 is the wavenumber, u denotes the wave field, and the source function f ∈ L∞(R3)
represents the electric current density and is assumed to have a compact support contained in
a bounded domain Ω ⊂ R3 with a connected complement R3 \ Ω. Furthermore, we assume
that Ω ⊂ BR := {x ∈ R3 : |x| < R}, where R > 0 is a constant. The wave field u is required to
satisfy the Sommerfeld radiation condition

lim
r→∞

r(∂ru − iκu) = 0, r = |x| (2)

uniformly in all directions x̂ = x/|x|.
Given the source f, the direct scattering problem is to determine the wave field u which

satisfies (1) and (2). It is known that the direct scattering problem has a unique solution
u ∈ H2(BR) for an arbitrary wavenumber κ > 0 and the solution u satisfies the following
estimate (cf [25]):

‖u‖H2(BR) � C‖ f ‖L∞(Ω), (3)

where C is a positive constant. This paper is concerned with the inverse source scatter-
ing problem, which is to determine f from the boundary measurement of u on ∂BR = {x ∈
R3 : |x| = R} at a fixed wavenumber κ.

In this work, we consider the case where the source f is a piecewise constant function. More
precisely, we assume

f (x) =
N∑

j=1

c jχD j(x), (4)

where D j, j = 1, . . . , N are known disjoint convex polyhedral domains and c j, j = 1, . . . , N are
unknown constants. The goal is to establish the Lipschitz stability of determining the constants
c j, j = 1, . . . , N from the measurement of u on ∂BR at a fixed wavenumber κ. It is known that
there exist certain sources that produce no measurable signals, and those sources are called
non-radiating sources [20]. However, since the support of the source function (4) has corners,
it is a radiating source (cf [17]). This makes the recovery of f possible. We refer to [1, 2]
for the characterization of radiating and non-radiating sources for the Helmholtz equation and
Maxwell equations.
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Our study is motivated by the idea introduced by Alessandrini and Vessella in [4], where the
electrical impedance tomography problem was studied. This approach was further developed
to study various inverse coefficient problems (cf, [3, 12–16]). In this paper, we use similar
ideas to solve our inverse source problem. In [17, 31], the inverse source problems are studied
by using complex geometric optics solutions, which are also typical mathematical tools for the
inverse coefficient problems [22, 40].

We construct singular solutions and utilize their ‘blow-up’ behaviors near the corners of sub-
domains Dj, j = 1, 2, . . . , N. The quantitative estimate of unique continuation of the solution
for the Helmholtz equation, which is derived from a three spheres inequality, plays an essential
role in the procedure. We derive a logarithmic-type stability for recovering c1, c2, . . . , cN , and
then uniqueness follows immediately. Since we are recovering a finite number of unknowns,
the Lipschitz-type stability estimate is obtained. Comparing with the uniqueness results in
[17, 30], we provide the uniqueness for a different class of source functions and achieve
the optimal stability estimate. We also want to point out that recently there are numerous
results of establishing Lipschitz stability for some inverse problems using finite measurements
(cf [2, 29, 35, 38] for the Calderón problem and [18] for inverse scattering problems).

The paper is organized as follows. In section 2, we summarize the main results. Section 3
is devoted to the proof of the main result. The paper is concluded with some general remarks
and directions for future work in section 4.

2. Main result

In this section, we make some extra assumptions on the source function and state the main
result of this work.

2.1. Geometry setup

Let the piecewise constant source function be given as

f (x) =
N∑

j=1

c jχD j(x), Ω = ∪N
j=1D j,

where c j ∈ C are constants, and D j are mutually disjoint bounded open subsets in R3. Assume
that dist(Ω,R3 \ BR) � r0 for some constant r0 > 0. Moreover, we consider the geometric
setup of the domains D j that can be described as the polyhedral cell geometry as follows
(cf [18]).

Assumption 1. We assume that

(a) the subdomains D j ⊂ R3, 1 � j � N are convex polyhedrons;
(b) for each k = 0, . . . , N − 1, ∪N

j=k+1D j is simply connected, and there exists a constant r0

such that {x ∈ R3|dist(x,∪N
j=k+1D j) > 2r0} is connected;

(c) each D j has a vertex, denoted by P( j), such that B3r0 (P( j)) ∩ Dk = ∅ for any k > j.

An example domain in R2 satisfying the above assumptions is illustrated in figure 1.
Let (x1, x2, x3) be the Cartesian coordinate in R3, and introduce the spherical coordinates

x1 = ρ sin θ cos ϕ, x2 = ρ sin θ sin ϕ, x3 = ρ cos θ.
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Figure 1. An example of the domain.

Figure 2. Illustration of C(r0,α).

Assume α = α(ϕ) is a continuous function on [0, 2π], such that α(ϕ) ∈ (0, π
2 ) for any

ϕ ∈ [0, 2π]. We let

C(r0,α) := {(ρ, θ,ϕ) : 0 � ρ � r0, 0 � θ � α(ϕ), 0 � ϕ � 2π}

denote the cone with radius r0 and vertical angle α. The vertex of the cone is the origin and
the axis is the x3-axis. The cone C(r0,α) is depicted in figure 2.

Assumption 2. Let α1,α2 be two constants satisfying 0 < α1 < α2 < π
2 . For each D j,

j = 1, 2 . . . , N, let P( j)

 be a vertex. Assume that, after a rigid transform, P( j)


 = (0, 0, 0), and
Br0 ∩ D j = C(r0,α( j)


 ) with α1 < α( j)

 (ϕ) < α2 for any ϕ ∈ [0, 2π].
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In addition, we also make the following assumption on the source function.

Assumption 3. The source function f has the compact supportΩ with |Ω| � A and satisfies
‖ f ‖L∞(Ω) � E, where A and E are positive constants.

2.2. Statement of the main result

Denote

ε := ‖u‖H1(∂BR).

The following theorem is the main result of this paper.

Theorem 1. Let f satisfy assumptions 1–3 and the subdomains Dj, j = 1, . . . , N are given.
If ε = 0 then f = 0. Moreover, the following estimate holds:

‖ f ‖L∞(Ω) � ε. (5)

Hereafter, the notation a � b stands for a � Cb, where C > 0 is a positive constant which
depends on the following parameters: κ, A, E, N, r0, R,α1,α2.

Remark 1. We mention that the Lipschitz constant in the estimate (5) grows exponentially
with respect to the number of subdomains N, which means that the stability estimate dete-
riorates dramatically as N grows. We refer to [13, 37] for related studies of this behavior.
The Lipschitz constant also deteriorates when the number r0 decreases due to the instabil-
ity of the unique continuation principle and the use of increased number of three spheres
inequalities.

2.3. Construction of singular solutions

To prove the theorem, we need to construct singular solutions to the Helmholtz equation and
use their asymptotic behaviors near the singularities. For the inverse coefficient problems con-
sidered in [3, 4, 12–16], typically one may deal with a product of two singular solutions,
whose positivity can be guaranteed. For our inverse source problem, we deal with only one
singular solution, and therefore more sophisticated analysis is needed. In particular, we need
to derive a lower bound on the integral of the singular solution over a cone, when the sin-
gular point is outside the cone and close to the vertex. One will see that the cone has to
be strictly convex at the vertex in order to have such a bound. Since this is the key differ-
ence from previous work on the inverse coefficient problems, we provide more details in this
section.

Denote by G(x) = eiκ|x|
|x| the fundamental solution to the three-dimensional Helmholtz

equation in a homogeneous medium. By simple calculations, we obtain for sufficiently small
|x| that

∂3
x3

eiκ|x|

|x| ∼
(

3x3

|x|5 +
6x3

|x|5 − 15x3
3

|x|7

)
eiκ|x| +O(|x|−3)

=
x3(9x2

1 + 9x2
2 − 6x2

3)
|x|7 eiκ|x| +O(|x|−3).
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Figure 3. Illustrations of the domains defined.

We will use the following singular solution

Φ(x) = − Im

(
∂3

x3

eiκ|x|

|x|

)
=

x3(−9x2
1 − 9x2

2 + 6x2
3)

|x|7 cos(κ|x|) +O(|x|−3)

=
x3(−9x2

1 − 9x2
2 + 6x2

3)
|x|7 +O(|x|−3), (6)

which has a singularity at x = 0.
Consider a cone C(r0,α) = {(ρ, θ,ϕ) : 0 � ρ � r0, 0 � θ � α(ϕ), 0 � ϕ � 2π}, with

α1 < α(ϕ) < α2 for any ϕ ∈ [0, 2π]. We assume that 0 < α1 < α2 < π
2 , and then the cone

C(r0,α) is convex near the vertex. For our purpose, one can think this vertex as a corner of
some D j. Denote

C′(r, r0,α) :=Br0 (0) ∩ {(0, 0, r) + C(r0,α)}.

See figure 3(A) for an illustration. Substitute

x1 = rρ̃ sin θ̃ cos ϕ, x2 = rρ̃ sin θ̃ sin ϕ, x3 = rρ̃ cos θ̃.

Then C′(r, r0,α) can be expressed as

C′(r, r0,α) =
{

(ρ̃, θ̃,ϕ) : 1 � ρ̃ � r0

r
, 0 � θ � α̃(ϕ, ρ̃), 0 � ϕ � 2π

}
,

for some α̃ satisfying α̃(ϕ, ρ̃) < α2 and α̃(ϕ, 1) = 0.

By taking the integral of
x3(−9x2

1−9x2
2+6x2

3)
|x|7 in C′(r, r0,α) for small r, we get
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∫
C′(r,r0,α)

x3(−9x2
1 − 9x2

2 + 6x2
3)

|x|7 dx

= r−1
∫ r0/r

1
dρ̃

∫ 2π

0
dϕ

∫ α̃(ϕ,ρ̃)

0
dθ̃

[
ρ̃−2 sin θ̃ cos θ̃(−9 sin2 θ̃ + 6 cos2 θ̃)

]
. (7)

Next we will bound the above integral from below for r > 0 small. For any ρ̃ ∈ [1, r0
r ] and

ϕ ∈ [0, 2π], since α̃(ϕ, ρ̃) ∈ [0, π
2 ], we have

∫ α̃(ϕ,ρ̃)

0

[
sin θ̃ cos θ̃

(
−9 sin2 θ̃ + 6 cos2 θ̃

)]
dθ̃

= 3
(

cos3 θ̃ − cos5 θ̃
)∣∣∣α̃(ϕ,ρ̃)

0

= 3 cos3 α̃(ϕ, ρ̃) − 3 cos5 α̃(ϕ, ρ̃)

� 0.

By elementary geometry, we have for any ρ̃ > 2 that

0 <
α1

2
<

α(ϕ)
2

< α̃(ϕ, ρ̃) < α(ϕ) < α2 <
π

2
,

which is illustrated in figure 3(B), and then∫ α̃(ϕ,ρ̃)

0

[
sin θ̃ cos θ̃

(
−9 sin2 θ̃ + 6 cos2 θ̃

)]
dθ̃

= 3 cos3 α̃(ϕ, ρ̃) − 3 cos5 α̃(ϕ, ρ̃)

� 3 min
{

cos3 α1

2
− cos5 α1

2
, cos3 α2 − cos5 α2

}
> 0,

for ρ̃ > 2. Thus we obtain∫ +∞

1
dρ̃

∫ 2π

0
dϕ

∫ α̃(ϕ,ρ̃)

0
dθ̃

[
ρ̃−2 sin θ̃ cos θ̃

(
−9 sin2 θ̃ + 6 cos2 θ̃

)]
�

∫ +∞

2
dρ̃

∫ 2π

0
dϕ

∫ α̃(ϕ,ρ̃)

0
dθ̃

[
ρ̃−2 sin θ̃ cos θ̃

(
−9 sin2 θ̃ + 6 cos2 θ̃

)]
� C0,

where the constant C0 > 0 depends on α1,α2. We also have∣∣∣∣∣
∫ +∞

r0/r
dρ̃

∫ 2π

0
dϕ

∫ α̃(ϕ,ρ̃)

0
dθ̃

[
ρ̃−2 sin θ̃ cos θ̃(−9 sin2 θ̃ + 6 cos2 θ̃)

]∣∣∣∣∣
� C′

∣∣∣∣∫ ∞

r0/r
ρ̃−2 dρ̃

∣∣∣∣ � C′r,

7
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where C′ is a positive constant. Therefore∫ r0/r

1
dρ̃

∫ 2π

0
dϕ

∫ α̃(ϕ,ρ̃)

0
dθ̃

[
ρ̃−2 sin θ̃ cos θ̃

(
−9 sin2 θ̃ + 6 cos2 θ̃

)]
�

∫ +∞

1
dρ̃

∫ 2π

0
dϕ

∫ α̃(ϕ,ρ̃)

0
dθ̃

[
ρ̃−2 sin θ̃ cos θ̃

(
−9 sin2 θ̃ + 6 cos2 θ̃

)]
−
∣∣∣∣∣
∫ +∞

r0/r
dρ̃

∫ 2π

0
dϕ

∫ α̃(ϕ,ρ̃)

0
dθ̃

[
ρ̃−2 sin θ̃ cos θ̃

(
−9 sin2 θ̃ + 6 cos2 θ̃

)]∣∣∣∣∣
� C0 − C′ r.

Using the above estimate and (7), we have∫
C′(r,r0,α)

Φ(x)dx � C0r−1 − C1| log r|, (8)

where C0 > 0, C1 depend on α1,α2, r0,κ, and we have used the asymptotics of Φ given in (6)
and the fact that∫

C′(r,r0,α)
|x|−3 dx � C

∫
Br0\Br

|x|−3 dx � C
∫ r0

r
ρ−3ρ2 dρ � C| log r|.

For x = y, we define

G(x, y) :=G(x − y)

and

Φ(x, y) :=Φ(x − y) = − Im(∂3
x3

G(x, y)) = − Im(∂3
x3

G(x − y)). (9)

It is easy to verify that

Φ(y, x) = Φ(y − x) = − Im(∂3
y3

G(x − y)) = −Φ(x, y) = −Φ(x − y).

For fixed y, it is clear to see that the function Φ(·, y) is singular at x = y and satisfies the
Helmholtz equation for x = y.

Remark 2. The estimate (8) with the constant C0 > 0 is crucial for the proof of the main
theorem. We can not have a positive C0 near a facet point, for whichα ≡ α2 = π

2 .This is the fact
that corners always have strong scattering effects [17, 19]. Therefore, we will be essentially
using ‘corner scattering’ to do the recovery. We refer to [18, 23] for similar approaches to
recover piecewise constant coefficients. We believe that one can also use ‘edge scattering’ to
serve our purposes.

3. Proof of the main result

In this section, we show the proof of the main result which is stated in theorem 1. First we
define a sequence of domains which will be used in the proof.

Let

U0 = Ω, W0 = ∅, Uk = Ω \ ∪k
j=1D j, Wk = Ω \ Uk, k = 1, . . . , N.

8
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Figure 4. The domains Uk and Kk for k = 13.

For each k ∈ {0, 1, 2, . . . , N − 1}, consider the vertex P(k+1) of the cell Dk+1. By choos-
ing appropriate Cartesian coordinates (x(k+1)

1 , x(k+1)
3 , x(k+1)

3 ), we assume Dk+1 ∩ Br0 (P(k+1)) =
P(k+1) + C(r0,α(k+1)), with α(k+1) = α(k+1)(ϕ), ϕ ∈ [0, 2π], i.e., a cone with vertex at P(k+1).
By assumption 2, we have

α1 < α(k+1)(ϕ) < α2

for ϕ ∈ [0, 2π].
Denote P(k+1) = (p(k+1)

1 , p(k+1)
2 , p(k+1)

3 ),

Q−
k+1 =

{
x = (x(k+1)

1 , x(k+1)
2 , x(k+1)

3 ) : |x(k+1)
1 − p(k+1)

1 |2

+ |x(k+1)
2 − p(k+1)

2 |2 < r2
0, ,−2r0 < x(k+1)

3 − p(k+1)
3 < 0

}
,

and

Kk = {x ∈ BR+r0 : dist(x, Uk) > r0} ∪ Q−
k+1.

We note that Kk is connected under assumption 1. Figure 4 shows an illustrative example of
the domains Uk and Kk.

3.1. Unique continuation

We state a quantitative estimate of unique continuation for the solution of the Helmholtz
equation. The proof is omitted since it is a minor modification of the proof for a similar
estimate in [13, proposition 3.9] and [16, proposition 7]. We remark that the proof is based

9
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on the construction of a pathway and the repeated use of three spheres inequalities under
assumption 1.

Proposition 1. Let Kk be defined as before and let v ∈ H1(Kk) be a weak solution to the
Helmholtz equation

Δv + κ2v = f in Kk.

Assume that, for given positive constants ε0 and E1, v satisfies

‖v‖
L∞

(
BR+r0

\B
R+

r0
2

)) � ε0

and

|v(x)| � E1|x − P(k+1)|−1, x ∈ Kk.

Then the following inequality holds for small enough r > 0:

|v(xr)| � ετr E1−τr
1 r−(1−τr),

where xr = P(k+1) + (0, 0,−r) and τ r = θrδ with 0 < θ < 1 and δ > 0 depending on
r0,κ, N, A.

3.2. Proof of theorem 1

For some k ∈ {0, 1, . . . , N − 1}, let

Φk(x, y) := − Im(∂3

x(k+1)
3

G(x − y)).

For a fixed k, we just denote the Cartesian coordinates (x1, x2, x3) = (x(k+1)
1 , x(k+1)

3 , x(k+1)
3 ) for

brevity. In the following, we work exclusively under this coordinate system. Note that, under
these coordinates, formally we have

Φk(x, y) = Φ(x − y).

where Φ(·, ·) is defined in (9).
Define

Sk(y) =
∫

Uk

f (x)Φk(x, y)dx.

Lemma 1. For y ∈ Kk, it holds that (Δ+ κ2)Sk(y) = 0.

Proof. Noting that for any x ∈ Uk, y ∈ Kk, we have

f (x)(Δy + κ2)Φk(x, y) = − f (x)(Δy + κ2) Im(∂3
x3

G(x − y))

= − f (x)∂3
x3

Im((Δy + κ2)G(x − y))

= 0,

since Uk and Kk are disconnected. The proof is completed if we change the order of integration
and differentiation. �

10



Inverse Problems 37 (2021) 025003 P Li et al

Lemma 2. If for some ε0 > 0 and k ∈ {1, . . . , N − 1}, it holds

|Sk(y)| � ε0, ∀ y ∈ BR+r0 \ BR+
r0
2

,

then

|Sk(yr)| � E1−τrετr
0 r−(1−τr),

where yr = P(k+1) + (0, 0,−r) with r being small enough and τ r = θrδ with the positive
constants θ ∈ (0, 1) and δ depending on r0,κ, N, A.

Proof. It follows from lemma 1 that Sk satisfies (Δ+ κ2)Sk(y) = 0 in Kk. Moreover, by the
explicit forms of Sk(y) and Φk(x, y), we have

|Sk(y)| � CE
∫

Uk

1
|x − y|4 dx � CE

∫ ∞

|y−P(k+1)|
ρ−2 dρ � CE|y − P(k+1)|−1,

where C > 0 is a constant depending onκ, r0. By proposition 1, we have for r > 0 small enough
that

|Sk(yr)| � E1−τrετr
0 r−(1−τr),

which completes the proof. �
Multiplying both sides of (1) by Φk(x, y) for y ∈ BR+r0 \ BR+

r0
2

and using integration by
parts, we have ∫

Ω

f (x)Φk(x, y)dx =

∫
BR

f (x)Φk(x, y)dx

=

∫
BR

[
(Δ+ κ2)u(x)

]
Φk(x, y)dx

=

∫
BR

u(x)(Δx + κ2)Φk(x, y)dx

+

∫
∂BR

[
∂ν(x)u(x)Φk(x, y) − ∂ν(x)Φk(x, y)u(x)

]
ds

=

∫
∂BR

[
∂ν(x)u(x)Φk(x, y) − ∂ν(x)Φk(x, y)u(x)

]
ds, (10)

where ν is the unit outer normal vector on ∂BR.
First, note that for k = 0,

S0(y) =
∫
Ω

f (x)Φ0(x, y)dx.

Also notice that∫
∂BR

|Φ0(·, y)|2 + |∂νΦ0(·, y)|2 ds � C

for y ∈ BR+r0 \ BR+
r0
2

, where C depends on R,κ, r0. Notice that u|
R3\BR

is the solution to the
exterior problem for the Helmholtz equation

Δu + κ2u = 0 in R
3 \ BR

11
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along with the radiation condition (2). For the above exterior problem, it is shown in
[36, theorem 2.6.4] that there exists a bounded operator N : H1(∂BR) → L2(∂BR), which is
called exterior Dirichlet-to-Neumann map, such that

∂νu = Nu on ∂BR.

Hence, the Neumann data ∂νu on ∂BR can be obtained once the Dirichlet date u is available on
∂BR. Therefore, we obtain the following estimate∫

∂BR

(
|∂νu|2 + κ2|u|2

)
ds =

∫
∂BR

(
|Nu|2 + κ2|u|2

)
ds

� C‖u‖2
H1(∂BR) � Cε2,

where C depends on κ and R. Therefore by (10), we obtain

|S0(y)| � ε, y ∈ BR+r0 \ BR+
r0
2
. (11)

First we prove a logarithmic-type stability. Denote δ0 = ε and δ j = ‖ f ‖L∞(W j), j =
1, . . . , N. We will inductively prove that the following estimates hold:

δ j � ω j(ε), (12)

where ω0(ε) � ω1(ε) � · · · � ωN(ε) for any small ε > 0 and

lim
ε→0

ω j(ε) = 0

for each j. The estimate (12) is clearly true for j = 0, for which ω0(ε) = ε, by invoking (11).
We now assume that the estimate (12) is true for j = k, and deduce the estimate for j = k + 1.

Recall that

Sk(y) =
∫

Uk

f (x)Φk(x, y)dx

=

∫
Ω

f (x)Φk(x, y)dx −
∫

Wk

f (x)Φk(x, y)dx.

Thus we have the estimate

|Sk(y)| �
∣∣∣∣∫

Ω

f (x)Φk(x, y)dx

∣∣∣∣+ ∣∣∣∣∫
Wk

f (x)Φk(x, y)dx

∣∣∣∣ . (13)

Similar to (11), we have∣∣∣∣∫
Ω

f (x)Φk(x, y)dx

∣∣∣∣ � Cε (14)

for y ∈ BR+r0 \ BR+
r0
2

. For the estimate of the second term in the right-hand side of (13), first

notice that |x − y| > Cr0 for x ∈ Wk and y ∈ BR+r0 \ BR+
r0
2

, and therefore

|Φk(x, y)| � C
|x − y|4 � C

r4
0

.

12



Inverse Problems 37 (2021) 025003 P Li et al

Also we have | f(x)| � Cωk(ε) for x ∈ Wk by the hypothesis for induction. Therefore∣∣∣∣∫
Wk

f (x)Φk(x, y)dx

∣∣∣∣ � Cωk(ε) (15)

for y ∈ BR+r0 \ BR+
r0
2

. Combining the estimates (13)–(15), we obtain

|Sk(y)| � (ε+ ωk(ε)), y ∈ BR+r0 \ BR+
r0
2
.

Note that the above estimate is also valid for k = 0, for which W0 = ∅. Now let yr = P(k+1) +
(0, 0,−r). By lemma 2, we have

|Sk(yr)| � r−1ωk(ε)τr , (16)

if 0 < r < 1
C2

for some constant C2 > 0.
Next, we write

Sk(yr) = I1 + I2,

where

I1 =

∫
Br0 (yr)∩Dk+1

f (x)Φk(x, yr)dx,

I2 =

∫
Uk\(Br0 (yr )∩Dk+1)

f (x)Φk(x, yr)dx.

The region Br0 (yr) ∩ Dk+1 is depicted in figure 5. First it is easy to verify that

|I2| � 1. (17)

Combining (16) and (17) yields

|I1| � r−1ωk(ε)τr + 1. (18)

Since f(x) = ck+1 on Dk+1, we have

|I1| = |ck+1|
∣∣∣∣∣
∫

Br0 (yr)∩Dk+1

Φk(x, yr)dx

∣∣∣∣∣ .
By (8), we have∣∣∣∣∣

∫
Br0 (yr)∩Dk+1

Φk(x, yr)dx

∣∣∣∣∣ =
∣∣∣∣∫

C′(r,r0,α(k+1))
Φ(x)dx

∣∣∣∣ � C0r−1 − C1r−1/2,

where C0, C1 two positive constants. Together with (18), we obtain

C0|ck+1|r−1 � |I1|+ r−1/2 � r−1ωk(ε)τr + r−1/2.

Multiplying above inequality by r gives

|ck+1| � ωk(ε)τr + r1/2,

13
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Figure 5. The shaded region is Br0 (yr) ∩ Dk+1.

where r ∈ (0, 1
C2

). Define

σ(t) =

{
| log t|− 1

4δ for 0 < t < e−1,

t − e−1 + 1 for t > e−1.

If ωk(ε) < e−1, by taking

r =
| log ωk(ε)|− 1

2δ

C2
<

1
C2

,

we obtain

|ck+1| � | log ωk(ε)|− 1
4δ = σ(ωk(ε)).

Remember that δ > 0 depends on r0,κ, N, A. If ωk(ε) > e−1, we have

|ck+1| � σ(ωk(ε))

since |ck+1| is bounded. Hence

δk+1 � ωk+1(ε) :=σ(ωk(ε)).

Then it is easy to verify that limε→0 ωk+1(ε) = 0, which completes the induction. Now we
conclude that there exists some positive constant C∗ such that

‖ f ‖L∞(Ω) � C∗ωN(ε), (19)

14
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where limε→0 ωN(ε) = 0. Notice that ωN(·) : (0,∞) → (0,∞) is monotonically increasing.
The final Lipschitz-type stability is an almost immediate consequence of (19) since we are

recovering a finite number of parameters. We refer to [11, proposition 5] and [21, theorem 2.1
and remark 2.2] for more details.

More precisely, we consider the linear operator T : CN → H1(∂BR) such that

T(c1, . . . , cN) �→ u|∂BR ,

where u solves (1) with f being given by the form (4). The boundedness of T follows directly
from (3). By (19), we have

inf
‖(c1,...,cN )‖∞=E

‖T(c1, . . . , cN)‖H1(∂BR) � ω−1
N

(
E
C∗

)
=: C′′ > 0,

and then

‖T(c1, . . . , cN)‖H1(∂BR) � max
1� j�N

‖c j‖.

This completes the proof of theorem 1.

4. Conclusion

We have presented the Lipschitz stability for the inverse source scattering problem of the three-
dimensional Helmholtz equation in a homogeneous background medium, where the source is
assumed be a piecewise constant function. The analysis requires the Dirichlet data only. The
proof relies on the construction of singular solutions and the quantitative estimate of unique
continuation of the solutions for elliptic-type equations. A possible continuation of this work
is to study the corresponding stability estimates of the inverse source problems for elastic
and electromagnetic waves, where the fundamental solutions are tensors and therefore more
sophisticated analysis is needed. We will report the progress elsewhere in the future.
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