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STEIN VARIATIONAL GRADIENT DESCENT
ON INFINITE-DIMENSIONAL SPACE AND APPLICATIONS

TO STATISTICAL INVERSE PROBLEMS∗

JUNXIONG JIA† , PEIJUN LI‡ , AND DEYU MENG§

Abstract. In this paper, we propose an infinite-dimensional version of the Stein variational
gradient descent (iSVGD) method for solving Bayesian inverse problems. The method can generate
approximate samples from posteriors efficiently. Based on the concepts of operator-valued kernels
and vector-valued reproducing kernel Hilbert spaces, a rigorous definition is given for the infinite-
dimensional objects, e.g., the Stein operator, which are proved to be the limit of finite-dimensional
ones. Moreover, a more efficient iSVGD with preconditioning operators is constructed by generalizing
the change of variables formula and introducing a regularity parameter. The proposed algorithms
are applied to an inverse problem of the steady state Darcy flow equation. Numerical results confirm
our theoretical findings and demonstrate the potential applications of the proposed approach in the
posterior sampling of large-scale nonlinear statistical inverse problems.

Key words. statistical inverse problems, Bayes’ method, variational inference method, Stein
variational gradient descent, machine learning
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1. Introduction. Driven by rapid algorithmic development and a steady in-
crease of computer power, the Bayesian approach has enjoyed great popularity for
solving inverse problems over the last decade. By transforming inverse problems into
statistical inference problems, the approach provides a general framework to quantify
uncertainties [1]. The posterior distribution automatically delivers an estimate of the
statistical uncertainty in the reconstruction, and hence suggests “confidence” intervals
that allow one to reject or accept scientific hypotheses [44]. It has been widely used
in many applications, e.g., artifact detecting in medical imaging [64].

The approach begins with establishing an appropriate Bayes model. When the
parameters are in a finite-dimensional space, the finite-dimensional Bayesian method
can be employed [56]. A comprehensive account of the finite-dimensional theory can
be found in [32]. When the inferred parameters are in the infinite-dimensional space,
the problems are more challenging since the Lebesgue measure cannot be defined
rigorously in this case [15]. Recently, some attempts have been made to handle the
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issue. For example, a general framework was designed for the Bayesian formula and
the general theory was applied to inverse problems of fluid mechanic equations [12]. A
survey can be found in [53] on the basic framework of the infinite-dimensional Bayes’
approach for solving inverse problems. Inverse problems of partial differential equa-
tions (PDEs) often involve infinite-dimensional spaces, and the infinite-dimensional
Bayes’ theory has recently attracted more attention [5, 13, 24, 45, 46].

As pointed out in [1], one of the challenges for the Bayesian approach is how to
effectively extract information encoded in the posterior probability measure. To over-
come the difficulty, the two main strategies are the point estimate method and the
sampling method. The former is to find the maximum a posteriori (MAP) estimate
which is equivalent to solving an optimization problem [5, 24]. In some situations, the
MAP estimates are more desirable and computationally feasible than the entire poste-
rior distribution [26, 55]. However, the point estimates cannot convey uncertainty in-
formation and are usually recognized as an incomplete Bayes’ method. The sampling-
type methods, such as the well known Markov chain Monte Carlo (MCMC), are often
used to extract posterior information. They are well studied in the finite-dimensional
setting [35]. Although the MCMCmethods are accurate and effective, they are usually
not robust under mesh refinement [13]. Multiple dimension-independent MCMC-type
algorithms have been proposed [13, 14, 20, 51]. However, these MCMC-type algo-
rithms are computationally too expensive to be adopted in such an application as
seismic exploration [21].

The finite-dimensional problems have been extensively studied and many efficient
algorithms have been developed to quantify uncertainties effectively. In particular,
the variational inference (VI) methods have been broadly investigated in machine
learning [3, 43, 62, 63]. Under the mean-field assumption, the linear inverse problems
were examined in [30, 29] by using a hierarchical formulation with Gaussian and
centered-t noise distribution. The skewed-t noise distribution was considered for a
similar setting in [23]. A new type of VI algorithm, called the Stein variational
gradient descent (SVGD), was proposed in [39]. The method can achieve a reliable
uncertainty estimation by efficiently using an interacting repulsive mechanism. The
SVGD has shown to be a fast and flexible method for solving challenging machine
learning problems and inverse problems of PDEs [10, 11].

Compared with the finite-dimensional problems, the infinite-dimensional prob-
lems are much less studied for VI. When the approximate measures are restricted
to be Gaussian, the novel Robbins–Monro algorithm was developed in [45, 46] from
a calculus-of-variations viewpoint. It was shown in [54] that the Kullback–Leibler
(KL) divergence between the stochastic processes is equal to the supremum of the
KL divergence between the measures restricted to finite marginals. Meanwhile, they
developed a VI method for functions parameterized by Bayesian neural networks. Un-
der the classical mean-field assumption, a general VI framework defined on separable
Hilbert spaces was proposed recently in [28]. A function space particle optimization
method including the SVGD was developed in [61] to solve the particle optimization
directly in the space of functions. The function space algorithm was also employed
to solve computer vision problems, e.g., the context of semantic segmentation and
depth estimation [9]. However, the function spaced SVGD assumes that the random
functions can be parameterized by a finite number of parameters, e.g., parameterized
by some neural networks [61]. Hence, the probability measures on functions are im-
plicitly defined through the probability distributions of a finite number of parameters,
instead of the expected infinite-dimensional function space.

This work concerns inverse problems of PDEs imposed on infinite-dimensional
function spaces. Motivated by the preconditioned Crank–Nicolson (pCN) algorithm
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[13], we aim to construct the SVGD on separable Hilbert spaces with random func-
tions. Throughout, the iSVGD stands for SVGD defined on the infinite-dimensional
function space. The goal is to develop algorithms defined on Hilbert spaces and lay a
foundation for appropriate discretizations. It contains three contributions:

(1) We investigate the Bayesian formula in infinite-dimensional spaces. The rigor-
ous definition of the SVGD on separable Hilbert spaces is provided, the Stein
operator is defined, and the corresponding optimization problem on some
Hilbert spaces is considered, and the finite-dimensional problem is proved to
converge to the infinite-dimensional counterpart.

(2) By introducing the vector-valued reproducing kernel Hilbert space (RKHS)
and operator-valued kernel, we improve the iSVGD with precondition infor-
mation (e.g., Hessian information operator), which can accelerate the iSVGD
algorithm significantly. This is the first work on such an iSVGD algorithm
with precondition information.

(3) Explicit numerical strategies are designed by using the finite-element ap-
proach. Through theoretical analysis and numerical examples, we demon-
strate that the regularity parameter s introduced in the abstract theory (see
Assumptions 5 and 7 in section 3.2) should belong to the interval (0, 0.5)
and be close to 0.5. The scalability of the algorithm depends only on the
scalability of the forward and adjoint PDE solvers. Hence, the algorithm is
applicable to solving large-scale inverse problems of PDEs.

The paper is organized as follows. The SVGD in finite-dimensional spaces is
introduced in section 2. Section 3 is devoted to the construction of the iSVGD. The
basic concepts of operator-valued kernels and Hilbert scales are briefly reviewed; the
Stein operator is defined on separable Hilbert spaces; it is shown that the infinite-
dimensional version is indeed equivalent to the finite-dimensional version in some limit
sense; Based on the Stein operator and the theory of RKHS, the update direction of
the iSVGD is derived; in addition, the change of variables is studied and the iSVGD is
constructed with preconditioning operators; a preliminary theoretical study is given
for the corresponding continuous equations. In section 4, the algorithm is applied to
solve an inverse problem governed by the steady state Darcy flow equation. The paper
is concluded with some general remarks and directions for future work in section 5.

2. A short review of SVGD. Let H be a separable Hilbert space endowed
with the Borel σ-algebra B(H). Denote by G, u, and d the solution operator of some
PDE, the model parameter, and the observation, respectively. We assume that u ∈ H
and d ∈ RNd with Nd being a positive integer. The observation d is related to G(u)
and the random noise ϵ through some functions [32], e.g., the additive noise model or
the multiplicative noise model. We refer to section 4 for a specific example.

For statistical inverse problems, it is usually required to find a probability measure
µd on H, which is known as the posterior probability measure and is specified by its
density with respect to a prior probability measure µ0. The Bayesian formula on a
Hilbert space is defined by

dµd

dµ0
(u) =

1

Zd
exp

(
− Φ(u;d)

)
,(1)

where Φ ∈ C(H × RNd ;R) and exp(−Φ(u;d)) is integrable with respect to µ0. The
constant Zd is chosen to ensure that µd is indeed a probability measure. The prior
measure µ0 := N (0, C0) is assumed to be a Gaussian measure defined on H with C0
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being a self-adjoint, positive definite, and trace class operator. Let (λk, εk)
∞
k=1 be the

eigensystem of C0 satisfying C0εk = λ2
kεk. Denote by PN and QN the orthogonal

projections of H onto XN := span{ε1, ε2, . . . , εN} and X⊥ := span{εN+1, εN+2, . . .},
respectively. Clearly, we have QN = Id − PN . Let uN := PNu ∈ XN and u⊥ :=
QNu ∈ X⊥. Define CN0 = PNC0PN and let µN

0 = N (0, CN0 ) be a finite-dimensional
Gaussian measure defined on XN . Then an approximate measure µdN on XN can be
defined by

dµdN

dµN
0

(uN ) =
1

ZN
d

exp
(
− Φ(uN ;d)

)
,(2)

where

ZN
d =

∫
XN

exp
(
− Φ(uN ;d)

)
µN
0 (duN ).

Some more properties of the above approximate measure can be found in [16,
subsection 5.6]. The probability measure µdN can be written as the pushforward of
the posterior measure µd on RN , i.e., µdN = PN

# µd := µd ◦ (PN )−1. Hence the

measure µdN has a Lebesgue density denoted by pdN with the following form,

pdN (uN ) ∝ exp
(
− Φ(uN ;d)− 1

2
∥uN∥2CN

0

)
,(3)

where ∥ · ∥CN
0

represents ∥(CN0 )−1/2 · ∥ℓ2 with ∥ · ∥ℓ2 standing for the usual ℓ2-norm.

Obviously, the target distribution µdN is the solution to the optimization problem
defined on the set P2(RN ) of probability measures ν such that

∫
∥uN∥2dνN (uN ) <∞

by

min
νN∈P2(RN )

KL(νN ||µdN ),(4)

where KL denotes the KL divergence.
Now, we present the SVGD algorithm. Denote KL(·||µdN ) : P2(RN ) → [0,+∞)

as the functional νN 7→ KL(νN ||µdN ). In order to obtain samples from µdN , the
SVGD applies a gradient descent-like algorithm to the functional KL(·||µdN ). The
standard gradient descent algorithm in the Wasserstein space applied to KL(·||µdN ),
at each iteration ℓ ≥ 0, is

νNℓ+1 =

(
Id− ϵ∇ log

(
dνNℓ
dµdN

))
#

νNℓ ,(5)

where ϵ > 0 is the step size. This corresponds to a forward Euler discretization of the
gradient flow of KL(·||µdN ) with respect to Stein geometry [18]. Instead of the Wasser-
stein gradient ∇ log

(
dνNℓ /dµdN

)
used in (5), the SVGD uses PνN

ℓ
∇ log

(
dνNℓ /dµdN

)
to generate the following iteration,

νNℓ+1 =

(
Id− ϵPνN

ℓ
∇ log

(
dνNℓ
dµdN

))
#

νNℓ ,(6)

where PνN
ℓ

is the same as that in subsection 3.1 of [33]. Let HN
K be an N -dimensional

RKHS [52] with the kernel function K : RN × RN → R. To define PνN
ℓ

rigorously, it
is necessary to introduce the kernel integral operator based on the kernel function K,
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which will not be used in the rest of the paper. Hence, we omit it and refer to [33]
for the details. The reason for introducing the operator PνN

ℓ
is that we have

PνN
ℓ
∇ log

(
dνNℓ
dµdN

)
(·) = −EuN∼νN

ℓ

[
K(uN , ·)∇uN log pdN (uN ) +∇uNK(uN , ·)

]
(7)

under some mild conditions. For every ℓ ≥ 0, let uN,ℓ be distributed according to νNℓ .
Using (6)–(7), we obtain a particle update scheme

uN,ℓ+1 = uN,ℓ + ϵϕN
ℓ (uN,ℓ),(8)

where

ϕN∗
ℓ (·) = EuN∼qNℓ

[
K(uN , ·)∇uN log pdN (uN ) +∇uNK(uN , ·)

]
.(9)

The basic SVGD algorithm is given in Algorithm 1. Inspired by applications in
machine learning, the SVGD-type algorithms have been widely studied over the last
few years [17, 18, 33, 38, 39, 42].

Algorithm 1. Finite-dimensional SVGD.

Input: A target probability measure with density function pdN (uN ) and a set of

particles {uN,0
i }mi=1.

Output: A set of particles {uN
i }mi=1 that approximates the target probability mea-

sure.
for iteration ℓ do

uN,ℓ+1
i ←− uN,ℓ

i + ϵℓϕ
∗(uN,ℓ

i ),

where

ϕ∗(uN ) =
1

m

m∑
j=1

[
K(uN,ℓ

j , uN )∇uN,ℓ
j

log pdN (uN,ℓ
j ) +∇uN,ℓ

j
K(uN,ℓ

j , uN )
]
,

and ϵℓ is the step size at the ℓth iteration.
end for

3. SVGD on separable Hilbert spaces. This section is devoted to the con-
struction of iSVGD and the preconditioning operators. The corresponding continuity
equations are provided for a preliminary theoretical study of the method.

3.1. Hilbert scale and vector-valued RKHS. For constructing iSVGD, we
need to characterize the smoothness of functions that belong to some infinite-
dimensional spaces. The Sobolev spaces are usually employed to characterize the
smoothness of functions. However, for presenting a general theory, we introduce the
Hilbert scales defined by the prior covariance operator [19]. The reason is that dif-
ferent covariance operators employed in practical problems lead to the same form of
Hilbert scales. However, they are related to different Sobolev spaces. Hence, the same
form of the general theory can be flexibly adapted to different practical problems.

Let C0 : H → H be the covariance operator introduced in section 2. Denote
by D(C0) and R(C0) the domain and range of C0, respectively. Let H = R(C0) ⊕
R(C0)⊥ = R(C0) (the closure of R(C0)). It is clear to note that C−1

0 is a densely
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defined, unbounded, symmetric and positive-definite operator in H. Let ⟨·, ·⟩H and
∥ · ∥H be the inner product and norm defined on the Hilbert space H, respectively.
Define the Hilbert scales (Ht)t∈R with Ht := Sf

∥·∥Ht
, where

Sf :=

∞⋂
n=0

D(C−n
0 ), ⟨u, v⟩Ht := ⟨C−t/2

0 u, C−t/2
0 v⟩H, ∥u∥Ht :=

∥∥∥C−t/2
0 u

∥∥∥
H
.

The norms defined above possess the following properties (cf. [19, Proposition 8.19]).

Lemma 1. Let (Ht)t∈R be the Hilbert scale induced by the operator C0 given above.
Then the following assertions hold:

1. Let −∞ < s < t < ∞. Then the space Ht is densely and continuously
embedded into Hs.

2. If t ≥ 0, then Ht = D(C−t/2
0 ), and H−t is the dual space of Ht.

3. Let −∞ < q < r < s < ∞ then the interpolation inequality ∥u∥Hr ≤
∥u∥

s−r
s−q

Hq ∥u∥
r−q
s−q

Hs holds when u ∈ Hs.

Now, we introduce some basic notations of vector-valued RKHS. The following
definition concerns the Hilbert space adjoint opertor [50].

Definition 2. Let X and Y be Banach spaces, and T be a bounded linear operator
from X to Y. The Banach space adjoint of T , denoted by T ′, is the bounded linear
operator from Y∗ to X ∗ and is defined by (T ′ℓ)(u) = ℓ(Tu) for all ℓ ∈ Y∗, u ∈ X .
Let X and Y be Hilbert spaces, and C1 : X → X ∗ be the map that assigns to each
u ∈ X , the bounded linear functional ⟨u, ·⟩X in X ∗. Let C2 : Y → Y∗ be defined
similarly as C1. Then the Hilbert space adjoint of T is a map T ∗ : Y → X given
by T ∗ = C−1

1 T ′C2.

Next, we introduce operator-valued positive-definite kernels, which constitute the
framework for specifying vector-valued RKHS. Following Kadri et al. [31] to avoid
topological and measurability issues, we focus on separable Hilbert spaces with re-
producing operator-valued kernels whose elements are continuous functions. Denote
by X and Y the separable Hilbert spaces and by L(X ,Y) the set of bounded linear
operators from X to Y. When X = Y, we write L(Y,Y) briefly as L(Y).

Definition 3 (operator-valued kernels). An L(Y)-valued kernel K on X × X
is an operator K(·, ·) : X × X → L(Y).

1. K is Hermitian if ∀u, v ∈ X , K(u, v) = K(v, u)∗;
2. K is nonnegative on X if it is Hermitian and for every natural number r and

all {(ui, vi)i=1,...,r} ∈ X × Y, the matrix with ijth entry ⟨K(ui, uj)vi, vj⟩Y is
nonnegative (positive definite).

Definition 4 (vector-valued RKHS). Let X and Y be separable Hilbert spaces.
A Hilbert space F of operators from X to Y is called an RKHS if there is a nonnegative
L(Y)-valued kernel K on X × X such that

1. the operator v 7−→K(u, v)g belongs to F for all v, u ∈ X and g ∈ Y;
2. for every f ∈ F , u ∈ X , and g ∈ Y, we have ⟨f(u), g⟩Y = ⟨f(·),K(u, ·)g⟩F .

Throughout the paper, we assume that the kernel K is locally bounded and sepa-
rately continuous, which guarantee that F is a subspace of C(X ,Y) (the vector space
of continuous operators from X to Y). If the kernel K is nice enough [7, 8], then it is
the reproducing kernel of some Hilbert space F .

Since the kernel is an important part of the SVGD, we provide some intuitive
ideas about the operator-valued kernel. Let u, v ∈ H and h > 0 be a positive constant.
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To construct the infinite-dimensional SVGD, we may introduce a scalar-valued kernel
K(u, v) := exp

(
− 1

h∥u− v∥2H
)
and consider the operator-valued kernel

K(u, v) = K(u, v)Id.(10)

For example, we can take H = L2(Ω) with Ω being a bounded open domain and have

∥u− v∥2H =

∫
Ω

|u(x)− v(x)|2dx.(11)

However, for solving inverse problems of PDEs, it is useful to introduce some precon-
ditioning operators which require us to consider operator-valued kernels. Here, we il-
lustrate this by a simple example. Let the prior measure µ0 = N (0, (Id−∆)−2), where
∆ is the Dirichlet Laplace operator and H = L2(Ω). Intuitively we have H1 ≈ H2(Ω),
where H2(Ω) is the usual Sobolev space. By the theory of Gaussian measures [48],
we approximately have µ0(H

2(Ω)) = 0 (not rigorously correct). Inspired by the pCN
algorithm [13], we may choose the preconditioning operator T = Id−∆. If we choose
the Gaussian kernel as (10), then the transformed kernel function becomes

K(u, v) = exp

(
− 1

h
∥T (u− v)∥2L2

)
T−1(T−1)∗,(12)

which is approximately equal to

K(u, v) ≈ exp

(
− 1

h
∥u− v∥2H2

)
(Id−∆)−2.(13)

Obviously, the kernel function equals zero when u − v does not belong to H2(Ω),
i.e., ∥u − v∥H2 < ∞ when u − v ∈ H2(Ω). Hence, the kernel function takes nonzero
values and the algorithms can work only if the differences of any two particles reside
in a measure zero set. In our opinion, this restriction seems too strong in the infinite-
dimensional setting to make the particles overconcentrated (see our numerical example
in section 4 to demonstrate this in detail).

Based on the above discussion, we may introduce a parameter s and have an
approximate transformed kernel

K(u, v) ≈ exp

(
− 1

h
∥u− v∥2H2−2s

)
(Id−∆)−2.(14)

However, to achieve this, we should not choose the original kernel (the kernel is not
transformed by the operator T ) to be the usual scalar-valued kernel. The original ker-

nel may be chosen as K0(u, v) = K0(u, v)(Id−∆)−2s, where K0(u, v) := e−
1
h∥u−v∥L2

with h > 0 being a positive constant. In this setting, the preconditioning operator can
be chosen as T := (Id −∆)1−s. These intuitive ideas indicate that it is necessary to
construct the infinite-dimensional SVGD based on the more involved operator-valued
kernel theory.

3.2. iSVGD. In this subsection, we present an infinite-dimensional version of
the SVGD, i.e., iSVGD. For a function u, denote byDu andDuk

the Fréchet derivative
and the directional derivative in the kth direction, respectively. For simplicity of
notation, we shall use D and Dk instead of Du and Duk

, and write Φ(u;d) as Φ(u).
Let

V (u) = Φ(u) +
1

2
∥u∥2H1 ,(15)

where the potential functional Φ is required to satisfy the following assumptions.
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Assumption 5. Let X and H be two separable Hilbert spaces. For s ∈ [0, 1], we
assume H1−s ⊂ X ⊂ H. Let M1 ∈ R+ be a positive constant. For each u ∈ X ⊂ H,
we introduceDΦ : X → X ∗ andD2Φ : X → L(X ,X ∗), then the functional Φ : X → R
satisfies

−M1 ≤ Φ(u) ≤M2(∥u∥X ),

∥DΦ(u)∥X∗ ≤M3(∥u∥X ),

∥D2Φ(u)∥L(X ,X∗) ≤M4(∥u∥X ),

where M2(·), M3(·), and M4(·) are some monotonic nondecreasing functions.

The above assumption is a local version of [16, Assumption 4], which can be
verified for many problems, e.g., the Darcy flow model (Theorem 17 in section 4).
We now optimize ϕ in the unit ball of a general vector-valued RKHS HK with an
operator-valued kernel K(u, u′) ∈ L(Y):

ϕ∗
K = argmax

ϕ∈HK

{Eu∼µ[Sϕ(u)] s.t. ∥ϕ∥HK
≤ 1 and Dϕ : X → L1(X ,Y)} ,(16)

where S is the generalized Stein operator defined formally as follows,

Sϕ(u) = −⟨DV (u), ϕ(u)⟩Y +

∞∑
k=1

Dk⟨ϕ(u), ek⟩Y ,(17)

and L1(X ,Y) denotes the set of all trace class operators from X to Y. For the
convergence of the infinite sum, we illustrate it in Theorem 9. Here, {ek}∞k=1 stands
for an orthonormal basis of space Y and µ is a probability measure defined on H.
Moreover, we assume that ϕ : X → Y is Fréchet differentiable, and the derivative is
continuous to ensure the validity of (16).

Remark 6. In the finite-dimensional case, the operator Dϕ(u) naturally belongs
to L1(X ,Y) (cf. [15, Appendix C]).

The following assumption is also needed for the operator-valued kernels, which
include many useful kernels, e.g., the radial basis function (RBF) kernel.

Assumption 7. Let X , Y, and H be three separable Hilbert spaces. For s ∈ [0, 1],
we assume that H−s−1 ⊂ Y and

sup
u∈X
∥K(u, u)∥L(Y) <∞.(18)

Remark 8. We mention that condition (18) holds for the bounded scalar-valued
kernel functionals since a scalar-valued kernel functional can be seen as a scalar-valued
kernel functional composite with an identity operator as demonstrated in (10).

To illustrate (16) and (17), we prove Theorem 9. For each particle u, we assume
that u ∈ H1−s, which is based on the following two considerations:

• The SVGD with one particle is an optimization algorithm for finding the
MAP estimate. The MAP estimate belongs to the separable Hilbert space
H1.

• For the prior probability measure, the space H1 has zero measure [15]. Intu-
itively, if all particles belong to H1, the particles tend to concentrate around
a small set that leads to unreliable estimates of statistical quantities. Hence,
we may assume that the particles belong to a larger space containing H1.
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Theorem 9. The generalized Stein operator (17) defined on Y can be obtained
by taking N →∞ in the following finite-dimensional Stein operator,

SNϕN (uN ) = −⟨DV (uN ), ϕN (uN )⟩Y +

N∑
k=1

Dk⟨ϕN (uN ), ek⟩Y ,(19)

where ϕN := PN ◦ ϕ.
Proof. By straightforward calculations, we have

Sϕ(u)− SNϕN (uN ) =−
(
⟨DV (u), ϕ(u)⟩Y − ⟨DV (uN ), ϕN (uN )⟩Y

)
+

( ∞∑
k=1

Dk⟨ϕ(u), ek⟩Y −
N∑

k=1

Dk⟨ϕN (uN ), ek⟩Y

)
=− I + II.

(20)

For term I, we have

I = ⟨D(V (u)− V (uN )), ϕN (uN )⟩Y + ⟨DV (u), ϕ(u)− ϕN (uN )⟩Y
= I1(N) + I2(N).

(21)

For term I1(N), we find that

I1(N) = ⟨D(Φ(u)−Φ(uN )), ϕN (uN )⟩Y+⟨C−1/2
0 (u−uN ), C−1/2

0 ϕN (uN )⟩Y ,(22)

where the second term on the right-hand side is understood as the white noise mapping
[48]. According to Assumptions 5 and 7, we know that

lim
N→∞

∥D(Φ(u)− Φ(uN ))∥Y ≤ lim
N→∞

C∥D(Φ(u)− Φ(uN ))∥H−1−s

≤ lim
N→∞

C∥D(Φ(u)− Φ(uN ))∥H−1+s

≤ lim
N→∞

CM4(2∥u∥X )∥u− uN∥H1−s = 0,

(23)

where C is a generic constant that can be different from line to line. Hence, we obtain

lim
N→∞

⟨D(Φ(u)− Φ(uN )), ϕN (uN )⟩Y = 0.(24)

Taking um ∈ H2 such that um → u in H1−s, we have

⟨C−1/2
0 (u− uN ), C−1/2

0 ϕN (uN )⟩Y = lim
m→∞

⟨C−1/2
0 (um − uN

m), C−1/2
0 ϕN (uN )⟩Y

= lim
m→∞

⟨PNC−1
0 (um − uN

m), ϕ(uN )⟩Y

= lim
m→∞

⟨ϕ(·),K(uN , ·)PNC−1
0 (um − uN

m)⟩HK
.

As for the last term in the above equality, we have the following estimates:

⟨ϕ(·),K(uN , ·)PNC−1
0 (um − uN

m)⟩HK
≤

⟨ϕ(·), ϕ(·)⟩HK
⟨K(uN , ·)PNC−1

0 (um − uN
m),K(uN , ·)PNC−1

0 (um − uN
m)⟩HK

≤ ⟨ϕ(·), ϕ(·)⟩HK
⟨PNK(uN , uN )PNC−1

0 (um − uN
m), C−1

0 (um − uN
m)⟩Y

≤ C⟨ϕ(·), ϕ(·)⟩HK
∥C−1

0 (um − uN
m)∥2Y

≤ C⟨ϕ(·), ϕ(·)⟩HK
∥C−

1−s
2

0 (um − uN
m)∥2H.
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Replacing um − uN
m by (um − uN

m)− (u− uN ), we deduce

⟨C−1/2
0 (u− uN ), C−1/2

0 ϕN (uN )⟩Y = lim
m→∞

⟨ϕ(·),K(uN , ·)PNC−1
0 (um − uN

m)⟩HK

= ⟨ϕ(·),K(uN , ·)PNC−1
0 (u− uN )⟩HK

.(25)

Hence, we obtain

lim
N→∞

⟨C−1/2
0 (u− uN ), C−1/2

0 ϕN (uN )⟩Y

= lim
N→∞

⟨ϕ(·),K(uN , ·)PNC−1
0 (u− uN )⟩HK

≤ lim
N→∞

⟨ϕ(·), ϕ(·)⟩HK
⟨PNK(uN, uN )PNC−1

0 (u− uN ), C−1
0 (u− uN )⟩Y

≤ C⟨ϕ(·), ϕ(·)⟩HK
lim

N→∞
∥C−

1−s
2

0 (u− uN )∥2H = 0.

(26)

Plugging (24) and (26) into (22), we arrive at limN→∞ I1(N) = 0. For term I2(N), it
can be decomposed as follows:

I2(N) = ⟨DΦ(u), ϕ(u)− ϕN (uN )⟩Y+⟨C−1/2
0 u, C−1/2

0 (ϕ(u)− ϕN (uN ))⟩Y .(27)

It follows from the continuity of ϕ that we have limN→∞⟨DΦ(u), ϕ(u)−ϕN (uN )⟩Y = 0.
Using similar estimates as those for deriving (25), we obtain

⟨C−1/2
0 u, C−1/2

0 (ϕ(u)− ϕN (uN ))⟩Y
= ⟨ϕ(·),K(u, ·)C−1

0 u⟩HK
− ⟨ϕ(·),K(uN , ·)PNC−1

0 u⟩HK
.

(28)

By the continuity of K(·, ·), we obtain

lim
N→∞

⟨C−1/2
0 u, C−1/2

0 (ϕ(u)− ϕN (uN ))⟩Y = 0.(29)

Now, we conclude that limN→∞ I2(N) = 0. For term II, we have

II =

N∑
k=1

Dk⟨ϕ(u)− ϕ(uN ), ek⟩Y +

∞∑
k=N+1

Dk⟨ϕ(u), ek⟩Y .(30)

Let {φk}∞k=1 be an orthonormal basis in X , and then we have

∞∑
k=N+1

Dk⟨ϕ(u), ek⟩Y =

∞∑
k=N+1

⟨Dϕ(u)φk, ek⟩Y → 0 as N →∞,(31)

where we use the condition Dϕ(u) ∈ L1(X ,Y). For the first term on the right-hand
side of (30), we find that

N∑
k=1

Dk⟨ϕ(u)− ϕ(uN ), ek⟩Y =

N∑
k=1

⟨(Dϕ(u)−Dϕ(uN ))φk, ek⟩Y .(32)

Due to the continuity of the Fréchet derivative of ϕ, we know that the above sum-
mation goes to 0 as N → ∞. Combining the estimates of I and II, we complete the
proof.
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The following theorem gives explicitly the iSVGD update directions that are es-
sential for the construction of iSVGD.

Theorem 10. Let K(·, ·) : X 2 → L(Y) be a positive-definite kernel that is Fréchet
differentiable on both variables. In addition, we assume that

Eu∼µ

[
Du′K(u, u′)C−1/2

0 g +

∞∑
k=1

Duk
Du′K(u, u′)ek

]
(33)

belongs to L1(X ,Y) for each u′ ∈ X and g ∈ H−s. Then, the optimal ϕ∗
K in (16) is

ϕ∗
K(·) ∝ Eu∼µ

[
K(u, ·)(−DΦ(u)− C−1

0 u) +

∞∑
k=1

Duk
K(u, ·)ek

]
,(34)

where {ek}∞k=1 is an orthonormal basis of Y and the term K(u, ·)C−1
0 u is understood

in the following limiting sense:

K(u, ·)C−1
0 u := lim

m→∞
K(u, ·)C−1

0 um.(35)

Here the limit is taken in HK and {um}∞m=1 ⊂ H2 such that ∥C−
1−s
2

0 (um − u)∥H → 0
as m→∞.

Proof. First, by taking ϕ(u) as an element in HK , we have

⟨DV (u), ϕ(u)⟩Y = ⟨DΦ(u), ϕ(u)⟩Y + ⟨C−1/2
0 u, C−1/2

0 ϕ(u)⟩Y = I + II,(36)

where term II is understood as the white noise mapping. For term I, we have

I = ⟨ϕ(·),K(u, ·)DΦ(u)⟩HK
,(37)

where the proposition (2) in Definition 4 is employed. For term II, we take um ∈ H2

such that limm→∞ ∥C
− 1−s

2
0 (um − u)∥H = 0. It is clear to note that

⟨C−1/2
0 um, C−1/2

0 ϕ(u)⟩Y = ⟨C−1
0 um, ϕ(u)⟩Y = ⟨ϕ(·),K(u, ·)C−1

0 um⟩HK
.(38)

Because

|⟨ϕ(·),K(u, ·)C−1
0 um⟩HK

− ⟨ϕ(·),K(u, ·)C−1
0 u⟩HK

|2

≤ ⟨ϕ(·), ϕ(·)⟩HK
⟨K(u, ·)C−1

0 (um − u),K(u, ·)C−1
0 (um − u)⟩HK

= ⟨ϕ(·), ϕ(·)⟩HK
⟨K(u, u)C−1

0 (um − u), C−1
0 (um − u)⟩Y

≤ ⟨ϕ(·), ϕ(·)⟩HK
⟨K(u, u)C−1

0 (um − u), C−1
0 (um − u)⟩Y

≤ C⟨ϕ(·), ϕ(·)⟩HK
∥C−

1−s
2

0 (um − u)∥2H,

we find that limm→∞⟨ϕ(·),K(u, ·)C−1
0 um⟩HK

= ⟨ϕ(·),K(u, ·)C−1
0 u⟩HK

. Hence, letting
m→∞ in (38), we have

⟨C−1/2
0 u, C−1/2

0 ϕ(u)⟩Y = ⟨ϕ(·),K(u, ·)C−1
0 u⟩HK

.(39)

Plugging (39) and (37) into (36), we obtain

⟨DV (u), ϕ(u)⟩Y = ⟨ϕ(·),K(u, ·)DΦ(u) +K(u, ·)C−1
0 u⟩HK

= ⟨ϕ(·),K(u, ·)DV (u)⟩HK
.

(40)
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Next, let us calculate the second term on the right-hand side of (17). A simple
calculation yields

∞∑
k=1

Dk⟨ϕ(u), ek⟩Y =

∞∑
k=1

Dk⟨ϕ(·),K(u, ·)ek⟩HK
.(41)

Since

Dk⟨ϕ(·),K(u, ·)ek⟩HK
= lim

ϵ→0

1

ϵ
⟨ϕ(·),K(u+ ϵφk, ·)ek −K(u, ·)ek⟩HK

= ⟨ϕ(·), DkK(u, ·)ek⟩HK
,

(42)

we have

∞∑
k=1

Dk⟨ϕ(u), ek⟩Y =

〈
ϕ(·),

∞∑
k=1

DkK(u, ·)ek

〉
HK

.(43)

Combining (40) and (43) with (17), we obtain

Sϕ(u) =

〈
ϕ(·),−K(u, ·)DV (u) +

∞∑
k=1

DkK(u, ·)ek

〉
HK

.(44)

Thus, the optimization problem (16) possesses a solution ϕ∗
K(·) satisfying

ϕ∗
K(·) ∝ Eu∼µ

[
−K(u, ·)DV (u) +

∞∑
k=1

DkK(u, ·)ek

]
.(45)

Based on condition (33), we know that Dϕ∗
K(u) belongs to L1(X ,Y) for each u ∈ X ,

which completes the proof.

Remark 11. The optimal ϕ∗
K is given in (34) which is consistent with the finite-

dimensional case. Since the first and second terms on the right-hand side of (34)
are similar, we may just focus on the second term which is usually named as the
repulsive force term. For each u, v ∈ X , considerK(u, v) := K(u, v)Id withK(u, v) :=
exp

(
− 1

h∥u− v∥2X
)
. Then, we have

∞∑
k=1

Duk
K(u, v)ek =

∞∑
k=1

⟨DuK(u, v)ek, φk⟩X

=

∞∑
k=1

− 2

h
⟨u− v, φk⟩XK(u, v)ek.

(46)

Projecting (46) onto one particular coordinate eℓ with ℓ ∈ N, we obtain( ∞∑
k=1

Duk
K(u, v)ek

)
ℓ

=

〈 ∞∑
k=1

− 2

h
⟨u− v, φk⟩XK(u, v)ek, eℓ

〉
Y

=− 2

h
⟨u− v, φℓ⟩XK(u, v),

(47)

which is similar to the ℓth coordinate of ∇uNK(uN , vN ) appearing in (9). Addition-
ally, we mention that the assumption (33) given in Theorem 10 can be verified for
many useful kernels. Detailed illustrations are provided in the supplementary material
(supp.pdf [local/web 2.91MB]).
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By Theorem 10, we can construct a series of transformations as follows,

Tℓ(u) = u+ ϵℓEu′∼µℓ

[
−K(u′, u)DV (u′) +

∞∑
k=1

D(u′)kK(u′, u)ek

]
(48)

with ℓ = 1, 2, . . .. In practice, we draw a set of particles {u0
i }mi=1 from some initial

measure, and then iteratively update the particles with an empirical version of the
above transformation in which the expectation under µℓ is approximated by the em-
pirical mean of particles {uℓ

i}mi=1 at the ℓth iteration. The iSVGD is summarized in
Algorithm 2.

Algorithm 2. iSVGD.

Input: A target probability measure µd that is absolutely continuous w.r.t the

Gaussian measure µ0 = N (0, C0) with dµd

dµ0
(u) ∝ exp(−Φ(u)) and a set of particles

{u0
i }mi=1.

Output: A set of particles {ui}mi=1 that approximates the target probability mea-
sure.
for iteration ℓ do

uℓ+1
i ←− uℓ

i + ϵℓϕ
∗(uℓ

i),

where

ϕ∗(u) =
1

m

m∑
j=1

[
K(uℓ

j , u)(−DΦ(uℓ
j)− C−1

0 uℓ
j) +

∞∑
k=1

D(uℓ
j)k

K(uℓ
j , u)ek

]
.

end for

3.3. iSVGD with precondition information. In the supplementary material
(supp.pdf [local/web 2.91MB]), the numerical experiments indicate that the SVGD
without preconditioning operators converges slowly for some inverse problems of
PDEs. By the finite-dimensional SVGD [58], it may accelerate the convergence and
give reliable estimates efficiently by introducing preconditioning operators. For con-
structing the iSVGD with preconditioning operators, let us begin with a theorem
concerning the change of variables.

Theorem 12. Let X and Y be two separable Hilbert spaces, and let F0 be an
RKHS with a nonnegative L(Y)-valued kernel K0 : X × X → L(Y). Let X̃ and Ỹ be
two separable Hilbert spaces, and F be the set of operators from X̃ to Ỹ given by

ϕ(u) = M(u)ϕ0(t(u)) ∀ ϕ0 ∈ F0,(49)

where M : X̃ → L(Y, Ỹ) is a fixed operator and is assumed to be an invertible operator
for all u ∈ X̃ , and t : X̃ → X is a fixed Fréchet differentiable one-to-one mapping. For
all ϕ, ϕ′ ∈ F , we can identify a unique ϕ0, ϕ

′
0 ∈ F0 such that ϕ(u) = M(u)ϕ0(t(u))

and ϕ′(u) = M(u)ϕ′
0(t(u)). Define the inner product on F via ⟨ϕ, ϕ′⟩F = ⟨ϕ0, ϕ

′
0⟩F0 ,

and then F is also a vector-valued RKHS, whose operator-valued kernel is

K(u, u′) = M(u′)K0(t(u), t(u
′))M(u)∗,(50)

where M(u)∗ denotes the Hilbert space adjoint.

Proof. Let {(ui, gi)i=1,...,N} ⊂ X̃ × Ỹ, and we have

⟨K(ui, uj)gi, gj⟩Ỹ = ⟨M(uj)K0(t(ui), t(uj))M(ui)
∗gi, gj⟩Ỹ

= ⟨K0(t(ui), t(uj))M(ui)
∗gi,M(uj)

∗gj⟩Y .
(51)
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Then, the nonnegativity of K(·, ·) follows from the nonnegative property of K0(·, ·).
To prove the theorem, it suffices to verify the two conditions shown in Definition
4. For every u, v ∈ X̃ and g ∈ Ỹ, we consider the operator f(v) = K(u, v)g =
M(v)K0(t(u), t(v))M(u)∗g. Because of M(u)∗g ∈ Y, we easily obtain

K0(t(u), t(v))M(u)∗g ∈ F0.

According to (49), we conclude that f(·) ∈ F .
Next, let us verify the reproducing property of K(·, ·). For every u ∈ X̃ , g ∈ Ỹ,

and ϕ ∈ F , we have

⟨ϕ(u), g⟩Ỹ = ⟨M(u)ϕ0(t(u)), g⟩Ỹ = ⟨ϕ0(t(u)),M(u)∗g⟩Y
= ⟨ϕ0(·),K0(t(u), ·)M(u)∗g⟩F0

= ⟨M(·)ϕ0(t(·)),M(·)K0(t(u), t(·))M(u)∗g⟩F
= ⟨ϕ(·),K(u, ·)g⟩F ,

where the fourth equality follows from

⟨ϕ, ϕ′⟩F = ⟨ϕ0, ϕ
′
0⟩F0

with ϕ′
0(·) = K0(t(u), ·)M(u)∗g.

Now we present a key result, which characterizes the change of kernels when
applying invertible transformations on the iSVGD trajectory.

Theorem 13. Let H, H̃, X , X̃ , Y, and Ỹ be separable Hilbert spaces satisfying
X ⊂ Y, X̃ ⊂ Ỹ, X ⊂ Ỹ, X̃ ⊂ Y. Assume that Assumption 7 holds for the triples
(X ,Y,H) and (X̃ , Ỹ, H̃) with two fixed parameters s ∈ [0, 1], respectively. Let T ∈
L(Y, Ỹ) and assume that T is a bounded operator when restricted to be an operator
from X to X̃ . Let µ, µd be two probability measures and µ̃, µ̃d be the measures of
ũ = Tu when u is drawn from µ, µd, respectively. Introduce two Stein operators S
and S̃ as follows,

Sϕ(u) = ⟨−DV (u), ϕ(u)⟩Y +

∞∑
k=1

Dk⟨ϕ(u), ek⟩Y ∀u ∈ X ,

S̃ϕ̃(ũ) = ⟨−DũV (T−1ũ), ϕ̃(ũ)⟩Ỹ +

∞∑
k=1

D(ũ)k⟨ϕ̃(ũ), ẽk⟩Ỹ ∀ ũ ∈ X̃ ,

where {ek}∞k=1 and {ẽk}∞k=1 are orthonormal bases in Y and Ỹ, respectively. Then,
we have

Eu∼µ[Sϕ(u)] = Eu∼µ̃[S̃ϕ̃(u)] with ϕ(u) := T−1ϕ̃(Tu).(52)

Therefore, in the asymptotics of infinitesimal step size (ϵ → 0+), it is equivalent
to running iSVGD with kernel K0 on µ̃ and running iSVGD on µ with the ker-
nel K(u, u′) = T−1K0(Tu, Tu

′)(T−1)∗, in the sense that the trajectory of these two
SVGD can be mapped to each other by the map T (and its inverse).

Proof. Let us introduce a mapping defined by u′ = f(u) = u + ϵϕ(u). Denote
f#µ as the probability measure µ ◦ f−1. Let ũ′ ∼ T#(f#µ̃) which is obtained by

ũ′ = Tu′ = T (u+ ϵϕ(u)) = T (T−1ũ+ ϵϕ(T−1ũ))

= ũ+ ϵTϕ(T−1ũ)

= ũ+ ϵϕ̃(ũ),

(53)D
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where we use the definition ϕ(u) = T−1ϕ̃(Tu) in (52). According to [39, Theorem
3.1 ] and [58, Theorem 3], we have EuN∼PN

# µ[SNϕN (uN )] = EuN∼PN
# µ̃[S̃N ϕ̃N (uN )],

where

SNϕN (uN ) = −⟨DV (uN ), ϕN (uN )⟩Y +

N∑
k=1

Dk⟨ϕN (uN ), ek⟩Y ,

S̃N ϕ̃N (ũN ) = −⟨DũNV (T−1ũN ), ϕ̃N (ũN )⟩Ỹ +

N∑
k=1

D(ũN )k⟨ϕ̃
N (ũN ), ẽk⟩Ỹ .

It is clear to note that there is no Jacobian matrix given by the transformation in
DũNV (T−1ũN ) since the Jacobian matrix does not depend on ũN for linear mappings,
i.e., the derivative is zero. Following the proof for Theorem 9, we take N → ∞ and
obtain Eu∼µ[Sϕ(u)] = Eu∼µ̃[S̃ϕ̃(u)]. From Theorem 12, when ϕ̃ is in F̃ with kernel
K0(u, u

′), ϕ is in F with kernel K(u, u′). Therefore, maximizing Eu∼µ[Sϕ(u)] in F
is equivalent to Eu∼µ̃[S̃ϕ̃(u)] in F̃ . This suggests that the trajectory of iSVGD on µ̃d

with K0 and that on µd with K are equivalent, which completes the proof.

Remark 14. Similarly to the matrix-valued case [58], Theorem 13 suggests a con-
ceptual procedure for constructing proper operator kernels to incorporate desirable
preconditioning information. Differently from the finite-dimensional case, the map T
is only allowed to be linear at this stage. For a nonlinear map, there is a Jacobian
matrix in S̃N ϕ̃N (ũN ). It is difficult to analyze the limiting behavior of the Jacobian
matrix related term. Practically, linear maps seem to be enough since even in the
finite-dimensional case nonlinear maps will yield an unnatural algorithm [58].

In the last part of this subsection, we provide some examples of preconditioning
operators that are frequently used in statistical inverse problems.

3.3.1. Fixed preconditioning operator. In section 5 of [16], the Langevin
equation was considered by using C0 as a preconditioner, and an analysis was carried
out for the pCN algorithm. For the Newton based iterative method, we usually take
the inverse of the second-order derivative of the objective functional as the precondi-
tioning operator [41]. Here, we consider a linear operator T that has similar properties

to C−
1−s
2

0 . Specifically, we require

T ∈ L(H1−s,H) ∩ L(H−1−s,H−2).(54)

Then, we specify the Hilbert space appearing in Theorem 12 as X = H1−s, Y =
H−1−s, X̃ = H, Ỹ = H−2 with s ∈ [0, 1]. For the kernel K0(·, ·) : X̃ × X̃ → Ỹ, we
assume that

sup
ũ∈H
∥K0(ũ, ũ)∥L(H−2) <∞.(55)

It follows from Theorem 13 that we may use a kernel of the form

K(u, u′) := T−1K0(Tu, Tu
′)(T−1)∗,(56)

where u, u′ ∈ H1−s. Obviously, the kernel K given above satisfies

sup
u∈H1−s

∥T−1K0(Tu, Tu)(T
−1)∗∥L(H−1−s) <∞.(57)
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As an example, we may take K0 to be the scalar-valued Gaussian RBF kernel com-
posed with operator Cs0 ,

K0(u, u
′) := exp

(
− 1

h
∥u− u′∥2H

)
Cs0 ,(58)

which yields

K(u, u′) = exp

(
− 1

h
∥T (u− u′)∥2H

)
T−1Cs0(T−1)∗,(59)

where h is a bandwidth parameter. Define KT
0 (u, u

′) := K0(Tu, Tu
′). Let P :=

T−1Cs0(T−1)∗. By simple calculations, we find that the iSVGD update direction of
the kernel in (56) is

ϕ∗
K(·)=PEu∼µ

[
KT

0 (u, ·)(−DΦ(u)−C−1
0 u) +

∞∑
k=1

DkK
T
0 (u, ·)ek

]
= Pϕ∗

KT
0
,(60)

which is a linear transform of the iSVGD update direction of the kernel KT
0 with the

operator T−1Cs0(T−1)∗.

3.3.2. The C0 operator. Choosing T := C−
1−s
2

0 , we can see that condition (54)
holds. Given the Kernel K0 in (58), the kernel K defined in (59) can be written as

K(u, u′) = exp

(
− 1

h
∥C−

1−s
2

0 (u− u′)∥2H
)
C0.

The operator P used in (60) is just C0. If there is only one particle, the iSVGD update
direction is then reduced to ϕ∗

K(·) = C0(DΦ(u) + C−1
0 u).

3.3.3. The Hessian operator. For statistical inverse problems, the forward
operator G is usually nonlinear, e.g., the inverse medium scattering problem [26, 27].
Around each particle ui with i = 1, 2, . . . ,m, the forward map can be approximated
by the linearized map

G(u) ≈ G(ui) +DG(ui)(u− ui).(61)

Assume that the potential function Φ takes the form Φ(u) = 1
2∥Σ

−1/2(G(u) − d)∥2ℓ2 ,
where Σ is a positive-definite matrix. Using the approximate formula (61), we have

V (u) ≈ Ṽ (u) :=
1

2
∥Σ−1/2(DG(ui)u−DG(ui)ui + G(ui)− d)∥2ℓ2 +

1

2
∥C−1/2

0 u∥2H.

It follows from a simple calculation that D2Ṽ (ui) = DG(ui)
∗Σ−1DG(ui) + C−1

0 .
For the Newton-type iterative method, we can take the linear transformation T =

Cs/20 ( 1
m

∑m
i=1(DG(ui)

∗Σ−1DG(ui) + C−1
0 ))1/2. If G is a linear operator (e.g., the ex-

amples in [25]), it is easy to verify condition (54). For nonlinear problems, it is
necessary to employ the regularity properties of the direct problems, which is beyond
the scope of this work. Hence we will not verify this condition in this paper and leave
it as a future work. With this choice of T , the kernel (59) and the iSVGD update
direction (60) can be easily obtained. If there is only one particle, the iSVGD update
direction is degenerated to the usual Newton update direction when evaluating the
MAP estimate.
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3.3.4. Mixture preconditioning. Using a fixed preconditioning operator, we
cannot specify different preconditioning operators for different particles. Inspired by
the mixture precondition [58], we propose an approach to achieve pointwise precon-
ditioning. The idea is to use a weighted combination of several linear preconditioning
operators. This involves leveraging a set of anchor points {vℓ}mℓ=1, each of which is
associated with a preconditioning operator Tℓ (e.g.,

Tℓ = Cs/20 (DG(vℓ)∗Σ−1DG(vℓ) + C−1
0 )1/2).

In practice, the anchor points {vℓ}mℓ=1 can be set to be the same as the particles
{ui}mi=1. We then construct a kernel by K(u, u′) =

∑m
ℓ=1 Kℓ(u, u

′)wℓ(u)wℓ(u
′), where

Kℓ(u, u
′) := T−1

ℓ K0(Tℓu, Tℓu
′)(T−1

ℓ )∗,(62)

and wℓ(u) is a positive scalar-valued function that determines the contribution of
kernel Kℓ at point u. Here wℓ(u) should be viewed as a mixture probability, and
hence should satisfy

∑m
ℓ=1 wℓ(u) = 1 for all u. In our empirical studies, we take

wℓ(u) =
exp

(
− 1

2∥Tℓ(u− vℓ)∥2H
)

∑m
ℓ′=1 exp

(
− 1

2∥Tℓ′(u− vℓ′)∥2H
) .(63)

In this way, each point u is mostly influenced by the anchor point closest to it, which
allows us to apply different preconditioning for different points. In addition, the
iSVGD update direction has the form

ϕ∗
K(·) =

m∑
ℓ=1

wℓ(·)Eu∼µ

[
− wℓ(u)Kℓ(u, ·)(DΦ(u) + C−1

0 u)

+

∞∑
k=1

Dk(wℓ(u)Kℓ(u, ·)ek)

]
,

(64)

which is a weighted sum of a number of iSVGD update directions with linear precondi-
tioning operators. The implementation details of (64) are given in the supplementary
material (supp.pdf [local/web 2.91MB]).

Remark 15. For the kernel defined above, the particles should belong to the
Hilbert space H1−s. Based on the studies the finite-dimensional problems [58], we
may let the parameter s be equal to 0. However, when the parameter s = 0, each
particle ui belongs to H1 which is the Cameron–Martin space of the prior measure.
By the classical Gaussian measure theory [15], we know that H1 has zero measure.
This fact implies that all of the particles belong to a set with zero measure, which may
lead to too concentrated particles and deviates from our purpose. Hence we should
choose s > 0 to ensure the effectiveness of the SVGD sampling algorithm. These
observations are illustrated by our numerical experiments in section 4.

3.4. Some insights about iSVGD. We have constructed the well-defined
iSVGD algorithms with or without preconditioning operators, which is the first step
to extend the finite-dimensional SVGD to the infinite-dimensional space. Some math-
ematical studies have been carried out for the finite-dimensional SVGD, e.g., gradient
flow on probability space [38] and mean field limit theory related to the macroscopic
behavior [42]. These results provide in-depth understandings of the SVGD algorithm
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and motivate many new algorithms [37]. In this subsection, we intend to provide a
preliminary mathematical study on the iSVGD under a simpler setting.

We consider the kernel operator K(u, v) := K(∥u − v∥H)Id with u, v ∈ H and
K(·) being a scalar function. Let m be the sample number and V (u) be defined in
(15). Similarly to the finite-dimensional case, the iterative procedure in Algorithm 2
can be viewed as a particle system

d

dt
ui(t) = −(D̃K ∗ µm(t))(ui(t))− (K ∗DV µm(t))(ui(t)),

µm(t) =
1

m

m∑
j=1

δuj(t),

ui(0) = u0
i , i = 1, 2, . . . ,m,

(65)

where {u0
i }mi=1 are the initial particles, δui(t) denotes the Dirac measure concen-

trated on ui(t) with i = 1, 2, . . . ,m, “∗” denotes the usual convolution operator, and
D̃K(u− v) =

∑∞
k=1 Duk

K(u− v)ek. For convenience, we write the two convolution
terms in the following forms:

(D̃K ∗ µm(t))(ui(t)) =
1

m

m∑
j=1

D̃K(ui(t)− uj(t)),

(K ∗DV µm(t))(ui(t)) =
1

m

m∑
j=1

K(ui(t)− uj(t))DV (uj(t)).

Similarly, we consider the weak form equation about the measure-valued function,

d

dt
⟨µ(t), φ⟩ = ⟨µ(t), L(µ(t))φ⟩,

µ(0) = ν,
(66)

where ν is the probability measure employed to generate initial particles, φ is the test
function, and

L(µ(t))φ = ⟨D̃K ∗ µ(t), Dφ⟩H + ⟨K ∗DV µ(t), Dφ⟩H.(67)

Let W 1,2(H, µ) be the usual Sobolev space defined for a Gaussian measure µ [47].

Theorem 16. Let µ0 and Φ be the prior measure and potential function defined
in (1), respectively. Assume K(·) ∈ W 1,2(H, µ0) and e−Φ(·;d) ∈ L2(H, µ0). Then,
the posterior measure µd defined in (1) is an invariant solution to (66), i.e., when
ν := µd, the solution µ(t) of (66) is equal to µd.

The proof is given in the supplementary material (supp.pdf [local/web 2.91MB]).
Clearly, this theorem holds in the finite-dimensional setting. We point out that the
integration by parts may not hold for the infinite-dimensional case. In the finite-
dimensional setting, the analysis of the corresponding particle system (65) and (66)
have been given recently in [42]. It is sophisticated to define meaningful solutions for
the above interacting particle system (65) and the measure-valued function equation
(66), which are beyond the scope of this study and are left for future work. One
of the major difficulties for the infinite-dimensional case is that C−1

0 (the precision
operator of the prior measure) is usually an unbounded operator [16]. Nearly all of
the estimates presented in [42] for the finite-dimensional case cannot be adopted for
the infinite-dimensional setting.

D
ow

nl
oa

de
d 

08
/1

8/
22

 to
 1

28
.2

10
.1

07
.1

30
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://epubs.siam.org/doi/suppl/10.1137/21M1440773/suppl_file/supp.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SVGD ON INFINITE-DIMENSIONAL SPACE 2243

Numerical experiments indicate that the SVGD without preconditioning opera-
tors can hardly provide accurate estimates for some inverse problems. The SVGD
with preconditioning operators can accelerate the convergence and give reliable es-
timates efficiently. In addition, the unboundedness issue induced by the precision
operator C−1

0 may be overcome by introducing preconditioning operators. A detailed
analysis of the iSVGD with preconditioning operators may be a good starting point
for future theoretical studies.

At the end of this subsection, we mention a critical difference between finite- and
infinite-dimensional theories. It follows from Theorem 2.7 in [42] and Theorem 1.1 in
[57] that the empirical measure constructed by particles in finite-dimensional SVGD
can approximate the continuous counterpart with accuracy ϵ when the number of
particles are of order O(ϵd), where d is the discrete dimension. Obviously, an infinite
number of particles is needed if the dimension d goes to infinity, which indicates that
the infinite-dimensional theory may be meaningless.

The above statement explains that not every finite-dimensional setting can be
meaningfully generalized to the infinite-dimensional space. The assumption on prior
measure is important for the infinite-dimensional theory (the current assumption may
be slightly relaxed, e.g., the Besov-type measure). According to the general analysis
for the convergence and concentration of empirical measures given in [34], we believe
that the prior measures used here can be approximated by the empirical measures
under the Wasserstein distance on infinite-dimensional Hilbert space. Specifically,
the estimate of the convergence speed is not relevent to the dimension when consid-
ering some finite-dimensional spaces as the projected infinite-dimensional space. If
a theorem similar to Theorem 2.7 in [42] for the system (65)–(66) can be proved,
we are able to confirm that the particles obtained by iSVGD can approximate the
posterior measure for certain accuracy with particle numbers independent of the dis-
crete dimension. However, it is higly nontrivial to carry out an in-depth study of the
system (65)–(66) and is beyond the scope of the current work. In subsection SM6.3
of the supplementary material (supp.pdf [local/web 2.91MB]), we give a numerical
illustration to address this issue.

4. Applications. The proposed framework is valid for Bayesian inverse prob-
lems governed by any systems of PDEs. Due to the page limitation, we present one
example of an inverse problem governed by the steady state Darcy flow equation. The
second example concerns an inverse problem of the Helmholtz equation and is given
in the supplementary material (supp.pdf [local/web 2.91MB]).

Consider the following PDE model,

−∇ · (eu∇w) = f in Ω,

w = 0 on ∂Ω,
(68)

where Ω ⊂ R2 is a bounded Lipschitz domain, f(x) denotes the sources, and eu(x)

describes the permeability of the porous medium. This model is used as a benchmark
problem in many works, e.g., the pCN algorithm [13] and the sequential Monte Carlo
method [2]. We will compare the performance of the proposed iSVGD approach with
the pCN [13] and the randomized MAP (rMAP) methods [59].

4.1. Basic settings and finite-element discretization. For numerical imple-
mentations, it is essential to compute all of the related gradients and Hessian operators
before discretization (i.e., pushing the discretization to the last step). A direct cal-
culation yields the gradient and Hessian operators of the operator-valued kernel, but
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the adjoint method [41] needs to be employed for the potential Φ involving PDEs.
More discussions on finite- and infinite-dimensional approaches can be found in the
supplementary material (supp.pdf [local/web 2.91MB]), which might be helpful for
readers who are not familiar with the infinite-dimensional approach. Let F be the
solution operator that maps the parameter u to the solution of (68), and M be the
measurement operator defined as d =M(w) = (ℓx1

(w), ℓx2
(w), . . . , ℓxNd

(w))T , where

ℓxj (w) =

∫
Ω

1

2πδ2
e−

1
2δ2

∥x−xj∥2

w(x)dx(69)

with δ > 0 being a sufficiently small number and xi ∈ Ω for i = 1, . . . , Nd. The forward
map can be defined as G :=M◦ F , and the problem can be written in the abstract
form d = G(u)+ ϵ with ϵ ∼ N (0, σ2Id). Then we have Φ(u) = 1

2σ2 ∥M(w)−d∥2. The
gradient DΦ(u) acting in any direction ũ is given by

⟨DΦ(u), ũ⟩ =
∫
Ω

ũeu∇w · ∇pdx,(70)

where the adjoint state p satisfies the adjoint equation

−∇ · (eu∇p) = − 1

σ2

Nd∑
j=1

1

2πδ2
e−

1
2δ2

∥x−xj∥2

(ℓxj (w)− dj) in Ω,

p = 0 on ∂Ω.

(71)

The Hessian acting in direction ũ and û reads

⟨⟨D2Φ(u), û⟩, ũ⟩ =
∫
Ω

ûũeu∇w · ∇pdx+

∫
Ω

ũeu∇w · ∇p̂dx

+

∫
Ω

ũeu∇p · ∇ŵdx,
(72)

where the state ŵ satisfies the incremental forward equation

−∇ · (eu∇ŵ) = ∇ · (ûeu∇w) in Ω,

ŵ = 0 on ∂Ω,
(73)

and the state p̂ satisfies the incremental adjoint equation

−∇ · (eu∇p̂) = ∇ · (ûeu∇p)− 1

2πδ2σ2

Nd∑
j=1

ŵe−
1

2δ2
∥x−xj∥2

in Ω,

p̂ = 0 on ∂Ω.

(74)

In experiments, we choose Ω to be a rectangular domain Ω = [0, 1]2 ⊂ R2, set
H = L2(Ω), and consider the prior measure µ0 = N (u0, C0) with the mean function u0

and the covariance operator C0 := A−2, where A = α(I−∆) (α > 0) with the domain
of A given by D(A) := {u ∈ H2(Ω) : ∂u

∂n = 0 on ∂Ω}. Here, H2(Ω) is the usual
Sobolev space. Assume that the mean function u0 resides in the Cameron–Martin
space of µ0.

Based on (70) and (72), we can prove the following results, which satisfy As-
sumptions 5. The proof is given in the supplementary material (supp.pdf [local/web
2.91MB]).
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Theorem 17. Let H−1(Ω) be the usual Sobolev space with the regularity index
−1. Assume X = H1−s with the parameter s < 0.5, and then we have

0 ≤ Φ(u) ≤ C(1 + ∥f∥H−1)2e2∥u∥X ,

∥DΦ(u)∥X∗ ≤ C(1 + ∥f∥H−1)2e4∥u∥X ,

∥D2Φ(u)∥L(X ,X∗) ≤ C(1 + ∥f∥H−1)2e6∥u∥X .

In the following, we use the Gaussian kernel, i.e., K(u, u′) = exp(− 1
h∥u− u′∥2H)

for the iSVGD without preconditioning operators. For numerical examples with pre-
conditioning operators, we employed the kernel given in subsection 3.3.4.

For finite-dimensional approximations, we consider a finite-dimensional subspace
Vh of L2(Ω) originating from the finite-element discretization with the continuous
Lagrange basis functions {ϕj}nj=1, which correspond to the nodal points {xj}nj=1,
such that ϕj(xi) = δij for i, j ∈ {1, . . . , n}. Instead of statistically inferring parameter
functions u ∈ L2(Ω), we consider the approximation uh =

∑n
j=1 ujϕj ∈ Vh. Under

this finite-dimensional approximation, we can employ the numerical method provided
in [4] to discretize the prior, and construct finite-dimensional approximations of the
Gaussian approximation of the posterior measure. Based on our analysis in subsection
3.3, we need to calculate the fractional powers of the operator C0. Here, we employ
the matrix transfer technique (MTT) [6]. The main idea of the MTT is to indirectly
discretize a fractional Laplacian using a discretization of the standard Laplacian. As
discussed in [4], the operator M is taken as

M = (Mij)
n
i,j=1 and Mij =

∫
Ω

ϕi(x)ϕj(x)dx, i, j ∈ {1, . . . , n}.(75)

The matrix M1/2 is approximated by the diagonal matrix diag(M
1/2
11 , . . . ,M

1/2
nn ).

Finally, we mention that the finite element discretization is implemented by em-
ploying the open software FEniCS (Version 2019.1.0) [40]. All programs were run
on a personal computer with Intel(R) Core(TM) i7-7700 at 3.60 GHz (CPU), 32 GB
(memory), and Ubuntu 18.04.2 LTS (OS).

4.2. Numerical results. In the experiments, the noise level is fixed to be 1%
since the goal is to test algorithms rather than demonstrate the Bayesian modeling.
We compare the iSVGD with the mixture preconditioning operator (iSVGDMPO)
with the pCN sampling algorithm [16] and the rMAP algorithm [59]. Since the rMAP
sampling algorithm is not accurate for nonlinear problems, we choose α = 0.5 in the
prior probability measure. It should be mentioned that we choose the anchor points
in the iSVGDMPO just to be the same as the particles and the anchor points will be
updated during the iterations. The initial particles of the iSVGD are generated from
a probability measure by using the method proposed in [4].

For the current settings, the gradient descent based method hardly seems able
to find appropriate solutions in reasonable iterative steps. Hence, the optimization
method with preconditioning operators, e.g., the Newton-conjugate gradient method,
is employed. The term Eu′∼µℓ

[K(u′, u)DV (u′)] in (48) is an averaged gradient de-
scent component in the whole iterative term, which drives all of the particles to be
concentrated. We anticipate that Algorithm 2 cannot work well due to the inefficiency
of the gradient descent algorithm. Due to the page limitation, numerical results are
given in the supplementary material (supp.pdf [local/web 2.91MB]), which show that
Algorithm 2 does not perform well in some cases. This is one of the main motivations
for us to study the iSVGD with preconditioning operators.
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We compare the iSVGD with the iSVGDMPO with those obtained by the pCN
and rMAP sampling algorithms. As illustrated in Remark 15, the parameter s should
not be zero. Intuitively, the particles should belong to a space with probability ap-
proximately equal to one under the prior measure µ0. By the Gaussian measure
theory [15], we may take s > 0.5 since µ0(H1−s) = 1 for any s > 0.5. Since the
posterior measure is usually concentrated on a small support set of the prior measure,
the parameter s should be slightly smaller than 0.5. Thus, we set s = 0.3 or 0.4 in our
examples. Usually, the initial particles are scattered, and the variances of the initial
particles are larger than the final particles obtained by the iSVGDMPO. We design
the following adaptive empirical strategy for s,

s = −0.5 ∥var∥ℓ
2

∥var0∥ℓ2
+ 0.5,(76)

where var is the current estimated variance, var0 is the estimated variance of the
initial particles, and ∥ · ∥ℓ2 is the usual ℓ2-norm. Obviously, for the initial particles,
we have s = 0. The particles are forced to be concentrated. When the variance is
reduced, the parameter s approaches 0.5 to avoid that the particles are concentrated
on a set with zero measure. Since the pCN is a dimension independent MCMC-type
sampling algorithm, we take the results obtained by the pCN as the baseline (accurate
estimate). To make sure that the pCN algorithm yields an accurate estimate, we
iterate 106 steps and withdraw the first 105 samples. Several different step sizes are
tried and the traces of some parameters are plotted, and then the most reliable one
is picked as the baseline.

In Figure 1, we show the estimated variances obtained by the iSVGDMPO (blue
solid line), rMAP (green dotted line), and the pCN (orange dashed line) sampling
algorithms. The estimated variances of the iSVGDMPO are shown for s = 0 and s =
0.4 on the left and in the middle, respectively. On the right, we exhibit the estimated
variances when the empirical adaptive strategy (76) is employed. As expected, the
estimated variances are too small when s = 0, which indicates that the particles are
concentrated on a small set. Choosing s = 0.4 or using the empirical strategy, we
obtain similar estimates, which is more similar to the baseline obtained by the pCN
compared with the estimates obtained by the rMAP.

One important question arises: How does s influence the convergence of the
iSVGDMPO? The detailed numerical comparisons are given in the supplementary
material (supp.pdf [local/web 2.91MB]). Here we state the conclusions: The conver-
gence speeds are similar for s = 0.4 and the adaptively chosen s. When specifying
s = 0.5, the variances will gradually approach the background truth, but the con-

Fig. 1. The comparison of the variances estimated by the pCN, rMAP, iSVGDMPO with
different s. (a): s = 0; (b): s = 0.4; (c): adpatively chosen s.
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vergence speed seems much slower than s = 0.4 or the adaptively chosen s. In the
following numerical experiments, we use the empirical adaptive strategy to specify
the parameter s.

In addition, we provide videos to exhibit the dynamic changing procedure of the
estimated variances in the supplementary material (see compare s 0 DarcyFlow.mp4
[local/web 21.5MB], compare s 0.4 DarcyFlow.mp4 [local/web 20.9MB], compare s
alter DarcyFlow.mp4 [local/web 21.6MB], compare s 0 Helmholtz.mp4 [local/web 9.67MB],
compare s 0.4 Helmholtz.mp4 [local/web 9.38MB], and compare s alter Helmholtz.mp4
[local/web 9.25MB]). The update perturbation with and without the repulsive force
term are exhibited. These videos can further illustrate our theoretical findings. We
can see that the repulsive force terms indeed prevent the particles from being over-
concentrated.

Apart from the parameter s, how many samples should be taken to guarantee
a stable statistical quantity estimate is important for using the iSVGDMPO. When
the particle number is too small, we cannot obtain reliable estimates. However, the
computational complexity increases when the particle number increases. In Figure 2,
we show the estimated variances when the particle number equals 10, 20, 30, 40, and
50. Denote by m the number of samples. On the left in Figure 2, we show the results
obtained when m = 10, 20, 30. Obviously, when m = 10, the estimated variances are
significantly smaller than those obtained when m = 20, 30. On the right in Figure
2, we find that the estimated variances are similar when m = 30, 40, 50. Hence, it is
enough for our numerical examples to take m = 20 or 30, which attains a balance
between efficiency and accuracy. So far, we have only compared the variances with
different parameters in the iSVGDMPO. In the following, qualitative and quantitative
comparisons of other statistical quantities are provided to illustrate the effectiveness
of the iSVGDMPO.

Now, we specify the sampling number m = 30 and set the parameter s by the
proposed empirical strategy (76). In Figure 3, we show the background truth and the
estimated mean and variance functions obtained by the pCN, rMAP, and iSVGDMPO,
respectively. The iterative number of the iSVGDMPO is set to be 30. From the first
line, we observe that the mean functions obtained by the rMAP and iSVGDMPO are
similar, which are slightly smoother than the one obtained by the pCN algorithm.
This may be caused by the inexact matrix-free Newton-conjugate gradient algorithm
[4]. As investigated in [59], many more powerful Newton-type algorithms can be
employed to improve the performance both of the rMAP and iSVGDMPO. For the
variances, the iSVGDMPO gives more reliable estimates compared with the rMAP,

Fig. 2. The comparison of the variances estimated by the iSVGDMPO with s =
10, 20, 30, 40, 50.
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Fig. 3. The background truth and the estimated mean and variance functions by the pCN,
rMAP, and iSVGDMPO. (a): The background truth; (b): The estimated mean function by the
pCN; (c): The estimated mean function by the rMAP; (d): The estimated mean function by the
iSVGDMPO; (e): The estimated mean function on mesh points by the pCN (blue solid line), rMAP
(light blue dotted line), and iSVGDMPO (red dashed line); (f): The estimated variances by the pCN;
(g): The estimated variances by the rMAP; (h): The estimated variances by the iSVGDMPO.

as can be seen from Figures 3(f), (g), and (h).
Next, we provide some more comparisons of statistical quantities between the

results obtained by the pCN, rMAP, and iSVGDMPO. The samples are discretization
of functions. As introduced in [49], the mean, variance, and covariance functions are
the main statistics for functional data. The variance function denoted by varu(x) can
be defined as varu(x) = 1

m

∑m
i=1(ui(x) − ū(x))2, where x ∈ Ω is a point residing in

the domain Ω, ū is the mean function, and m is the sample number. The covariance
function can be defined as covu(x1, x2) =

1
m−1

∑m
i=1(ui(x1)− ū(x1))(ui(x2)− ū(x2)),

where x1, x2 ∈ Ω and m, ū are defined as in varu(x). For simplicity, we compute
these quantities on the mesh points and exhibit the results in Figure 4. In all of the
subfigures in Figure 4, the estimates obtained by the pCN, rMAP, and iSVGDMPO
are drawn in blue solid line, gray dotted line, and red dashed line, respectively. In
Figure 4(a), we show the variance function calculated on all of the mesh points,

i.e., {varu(xi)}
Ng

i=1 (Ng is the number of mesh points). In Figures 4(c) and (e), we

show the covariance function calculated on the pairs of points {(xi, xi+50)}
Ng−50
i=1 and

{(xi, xi+100)}
Ng−100
i=1 , respectively. Compared with the estimates given by the rMAP,

we can find that the estimates obtained by the iSVGDMPO are visually more similar
to the estimates provided by the pCN. In Figures 4(b), (d), and (f), we provide the
same estimates shown in (a), (c), and (e) with points indexing from 1000 to 1200,
which give more detailed comparisons. The results also confirm that the iSVGDMPO
provides more similar estimates to the pCN.

In addition, a quantitative comparison among the pCN, rMAP, and iSVGDMPO
is given in Table 1. We compute the ℓ2-norm differences of the variance and covariance
functions on the mesh points obtained by the pCN, rMAP, and iSVGDMPO. In the
table, the notation covu(xi, xi+k) (k = 10, 20, . . . , 110) means the covariance function

values on the pair of mesh points {(xi, xi+k)}
Ng

i=1. The numbers below this notation
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Fig. 4. The estimated variances and covariances by the pCN (blue solid line), rMAP (gray

dotted line), and iSVGDMPO (red dashed line). (a): The estimated variances {varu(xi)}
Ng

i=1
on all mesh points; (b): The estimated variances for mesh points with indexes from 1000 to

1200 (show details); (c): The estimated covariances {covu(xi, xi+50)}
Ng−50
i=1 on mesh point pairs

{(xi, xi+50)}
Ng−50
i=1 ; (d): The estimated covariances shown in (c) with indexes from 1000 to 1200

(show details); (e): The estimated covariances {covu(xi, xi+100)}
Ng−100
i=1 on mesh point pairs

{(xi, xi+100)}
Ng−100
i=1 ; (f): The estimated covariances shown in (e) with indexes from 1000 to 1200

(show details).

Table 1
The ℓ2-norm error of the variance and covariance functions on mesh points for the rMAP and

iSVGDMPO (the estimates of the pCN are seen as the background truth).

varu(xi) covu(xi, xi+10) covu(xi, xi+20) covu(xi, xi+30)

rMAP 0.00759 0.00100 0.00075 0.00092

iSVGDMPO 0.00038 0.00012 0.00009 0.00010

covu(xi, xi+40) covu(xi, xi+50) covu(xi, xi+60) covu(xi, xi+70)

rMAP 0.00227 0.00038 0.00043 0.00056

iSVGDMPO 0.00015 0.00007 0.00006 0.00007

covu(xi, xi+80) covu(xi, xi+90) covu(xi, xi+100) covu(xi, xi+110)

rMAP 0.00142 0.00029 0.00031 0.00047

iSVGDMPO 0.00012 0.00006 0.00006 0.00007

are the ℓ2 differences between the vectors obtained by the rMAP and iSVGDMPO
with the pCN, respectively. All of the ℓ2 differences of the iSVGDMPO with the pCN
are much smaller than the corresponding values of rMAP, which show the superiority
of the iSVGDMPO.
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5. Conclusion. In this paper, the approximate sampling algorithm is proposed
for the infinite-dimensional Bayesian approach. We introduce the Stein operator on
Hilbert spaces and show that it is the limit of a particular finite-dimensional version.
Besides, we construct the update perturbation of the SVGD on infinite-dimensional
space (called iSVGD) by using the properties of operator-valued RKHS. To acceler-
ate the convergence speed of iSVGD, we investigate the change of variables formula
and introduced preconditioning operators. As examples, we present the fixed precon-
ditioning operators and mixture preconditioning operators. Then, we calculate the
explicit form of the update directions for the iSVGD with iSVGDMPOs. Finally, we
apply the constructed algorithms to an inverse problem of the steady state Darcy
flow equation. Comparing with the pCN and rMAP sampling algorithms, we demon-
strate by numerical experiments that the proposed algorithms can generate accurate
estimates efficiently.

The iSVGD is analyzed by studying the limiting behavior of the finite-dimensional
objects. This work presents an infinite-dimensional version of the approach given in
[58]. It is worth mentioning that our results not only provide an infinite-dimensional
version but also indicate that an intuitive trivial generalization of algorithms given in
[58] may not be suitable since particles will belong to a set with zero measure. Our
results also show that it is necessary to introduce the parameter s, which has not been
considered in the existing work.

The current work may be extended to combine the generalizations of the kernel
using Hessian operators in the Wasserstein space [36]. The proposed approach may be
combined with other algorithms, such as the accelerated information gradient flows
[60] and the mean-field type MCMC algorithms [22], to generate new and more efficient
algorithms. It is also interesting and important to do more theoretical studies, e.g.,
introduce infinite-dimensional Stein geometry [33] and develop systematic theories of
the interacting particle system and the mean-field limit equation [42]. We will report
the progress on these aspects elsewhere in the future.

Acknowledgment. The authors would like to thank Professor Wei Gong for
providing helpful discussions and the anonymous referees for their comments and
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