
Journal of Machine Learning Research 24 (2023) 1-60 Submitted 1/22; Revised 2/23; Published 5/23

Variational Inverting Network for Statistical Inverse
Problems of Partial Differential Equations

Junxiong Jia jjx323@mail.xjtu.edu.cn
School of Mathematics and Statistics,
Xi’an Jiaotong University,
Xi’an, 710049, China

Yanni Wu wuyanni@stu.xjtu.edu.cn
School of Mathematics and Statistics,
Xi’an Jiaotong University,
Xi’an, 710049, China

Peijun Li lipeijun@math.purdue.edu
Department of Mathematics,
Purdue University,
West Lafayette, Indiana, 47907, USA

Deyu Meng∗ dymeng@mail.xjtu.edu.cn

School of Mathematics and Statistics,

Ministry of Education Key Lab of Intelligent Networks and Network Security,

Xi’an Jiaotong University,

Xi’an, Shaanxi 710049, China,

Peng Cheng Laboratory,

Shenzhen, Guangdong 518066, China,

Macau Institute of Systems Engineering,

Macau University of Science and Technology,

Taipa, Macau, 999078, China.

Editor: Stefan Harmeling

Abstract

To quantify uncertainties in inverse problems of partial differential equations (PDEs), we
formulate them into statistical inference problems using Bayes’ formula. Recently, well-
justified infinite-dimensional Bayesian analysis methods have been developed to construct
dimension-independent algorithms. However, there are three challenges for these infinite-
dimensional Bayesian methods: prior measures usually act as regularizers and are not able
to incorporate prior information efficiently; complex noises, such as more practical non-
i.i.d. distributed noises, are rarely considered; and time-consuming forward PDE solvers
are needed to estimate posterior statistical quantities. To address these issues, an infinite-
dimensional inference framework has been proposed based on the infinite-dimensional vari-
ational inference method and deep generative models. Specifically, by introducing some
measure equivalence assumptions, we derive the evidence lower bound in the infinite-
dimensional setting and provide possible parametric strategies that yield a general inference
framework called the Variational Inverting Network (VINet). This inference framework

∗. Corresponding author

c©2023 Junxiong Jia, Yanni Wu, Peijun Li, Deyu Meng.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0006.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0006.html

Jia, Wu, Li, Meng

can encode prior and noise information from learning examples. In addition, relying on
the power of deep neural networks, the posterior mean and variance can be efficiently and
explicitly generated in the inference stage. In numerical experiments, we design specific
network structures that yield a computable VINet from the general inference framework.
Numerical examples of linear inverse problems of an elliptic equation and the Helmholtz
equation are presented to illustrate the effectiveness of the proposed inference framework.

Keywords: infinite-dimensional variational inference, inverse problems, Bayesian analysis
for functions, partial differential equations, deep neural networks

1. Introduction

Motivated by their significant applications in seismic exploration, radar imaging, and many
other domains, inverse problems of partial differential equations (PDEs) have undergone
enormous development over the past few decades (Engl et al., 1996). As computational
power keeps increasing, researchers are not satisfied with obtaining just an estimated solu-
tion but pursue performing some statistical analysis based on uncertain information, which
is essential for some applications, such as artifact detection (Zhou et al., 2020). The Bayesian
inverse approach transforms inverse problems into statistical inference problems and has pro-
vided a framework for analyzing the uncertainties of the interested parameters in inverse
problems of PDEs (Stuart, 2010).

As is known, PDEs are usually defined on some infinite-dimensional spaces of functions
(Evans, 2010), which makes it difficult to directly use the finite-dimensional Bayes’ formula.
To resolve this issue, a straightforward approach is to discretize PDEs in order to approxi-
mate the original problem in some finite-dimensional spaces and then solve the approximate
problems by applying finite-dimensional Bayes’ methods. This strategy makes nearly all
of the parametric Bayesian inference methods developed in the statistical literature appli-
cable (Berger, 1980; Kaipio and Somersalo, 2005). Recently, under the finite-dimensional
setting, machine learning methods, e.g., Wasserstein GAN (Adler and Öktem, 2018), have
been employed to learn the prior and construct fast sampling algorithms. However, given
that the original problems are defined in infinite-dimensional spaces, two critical issues are
inevitably encountered.

1. Model consistency: The elements in a finite-dimensional model (e.g., prior proba-
bility measure) possess different intrinsic characteristics from their intuitive infinite-
dimensional counterparts. One typical example is the total variation prior measure,
which has been comprehensively analyzed in (Lassas and Siltanen, 2004).

2. Algorithm applicability: To ensure that the algorithms can preserve the structures of
the original infinite-dimensional problems, the algorithms designed on finite-dimensional
space need to be reconstructed on infinite-dimensional space. Through re-design, the
algorithms well-defined on infinite-dimensional space will have consistent behavior for
different discretizations; see (Cotter et al., 2013; Beskos et al., 2015; Jia et al., 2022)
for examples.

To overcome these obstacles, Bayes’ formula defined on some separable Banach space is
employed to handle the inverse problems of PDEs (Dashti and Stuart, 2017; Stuart, 2010),
which is an active research topic in the field of nonparametric Bayesian inference. We refer

2

Variational Inverting Network

to (Ghosal and Vaart, 2017) for a general account of the nonparametric Bayesian inference
approach. Recently, the theory of well-posedness of the infinite-dimensional Bayesian anal-
ysis method has been generalized to incorporate some machine learning problems (Latz,
2020). Based on this infinite-dimensional Bayesian analysis theory, graph-based Bayesian
semi-supervised learning algorithms have been analyzed from many different aspects, such
as large data and zero noise limit (Dunlop et al., 2020), as well as the consistency and scala-
bility of sampling algorithms (Hoffmann et al., 2020; Trillos et al., 2020). As new surrogate
models of PDEs, operator learning methods and theories have been studied in (Bhattacharya
et al., 2021; Li et al., 2020b; Kovachki et al., 2021), which play essential roles in reducing the
computational complexity of Bayesian inverse methods. The infinite-dimensional Bayesian
inference method proposed for solving inverse problems of PDEs has been validated to be
useful for some machine learning problems. Reciprocally, machine learning techniques can
also contribute to the generalization of the infinite-dimensional Bayesian theory. Generally
speaking, there are three main research directions for infinite-dimensional Bayesian analysis
methods: designing prior probability measures on infinite-dimensional spaces, constructing
appropriate noise models, and extracting information from posterior measures efficiently.
In the following, we review some typical works along these three research directions and
point out their essential difficulties in applications.

Regarding prior measures defined on the infinite-dimensional space, the Gaussian mea-
sure is prevalent based on its abundant theoretical studies in the field of stochastic PDEs
(Prato and Zabczyk, 2014). Related studies on employing Gaussian prior measures can be
found in (Agapiou et al., 2014; Bui-Thanh et al., 2013; Bui-Thanh and Nguyen, 2016; Cotter
et al., 2009; Jia et al., 2021b; Wang et al., 2018). To characterize the discontinuity of the
function parameters, the Besov type prior measure has been proposed (Lassas et al., 2009;
Dashti et al., 2012; Jia et al., 2016). Recently, the well-posedness of the Bayesian inverse
method under prior measures with exponential tails has been analyzed in (Hosseini and
Nigam, 2017). Besides, starting from the seminal work (Knapik et al., 2011), the posterior
consistency and contraction rates have been analyzed in detail in a series of works (Aga-
piou et al., 2013; Giordano and Nickl, 2020; Jia et al., 2021a; Kekkonen et al., 2016; Szabó
et al., 2015; Vollmer, 2013), which convey a general understanding of what types of priors
make a Bayesian nonparametric method effective. However, as illustrated in (Adler and
Öktem, 2018; Arridge et al., 2019), most of these priors need to be pre-designed by hand-
craft and much attention has been paid to characterize families of priors to ensure posterior
consistency and good convergence rates. This makes these priors more often chosen as a
regularizer rather than essentially improving the quality of the final output (Arridge et al.,
2019). In addition, although the hand-crafted infinite-dimensional prior measure encodes
some intuitive ideas of the prior information, it can only reflect some rough prior informa-
tion, e.g., the function parameter is smooth, changes slowly along certain directions, and
may have sharp edges. Thus, it is desirable to adaptably encode a prior specifically suitable
for a particular input in data-driven manners (Adler and Öktem, 2018).

For the noise model, the Gaussian measure is frequently used in the research literature,
e.g., the Gaussian noise setting is employed in (Bui-Thanh et al., 2013; Bui-Thanh and
Nguyen, 2016; Jia et al., 2018; Wang et al., 2018). By characterizing the model error as a
Gaussian random variable, a Bayesian method with approximate error can be constructed
(Kaipio and Somersalo, 2005; Kaipio et al., 2019). A natural generalization was proposed

3

Jia, Wu, Li, Meng

in (Jia et al., 2019), which employed a mixture of Gaussian distributions to characterize
model noises, making it a better fit for a broader range of noise types due to the universe
approximation capability of the mixture of Gaussian for general distributions. Through a
learning process, the model error information was encoded into the parameters of Gaussian
mixture distributions, which improved the estimated quality by only using an approximate
forward solver. However, the method proposed in (Jia et al., 2019) only provides a maximum
a posterior estimate, which can be seen as an incomplete Bayesian approach. Furthermore,
they have not considered more general and practical non-independently and non-identically
distributed (non-i.i.d.) noises.

Furthermore, extracting information from the posterior measure is one of the essential
issues for employing Bayes’ method. Sampling algorithms, such as the Markov chain Monte
Carlo, are often employed. The preconditioned Crank–Nicolson algorithm defined on some
infinite-dimensional space has been proposed (Beskos et al., 2008) to ensure the robustness
of the convergence speed under mesh refinement, see also (Cotter et al., 2013). Then,
multiple dimension-independent Markov chain Monte Carlo type sampling algorithms have
been proposed (Agapiou et al., 2017; Beskos et al., 2015; Cui et al., 2016; Feng and Li, 2018).
However, as illustrated in (Arridge et al., 2019), the current sampling algorithms still face
the critical issue of computational efficiency, especially for large-scale inverse problems.

Under the finite-dimensional setting, variational inference (VI) methods have been
widely studied in machine learning (Zhang et al., 2018) to reduce the computational burden
of Markov chain Monte Carlo type sampling algorithms. Compared to finite-dimensional
problems, however, infinite-dimensional problems have been much less studied for VI meth-
ods. When the approximate measures are restricted to be Gaussian, a novel Robbins-Monro
algorithm was developed in (Pinski et al., 2015a,b) from a calculus-of-variations viewpoint.
It was shown in (Sun et al., 2019) that the Kullback-Leibler (KL) divergence between the
stochastic processes is equal to the supremum of the KL divergence between the measures
restricted to finite marginals. Meanwhile, they developed a VI method for functions param-
eterized by Bayesian neural networks. Under the classical mean-field assumption, a general
VI framework defined on separable Hilbert space was proposed recently in (Jia et al., 2021b).
A function space particle optimization method, including the Stein variational gradient de-
scent, was developed in (Wang et al., 2019) to solve the particle optimization directly in
the space of functions. Infinite-dimensional Stein variational gradient descent with pre-
conditioning operators has further been proposed in (Jia et al., 2022), which provides a
detailed mathematical analysis in some separable Hilbert space. These VI methods defined
on infinite-dimensional space have been proposed to train deep neural networks (DNNs)
or solve inverse problems of PDEs, which indeed ameliorate the computational complexity
to a certain extent. However, for solving inverse problems of PDEs, many forward and
adjoint PDEs still need to be solved, which is time-consuming. Furthermore, as illustrated
in (Arridge et al., 2019), these VI methods also require manual pre-design of priors with
explicit forms, which are not always sufficiently flexible and adaptable to faithfully deliver
complicated prior knowledge underlying the investigated problem.

Through the above review and discussions, we summarize the main points as follows:

1. To more efficiently and adaptably encode prior information (not just for regularizing),
machine learning methods with data-driven manners are expected to be involved in
the infinite-dimensional setting.

4

Variational Inverting Network

2. The mixture of Gaussian noise modeling strategies has been introduced to improve the
noise fitting capability of the problem by current research, but they are still restrictive
on i.i.d. noise types, while more practical non-i.i.d. noise cases are expected to be
considered.

3. Although infinite-dimensional VI (IDVI) methods have been proposed recently, time-
consuming iterations are still inevitably required. More efficient regimes are thus
required to be investigated. Besides, it is highly expected for current IDVI methods
to flexibly and faithfully specify prior information directly from data rather than
commonly adopted hand-crafted manners.

To address these issues, inspired by recent investigations on image denoising and restora-
tions (Yue et al., 2019, 2020), we aim to propose a general IDVI method that intends to
integrate prior information learning, noise information learning, and posterior mean and
covariance learning into a unified machine learning framework. Unlike image denoising and
restoration problems, it is expensive to generate high-quality training datasets for many
inverse problems of PDEs. Therefore, it is essential for us to incorporate model information
with the data-driven machine learning framework.

In our opinion, the models contain two aspects: the physical model and the probabilistic
model. For the physical model, we mean the PDEs that encode our knowledge of the for-
ward process. For the probabilistic model, we indicate the elements of Bayesian methods,
such as the prior and noise measures, which encode the structures we employ to solve the
inverse problems of PDEs. In this work, we focus on linear inverse problems and intend
to construct a generating model (see (Kingma, 2017; Yue et al., 2019, 2020) for examples)
that could incorporate the constraint of the two models mentioned above. Explicitly speak-
ing, we employ the mean-field IDVI theory to derive the general forms of the approximate
posterior measure that provides the probabilistic model. For using the mean-field IDVI
theory, we assume the noises of data are non-i.i.d. in statistics, and the prior measure is
Gaussian with the synthetic background truth as the mean function. It should be pointed
out that the mean-field IDVI theory here only provides a probabilistic model but not a prac-
tical algorithm since the synthetic background truth is not known in the inference stage.
The probabilistic model provides the general structure of our methods (see Subsections 2.2
and 2.3 for details), then we parameterize the parameters (some parameters are functions)
of the approximate posterior measure by some well-designed DNNs that incorporate the
physical model in some specially designed layers (see Subsections 2.3 and 3.1 for details).
Through the training process, the prior and noise information will be encoded into the pa-
rameters of neural networks, i.e., the general forms of the posterior measure are determined
through IDVI theory but the function- and vector-valued parameters are learned from train-
ing datasets 1. During the inference stage, there will be no explicit Bayesian formulation.
We only need to directly feed the new data to the trained deep neural network, and then we
will easily obtain the parameters of the approximate posterior measure. The prior and noise

1. Compared with the IDVI theory (Jia et al., 2021b), the current work focuses on constructing a new
model- and data-driven method that is well-defined in an infinite-dimensional space. No explicit prior
measures are needed, and the prior information is encoded in the parameters of DNNs. The likelihood
is derived from non-i.i.d. noises assumption and parameterized by DNNs. At last, the posterior can be
explicitly obtained without the need for any iterations at the inference stage.

5

Jia, Wu, Li, Meng

information are then not required to be encoded in explicit prior and noise measures with
specific parameters but encoded in the parameters of the DNNs with probabilistic model
constraint. Numerical examples are given to illustrate the flexibility and effectiveness of the
proposed approach. In summary, this work mainly contains four contributions:

1. Inspired by the investigations on generative models in the finite-dimensional set-
ting (Kingma, 2017; Yue et al., 2019, 2020), we propose a general Bayesian gener-
ative model on infinite-dimensional space named as Variational Inverting Network
(VINet), which is naturally derived from the analysis on the IDVI method for lin-
ear inverse problems with non-i.i.d. noises. Due to the general assumptions on the
noises and priors, the proposed VINet integrates noise information learning, prior in-
formation learning, and posterior statistical estimation into a unified machine learning
framework.

2. Instead of only focusing on the interested function parameters as conventional works
like deep learning for elastic source imaging (Yoo et al., 2018) and deep Bayesian
inversion (Adler and Öktem, 2018), the proposed VINet provides uncertainty infor-
mation both on the function parameters and on the random noises, allowing the noise
and function parameter estimations to be mutually ameliorated during the inverse
computational stage.

3. By imposing equivalence conditions on the prior and the approximate posterior mea-
sure, we derive the evidence lower bound under the infinite-dimensional setting. A
method of amortized variational inference is developed to train all variables in the gen-
erative model. The model can then be explicitly used in the inference stage to readily
achieve the posterior information of any noisy data without the time-consuming it-
eration process, making it more efficient for the inverse problems of PDEs than the
conventional paradigms illustrated in (Dashti and Stuart, 2017).

4. We provide a specific parametric strategy by DNNs, which has been proven to satisfy
the requirements of the general inference theory. Based on the proposed parametric
strategy and the general abstract theory, we design a rational specific structure of
VINet. Two numerical examples of typical inverse problems of PDEs are given to
substantiate the effectiveness of the proposed method.

The rest of the paper is outlined as follows. In Section 2, the general theory is presented.
Specifically, in Subsection 2.1, the general settings of the employed Bayesian inference model
is given. In Subsection 2.2, the Bayesian inference model is analyzed under the mean-
field based infinite-dimensional VI framework. In Subsection 2.3, we construct the general
Bayesian generative model (i.e., VINet), derive the amortized variational inference method,
and provide a simple preliminary theoretical analysis. In Subsection 2.4, we introduce a
specific parametric strategy that can parameterize the posterior. In Section 3, two numerical
examples are presented to illustrate the effectiveness of the proposed method. In particular,
in Subsection 3.1, we design a specific network structure according to our general theory,
and then apply the proposed VINet to a simple toy smoothing model in Subsection 3.2.
We then demonstrate a more realistic example that is an inverse source problem governed

6

Variational Inverting Network

by the Helmholtz equation in Subsection 3.3. In Section 4, we summarize our results and
propose some directions for future research.

2. Variational Inverting Network

In this section, we construct the general inference model named VINet, which is well-defined
on an infinite-dimensional space. Since the overall logical structure is a bit complex, we
plan to give a general illustration before going into the details. In Figure 1, we exhibit the
overall structure of the present work. Generally speaking, the method can be divided into
two stages: (a) Learning stage, and (b) Inference stage.

In the learning stage, we formulate Bayes’ formula (see Subsection 2.1) by assuming the
noises are non-i.i.d. random variables and the prior measure of the function parameter is
Gaussian. In particular, the mean function of the Gaussian measure of each training sample
is set to its specific synthetic truth (these measures are thus different for different training
samples), which is available in the training stage but not in the inference stage. Then, relying
on the infinite-dimensional VI framework, we derive the approximate posterior measures (see
Subsection 2.2), which encode the information of all noisy samples and their own specific
synthetic truths. One of the key points of the present work is that the approximate posterior
measures of all single training data pairs are then parameterized by a carefully designed
deep neural network containing a rough physical model (details can be found in Subsection
2.3). Through training on all of the individual learning data pairs, the parameters of the
deep neural network are expected to extract their underlying common prediction principle
for the prior information.

Once the learning stage is complete, it will be convenient for us to make inferences when
new measurement data is given. As illustrated in Figure 1, the new data (there will be no
synthetic truth) will be fed to the trained VINet. Then, the trained VINet will generate
the posterior information, such as the mean and variance functions.

2.1 The Bayesian inference method

Let Hu be a separable Hilbert space, Nd be a positive integer, and H : Hu → RNd be a
bounded linear operator. Consider the model

d = Hu+ ε, (2.1)

where d and ε ∈ RNd represent the measurement data and the random noise, respectively.
Denote by C0 a symmetric, positive definite, and trace class operator defined on Hu. Let
(ek, αk) be an eigen-system of the operator C0 such that C0ek = αkek. Without loss of
generality, we may assume that the eigenvectors {ek}∞k=1 are orthonormal, the eigenval-
ues {αk}∞k=1 are sorted in a descending order, and the summation of eigenvalues is finite∑∞

k=1 αk <∞. It follows from Subsection 2.4 in (Dashti and Stuart, 2017) that we have

C0 =
∞∑
k=1

αkek ⊗ ek. (2.2)

For the parameter u and the noise ε, we assume

u ∼ µu0 := N (ū0, C0), ε ∼ N (0,Σ), (2.3)

7

Jia, Wu, Li, Meng

(a) Learning stage

(b) Inference stage

Learned VINet

Minimize evidence lower bound (Extract common prior

information from all individual training data pairs, Subsection 2.3)

Approximate posterior

measure 1

Approximate posterior

measure 𝑁𝑒

Approximate posterior

measure 𝑘

Data 𝒅 with

non-i.i.d.

nosies

Prior with

Synthetic

truth ത𝑢0

Bayes’ formula

(Subsection 2.1)

Approximate

posterior

(Subsection 2.2)

Analysis of a single data pair

New measured data 𝒅
(Single new data)

Learned VINet

(Through training, the parameters of VINet have

extracted an explicit prediction policy for the

prior information;

VINet contains layer of rough physical model)

Posterior mean and variance

functions

(Inference based on

data + physical model + prior)

Parametrize

posterior

measure by

DNNs with

physical model

(Subsection 2.3)Probabilistic model

Figure 1: Overall structure of Section 2.

where Σ = diag(σ1, σ2, · · · , σNd) with {σi}Ndi=1 being a series of positive real numbers. Here,
N (v, C) stands for a Gaussian measure with mean v and covariance operator C. Clearly,
N (ū0, C0) denotes a Gaussian measure defined on Hu with mean ū0 ∈ Hu and covariance
operator C0, and N (0,Σ) is a Gaussian measure defined on RNd . It is worth mentioning
that the mean function ū0 as indicated in Figure 1 is set to be the synthetic truth. By our
understanding, the synthetic truth is similar to, but not exactly the same as, the background
truth (see the following Remark 1). The background truth can hardly be obtained (Yue
et al., 2019; Davoudi et al., 2019). Since the synthetic truth is set to be the mean function,
we usually take the magnitude of the covariance operator C0 to be small, which reflects the
deviation of the synthetic truth from the background truth. For one specific form of the
operator C0, please see Subsection 2.4 and Section 3.

Remark 1 When solving inverse problems, it is usually difficult to obtain absolutely correct
background true parameters as a training dataset. For example, in geophysical applications,
the “Marmousi” model, as a typical synthetic model (Haber and Tenorio, 2003), is frequently
used for training. Therefore, we may choose the simulated background truth as the prior
mean function, and the covariance operator can account for the uncertainty information
due to the inaccuracy of the training dataset.

For the additive noise model (2.1), the data d given u are distributed according to the
following translated distribution of ε:

d|u ∼ N (Hu,Σ). (2.4)

Usually, we assume that Σ is known a priori when making inferences on the infinite-
dimensional parameter u. However, similar to studies such as in (Dunlop et al., 2017;

8

Variational Inverting Network

Jin and Zou, 2010), we assume that the parameters {σi}∞i=1 are unknown random variables,
which are called hyper-parameters and also need to be estimated. The key elements of an
abstract inverse problem can then be summarized as follows.

• Noisy data: The data vector d ∈ RNd is obtained from d = Hu†+ ε, where u† is the
background truth and ε ∼ N (0,Σ) with Σ = diag(σ1, · · · , σNd);

• Inverse problem: Based on the noisy data d, the goal is to find estimates of u and
the hyper-parameters σ := {σ1, . . . , σNd}.

We assume that the hyper-parameters in Σ satisfy

σ ∼ µσ0 :=

Nd∏
i=1

IG
(
α0
i , β

0
i

)
, (2.5)

where α0
i > 1 and β0

i > 0 (i = 1, . . . , Nd) are hyper-parameters that will be specified in
numerical examples, and IG(α0

i , β
0
i) denotes the inverse Gamma distribution with parame-

ters α0
i and β0

i (i = 1, . . . , Nd). Here, the inverse Gamma distribution is employed since it
is a conjugate prior measure that yields the same form of approximate posterior measure
(see Subsection 2.2). Conjugate prior measures are widely used in the studies of inverse
problems and machine learning (Kekkonen et al., 2016; Zhang et al., 2018; Yue et al., 2020),
which makes it convenient to construct computational methods.

In order to construct an appropriate Bayes’ formula, let us introduce the prior proba-
bility measure

µ0 := µu0 ⊗ µσ0 (2.6)

and the potential function

Φ(u,σ;d) :=
1

2
‖d−Hu‖2Σ +

1

2
log(det Σ), (2.7)

where ‖ · ‖Σ := ‖Σ−1/2 · ‖ and det Σ is the determinant of Σ. Since H is a bounded linear
operator, it is easy to note that Φ(u,σ;d) is continuous with respect to the variables u,σ,
and d. Assume d,d1, and d2 are included in a ball of RNd with radius r and centered at
the origin. Following simple calculations, we have

Φ(u,σ;d) =
1

2
‖d−Hu‖2Σ +

1

2
log(det Σ) ≥ 1

2
log

(
Nd∏
k=1

σk

)
=

1

2

Nd∑
k=1

log(σk) (2.8)

and

|Φ(u,σ;d1)− Φ(u,σ;d2)| = 1

2
|‖d1 −Hu‖2Σ − ‖d2 −Hu‖2Σ|

≤ 1

2
‖d1 + d2 − 2Hu‖Σ‖d1 − d2‖Σ

≤

(
1 +

Nd∑
k=1

σ
−1/2
k

)
Nd∑
`=1

σ
−1/2
` (r + C‖u‖Hu)‖d1 − d2‖,

(2.9)

9

Jia, Wu, Li, Meng

where C is a constant larger than the operator norm of H. Noting

exp

(
−

Nd∑
k=1

log σk

)
=

Nd∏
k=1

σ−1
k ∈ L

1
µ0(Hu × R+;R) (2.10)

and

Nd∏
k=1

σ−1
k

(
1 +

Nd∑
k=1

σ
−1/2
k

)2(Nd∑
`=1

σ
−1/2
`

)2

(r + C‖u‖Hu)2 ∈ L1
µ0(Hu × R+;R), (2.11)

we know that Assumption 1 and the conditions of Theorems 15–16 in (Dashti and Stu-
art, 2017) are satisfied, which provide the following Bayes’ formula defined on infinite-
dimensional space:

dµd

dµ0
(u,σ) =

1

Zd
det(Σ)−1/2 exp

(
−1

2
‖d−Hu‖2Σ

)
, (2.12)

where µd represents the posterior probability measure and

Zd =

∫
(R+)Nd

∫
Hu

det(Σ)−1/2 exp

(
−1

2
‖d−Hu‖2Σ

)
µu0(du)µσ0 (dσ). (2.13)

For the reader’s convenience, we list Assumption 1 and Theorems 15–16 of (Dashti and
Stuart, 2017) in Subsection 5.1 of the Appendix.

2.2 The infinite-dimensional variational inference method

Before constructing the VINet, we provide a discuss of the mean-field assumption based
infinite-dimensional variational inference (IDVI) theory developed in (Jia et al., 2021b). A
brief introduction is given in Subsection 5.2 of the Appendix.

In Subsection 2.1, we have not introduced hyper-parameters for the prior measure µu0
of the function parameter. Hence, we can choose the prior measure µu0 as the reference
probability measure required in Assumption 8 in (Jia et al., 2021b). Using the mean-field
approximation, i.e., assuming the parameters u and σ to be independent random variables,
we introduce an approximate probability measure ν(du, dσ) = νu(du)νσ(dσ) with

dνu

dµu0
(u) =

1

Zu
exp (−Φu(u)) (2.14)

and

dνσ

dµσ0
(σ) =

1

Zσ
exp (−Φσ(σ)) , (2.15)

where Φu(·) and Φσ(·) are two potential functions required to be calculated explicitly, and

Zu = Eµ
u
0 [exp(−Φu(u))] , Zσ = Eµ

σ
0 [exp(−Φσ(σ))] .

Here, Eµ represents taking expectation with respect to the probability measure µ.

10

Variational Inverting Network

The VI method essentially needs to solve the optimization problem

arg min
νu∈Au,νσ∈Aσ

DKL

(
ν||µd

)
, (2.16)

where Au and Aσ are two appropriate spaces of probability measure, and DKL

(
ν||µd

)
is

the Kullback-Leibler (KL) divergence defined as follows:

DKL(ν||µd) =

∫
H

log

(
dν

dµd
(x)

)
dν

dµd
(x)µd(dx) = Eµ

d

[
log

(
dν

dµd
(x)

)
dν

dµd
(x)

]
.

Here 0 log 0 = 0 is used as a convention. For the finite-dimensional theory (e.g., Chapter 10
in (Bishop, 2006)), no additional assumptions need to be made on Au and Aσ. However,
special attention must be paid to Au and Aσ in the infinite-dimensional theory (Jia et al.,
2021b).

Define T uN = {u | 1/N ≤ ‖u‖Zu ≤ N} with Zu being a Hilbert space that is embedded
in Hu and satisfies supN µ

u
0(T uN) = 1. Denote TσN = {σ | 1/N ≤ σi ≤ N for i = 1, . . . , Nd}

that obviously satisfies supN µ
σ
0 (TσN) = 1. Let

R1
u =

{
Φu

∣∣∣ sup
u∈TuN

Φu(u) <∞ for all N > 0

}
,

R2
u =

{
Φu

∣∣∣ ∫
Hu

exp (−Φu(u)) max(1, ‖u‖2Hu)µu0(du) <∞
}
,

R1
σ =

{
Φσ

∣∣∣ sup
σ∈TσN

Φσ(σ) <∞ for all N > 0

}
,

R2
σ =

{
Φσ

∣∣∣ ∫
(R+)Nd

exp (−Φσ(σ)) max(1, a(ε,σ))µσ0 (dσ) <∞, for ε ∈ [0, ε0)

}
,

where a(ε,σ) :=
∑Nd

i=1 max (σεi , exp(ε/σi)) and ε0 is a fixed positive number. Usually, we

may choose ε0 � min1≤i≤Nd{α0
i , β

0
i }, where {α0

i , β
0
i }
Nd
i=1 are given in (2.5). Define

Au =

{
νu ∈M(Hu)

∣∣∣ νu is equivalent to µu0 with (2.14) holding true,
and Φu ∈ R1

u ∩R2
u

}
,

Aσ =

{
νσ ∈M(Hσ)

∣∣∣ νσ is equivalent to µσ0 with (2.15) holding true,
and Φσ ∈ R1

σ ∩R2
σ

}
.

Remark 2 The definitions of R1
u and R1

σ are slightly different from the corresponding defi-
nitions of R1

j (j = 1, . . . ,M) introduced in (Jia et al., 2021b). The sets R1
k(k = u,σ) defined

here enlarge the original definition (without uniform bound), which makes the theory more
appropriate. For completeness, we provide a short illustration of the modified general theory
in Subsection 5.2 of the Appendix.

11

Jia, Wu, Li, Meng

Next, we present the key theorem that leads to an iterative algorithm.

Theorem 3 Assume that the prior measure µ0, noise measure, and posterior measure are
defined in (2.6), (2.5), and (2.12), respectively. Let Φ(u,σ;d) be defined in (2.7). If Au
and Aσ are defined as above, then the problem (2.16) possesses a solution ν(du, dσ) =
νu(du)νσ(dσ), which satisfies

dν

dµ0
(u,σ) ∝ exp (−Φu(u)− Φσ(σ)) , (2.17)

where

Φu(u) =

∫
(R+)Nd

Φ(u,σ;d)νσ(dσ) + Const, (2.18)

Φσ(σ) =

∫
Hu

Φ(u,σ;d)νu(du) + Const. (2.19)

Here, “Const” denotes some general constant. Futhermore, we have

νu(du) ∝ exp (−Φu(u))µu0(du), νσ(dσ) ∝ exp (−Φσ(σ))µσ0 (dσ).

To avoid a possible distraction from the presentation of the work, the proof of this
theorem is given in Subsection 5.3 of the Appendix. In the following, we denote Φ(u,σ)
instead of Φ(u,σ;d) when there is no ambiguity from the context.

Remark 4 In the general theory, the space of parameters is assumed to be a separable
Hilbert space. The parameter σ resides in (R+)Nd, which is not a Hilbert space. However,
as stated in Remark 15 in (Jia et al., 2021b), a simple transformation can be adopted, e.g.,
σ′k = log σk (k = 1, . . . , Nd). Then, the new parameter σ′ = {σ′1, . . . , σ′Nd} belongs to RNd,
which is a Hilbert space. All of the statements and verifications of σ can be equivalently
transformed to the new variable σ′. Therefore, we still use the parameter σ for simplicity
of notation. By the above discussion, the reader may intuitively understand the connection
between the finite- and infinite-dimensional theories.

Using Theorem 3, we can present a classical iterative algorithm when the parameter u
belongs to some infinite-dimensional separable Hilbert space Hu.

Calculate Φu(u). A direct application of (2.18) yields

Φu(u) =
1

2

∫
(R+)Nd

(
‖d−Hu‖2Σ +

Nd∑
k=1

log σk

)
νσ(dσ) + Const

=
1

2

∫
(R+)Nd

(d−Hu)TΣ−1(d−Hu)νσ(dσ) + Const.

(2.20)

Denoting

Σ∗inv = diag
(
Eν

σ
[σ−1

1], . . . ,Eν
σ

[σ−1
Nd

]
)
, (2.21)

12

Variational Inverting Network

we have

Φu(u) =
1

2
‖d−Hu‖2Σ∗inv + Const. (2.22)

Hence,

dνu

dµu0
(u) ∝ exp

(
−1

2
‖d−Hu‖2Σ∗inv

)
, (2.23)

which implies that the approximate posterior measure of u is a Gaussian measure

νu = N (ūp, Cp), (2.24)

where

C−1
p = H∗Σ∗invH + C−1

0 , ūp = Cp(H∗Σ∗invd+ C−1
0 ū0). (2.25)

Calculate Φσ(σ). Following (2.19), we have

Φσ(σ) =
1

2

∫
Hu

(
‖d−Hu‖2Σ +

Nd∑
k=1

log σk

)
νu(du) + Const

=
1

2

∫
Hu

(d−Hu)TΣ−1(d−Hu)νu(du) +
1

2

Nd∑
k=1

log σk + Const

=

Nd∑
k=1

1

2

(∫
Hu

(dk − (Hu)k)
2νu(du)

1

σk
+ log σk

)
+ Const.

(2.26)

Hence,

dνσ

dµσ0
(σ) ∝ exp

(
−

Nd∑
k=1

1

2

(
Eν

u
[(dk − (Hu)k)

2]
1

σk
+ log σk

))
. (2.27)

Recalling

µσ0 (dσ) ∝
Nd∏
k=1

σ
−α0

k−1

k exp

(
−
β0
k

σk

)
dσ, (2.28)

we obtain

νσ(dσ) ∝
Nd∏
k=1

σ
−α0

k−
3
2

k exp

(
−
β0
k + 1

2E
νu [(dk − (Hu)k)

2]

σk

)
dσ, (2.29)

which implies that the posterior distribution of each component of νσ takes the form

σk ∼ IG

(
α0
k +

1

2
, β0
k +

1

2
Eν

u
[(dk − (Hu)k)

2]

)
, k = 1, . . . , Nd. (2.30)

13

Jia, Wu, Li, Meng

The above illustrations confirm the feasibility of Algorithm 1, which is similar to the
finite-dimensional case. However, it is worth mentioning that the infinite-dimensional for-
mulation provides a general framework for conducting appropriate discretizations. To keep
dimension-independent properties, the discretization of Algorithm 1 should be done care-
fully; for example, the adjoint operator H∗ is usually not equal to the transpose of the
discrete approximation of H. For more detailed discussions on this topic, please refer to
(Jia et al., 2021b; Bui-Thanh et al., 2013; Petra et al., 2014; Wang et al., 2018; Bui-Thanh
and Nguyen, 2016). A recent study on the Stein variational gradient descent algorithm,
designed on the functional space for training DNNs (Wang et al., 2019), further indicates
the infinite-dimensional formulation.

Algorithm 1 A classical VI algorithm

1: Give an initial guess µ0 (ū0, C0, p, and {α0
i , β

0
i }
Nd
i=1). Set the tolerance tol

and let k = 1.
2: Do
3: Let k = k + 1
4: Calculate Σk∗

inv by Eν
σ
k−1 [σ−1

i](i = 1, . . . , Nd)
5: Update νuk by

C−1
p = H∗Σk∗

invH + C−1
0 , uk = Cp(H∗Σk∗

invd+ C−1
0 ū0)

6: Calculate νσk by

νσk =

Nd∏
i=1

IG(αki , β
k
i),

where

αki = α0
i +

1

2
, βki = β0

i +
1

2
Eν

u
k [(di − (Huk)i)

2]

7: Until max (‖uk − uk−1‖/‖uk‖, ‖σk − σk−1‖/‖σk‖) ≤ tol
8: Return νuk (du)νσk (dσ) as the solution.

Remark 5 In the implementation of Algorithm 1, it is required to calculate Eνuk [(di −
(Huk)i)

2] for each i = 1, . . . , Nd. Regarding these terms, we have

Eν
u
k [(di − (Huk)i)

2] =

∫
(d−Huk)2

i ν
u
k (du) +

∫
[H(u− uk)]2i νuk (du)

= (d−Huk)2
i + eTi HCpH∗ei,

(2.31)

where ei, i = 1, . . . , Nd, represents the standard vector basis in RNd and Proposition 1.18
in (Prato, 2006) is employed to derive the second equality. It can be seen from (2.31) that
the adjoint equations, forward equations, and inverse of the operator Cp are needed with

14

Variational Inverting Network

Nd iterations to update the parameters {βki }
Nd
i=1. Especially, when calculating Cpu with u

being a function (e.g., H∗ei), we need to evaluate (H∗Σk∗
invH + C−1

0)−1u. The operator
(H∗Σk∗

invH + C−1
0)−1 cannot be calculated explicitly since, in discrete form, it will be a large

dense matrix that is difficult to store and time-consuming to find its explicit inverse operator.
Instead, we usually solve a linear equation (H∗Σk∗

invH + C−1
0)ũ = u. The solution ũ is

the function we expected. By employing some iterative linear equation solvers, e.g., the
conjugate gradient algorithm, we need to solve a lot of PDEs, i.e., for each iteration, we
need to solve one forward and one adjoint equation (Jia et al., 2021b; Jin and Zou, 2010).
Overall, the computational complexity will be very large when the number of measurement
points Nd increases.

2.3 Variational inverting network

Let us provide the following observations of the classical IDVI algorithm:

• The entire prior and noise probability measure (general forms and all of the function-
and vector-valued parameters) must be specified manually. This makes the use of the
algorithm highly dependent on the subjective experiences of the practitioners.

• Under the settings of Subsections 2.1 and 2.2, the derived Algorithm 1 actually still
cannot be employed for practical problems since the synthetic truth (i.e., prior mean
function) is not known for new inverse problems.

• When the practitioner acquires new data, the entire iterative process should be started
from the beginning to obtain a new estimate, which can be time-consuming for many
applications.

Inspired by the recent work on denoising tasks under the finite-dimensional setting (Yue
et al., 2019, 2020), we introduce some parametric forms of posterior probability measure
by adopting DNNs. As illustrated in the introduction and Figure 1, we will rely on the
general form of the posterior measures derived from the IDVI theory, which provides the
probabilistic model (or called probabilistic constraint) for DNNs-based data-driven inverse
methods. However, the function- and vector-valued parameters in the posterior measures
will be replaced by well-designed DNNs that could incorporate the physical model into our
method. Relying on this methodology, it is then hopeful that we can alleviate the problems
of the classical IDVI algorithms mentioned above.

Based on the discussions in Subsection 2.2, we have obtained the general form of the
approximate posterior measures, as seen in formulas (2.24) and (2.29). Therefore, we intro-
duce the following parametric form of the approximate posterior probability measures:

νu = N (ūp(d;WI), Cp(d;WI)), νσ =

Nd∏
i=1

IG (αi(d;WS), βi(d;WS)) , (2.32)

where {αi(d;WS)}Ndi=1, {βi(d;WS)}Ndi=1 are represented by neural networks with parameters
denoted by WS , and {ūp(d;WI), Cp(d;WI)} are represented by neural networks with pa-
rameters denoted by WI (where Cp(d;WI) is a symmetric, positive definite, and trace class

15

Jia, Wu, Li, Meng

operator). The neural networks with parameters WS and WI are referred to as SNet (sigma
network) and INet (inverting network), respectively.

Let us provide intuitive ideas of how to incorporate physical models into the INet, which
rely on some analysis of the posterior probability measures given by (2.24) and (2.29). It
follows from the formula as shown in Example 6.23 of (Stuart, 2010) that the expression of
the mean function (2.25) can be written into the following form:

ūp =ū1
p + ū2

p = (H∗Σ∗invH + C−1
0)−1H∗Σ∗invd+ (H∗Σ∗invH + C−1

0)−1C−1
0 ū0. (2.33)

Obviously, the posterior mean function contains two parts ū1
p and ū2

p. We analyze these two
parts separately and then join them to provide specific structures of the INet.

Now, let us illustrate some intuitive ideas about the data-informed part ū1
p. Denote

{ej}∞j=1 in (2.2) and let {λj}∞j=1 be a positive sequence belonging to `2. In addition, we
assume that the forward operator H can be decomposed into S ◦ F , where

(Fu)(x) =
∞∑
j=1

λj〈u, ej〉ej(x) =
∞∑
j=1

λjujej(x) ∀ u ∈ Hu (2.34)

and

(S ◦ F)u = ((Fu)(x1), . . . , (Fu)(xNd))
T ∀ (x1, . . . , xNd) ∈ RNd . (2.35)

This is only needed in Theorem 6.

Theorem 6 Assume that the forward operator H can be decomposed into S ◦ F , where F
and S are defined in (2.34) and (2.35), respectively. Then, we have

lim
max1≤i≤Nd β

∗
i→0
‖(H∗Σ∗invH + C−1

0)−1C−1
0 ū0‖Hu = 0, (2.36)

where

Σ∗inv = diag

(
α∗1
β∗1
, . . . ,

α∗Nd
β∗Nd

)
(2.37)

with α∗i , β
∗
i (i = 1, . . . , Nd) being positive real numbers.

The proof is given in Subsection 5.3 of Appendix. It can be seen from Theorem 6 that
the synthetic truth (prior mean) related term ū2

p will disappear as the noise goes to zero, i.e.,
the data d becomes to be the clean data. Hence, in order to fully extract the information
of noisy data, we introduce a neural network named as DNet (denoising network) that aims
to transform the noisy data into nearly clean data (data with low noise). The term ū1

p will
be transformed into

ū1
p = (H∗Σ∗invH + C0)−1H∗Σ∗invDNet(d). (2.38)

Since (H∗Σ∗invH + C0)−1H∗Σ∗inv can be seen as a classical inverse method, we can introduce
a computationally efficient classical inverse (CECInv) method (which may provide a quick

16

Variational Inverting Network

but noisy estimate) combined with a deep neural network called ENet (enhancing neural
network). For simplicity, we call this the CECInv layer, which incorporates the physical
model into our inversion method. In summary, the network structure is defined as follows:

ū1
p = ENet(CECInv(DNet(d))). (2.39)

Practically, the noisy data can hardly be transformed into clean data due to the limited
training datasets. Considering the ill-posedness of the inverse problems, the clean data can
only provide limited information to yield estimates with limited accuracy. Therefore, the
synthetic truth (prior mean) related term ū2

p should also be taken into consideration.
During the training stage, we have the synthetic truth, i.e., the prior mean function ū0.

However, the synthetic truth is not available during the inference stage, and only the noisy
data is available. Based on these considerations, we need to design a mechanism that can
encode the prior information of the synthetic truth into the network parameters through
the training process on these data with ground truth knowledge. Remembering the form of
the term ū2

p, we see that if the synthetic truth is much similar to the truth, then the prior
variance should be very small. That is to say, we have

ū2
p ≈ ū0. (2.40)

Remembering the formula (2.39), during the training stage, the noisy data is transformed
into near-clean data. Then, ENet(CECInv(·)) provides an estimate that should be as similar
as possible to the synthetic truth parameters in the training datasets. Obviously, we may
recognize

ū0 ≈ ENet(CECInv(DNet(d))). (2.41)

Finally, considering (2.33), (2.39), (2.40), and (2.41), the network for predicting the posterior
mean functions could rationally be designed as follow:

ūp = ū1
p + ū2

p ≈ ENet(CECInv(DNet(d))) + ENet(CECInv(DNet(d))), (2.42)

which can be reduced to

ūp = ENet(CECInv(DNet(d))). (2.43)

We incorporate the variances by adding an additional channel to the related neural networks
to represent the function parameters involved in the covariance operator. From the above
statements, we can see that the final structure of INet achieves our aim: the general proba-
bility model is specified by the variational inference method, the physical model is encoded
in the CECInv layer, and the prior information of the training datasets is encoded in both
the ENet and DNet (see formula (2.41)). For clarity, we depict a schematic diagram of INet
in Figure 2. The general framework illustrated here requires no restrictions on the specific
forms of the DNet, ENet, and SNet. In Section 3, we provide two numerical examples and
the particular DNNs used in the present work.

After introducing the general inverse framework, named VINet (variational inverting
network), we need to focus on designing algorithms that can efficiently train the involved
DNNs. To formulate an optimization problem for the network parameters of INet and SNet,
we need to find the variational lower bound under the infinite-dimensional setting as the
loss functional to guide the DNN training. This requires the following basic assumption.

17

Jia, Wu, Li, Meng

,

DNet

ENet

CECInv

est_u

d

Figure 2: General structure of INet.

Assumption 7 The approximate probability measure ν with components νu and νσ is as-
sumed to be equivalent to the prior probability measure µ0, as well as the posterior probability
measure µd.

Regarding the logarithm of the marginal likelihood, we have

logZd =

∫
Hu×(R+)Nd

logZd ν(du, dσ)

=

∫
Hu×(R+)Nd

log

{
dµ0

dν

dν

dµd
1√

det(Σ)
exp

(
−1

2
‖Σ−1/2(d−Hu)‖2

)}
ν(du, dσ).

Expanding the terms in the integrand of the above equality yields

logZd = L(u,σ;d) +DKL(ν||µd), (2.44)

where

L(u,σ;d) =

∫
log

dµ0

dν
− 1

2
log(det(Σ))− 1

2
‖Σ−1/2(d−Hu)‖2ν(du, dσ). (2.45)

Noting that the KL divergence between the variational approximate measure ν and the true
posterior measure µd is non-negative, we can thus get

logZd ≥ L(u,σ;d). (2.46)

Since L(u,σ;d) constitutes a lower bound of logZd, we call it evidence lower bound (ELBO)
as in the finite-dimensional setting (Bishop, 2006). Under Assumption 7, we know that the
optimization problems

min
WI ,WS

DKL(ν||µd) (2.47)

and

min
WI ,WD

−L(u,σ;d) (2.48)

are equivalent to each other. The ELBO can be decomposed into the following three terms:

L(u,σ;d) = I1 + I2 + I3, (2.49)

18

Variational Inverting Network

where

I1 =

∫
dµu0
dνu

νu(du), I2 =

∫
dµσ0
dνσ

νσ(dσ), (2.50)

I3 =

∫
−1

2
log(det(Σ))− 1

2
‖Σ−1/2(d−Hu)‖2ν(du, dσ). (2.51)

Term I1. Different from the finite-dimensional case, it is difficult to reduce the form of
I1. However, for some specific problems, the following reparameterization trick can be used
to approximate it by Monte Carlo estimation:

I1 ≈
dµu0
dνu

(ũ), (2.52)

where ũ = ūp(d;WI) + Cp(d;WI)
1/2η with η ∼ N (0, Id).

Term I2. Since σ belongs to the finite-dimensional space, we may follow (Yue et al.,
2019) and obtain∫

log
dνσ

dµσ0
νσ(dσ) =

Nd∑
i=1

{(
αi − α0

i + 1
)
ψ(αi) + αi

(
β0
i

βi
− 1

)

+
(
α0
i − 1

) (
log βi − log β0

i

)
+
[
log Γ

(
α0
i − 1

)
− log Γ(αi)

]}
,

(2.53)

where Γ(·) and ψ(·) represent the Gamma and Degamma functions, respectively.
Term I3. For the first term in I3, we have

−1

2

∫
log(det(Σ))ν(du, dσ) = −1

2

Nd∑
i=1

∫
log σ2

i ν
σ(dσ)

= −1

2

Nd∑
i=1

(log βi − ψ(αi)) .

(2.54)

For the second term in I3, a simple calculation yields

−1

2

∫
‖(d−Hu)‖2Σν(du, dσ) =− 1

2

∫
(d−Hu)TΣinv(d−Hu)νu(du), (2.55)

where

Σinv = diag
(
Eν

σ
[σ−1

1], . . . ,Eν
σ

[σ−1
Nd

]
)

= diag

(
α1

β1
, . . . ,

αNd
βNd

)
. (2.56)

Using (2.54)–(2.55) and the Monte Carlo estimate, we get

I3 ≈ −
1

2

Nd∑
i=1

(log βi − ψ(αi))−
1

2
(d−Hũ)TΣinv(d−Hũ), (2.57)

19

Jia, Wu, Li, Meng

where ũ = ūp(d;WI) + Cp(d;WI)
1/2η with η ∼ N (0, Id).

For a given training data set {di, ui}Nei=1, where Ne is a positive integer, the following
objective function, the negative ELBO on the entire training set, can be constructed to
optimize the parameters of INet and SNet:

min
WI ,WS

−
Ne∑
i=1

L(u(i),σ(i);d(i)), (2.58)

where u(i), σ(i), and d(i) denote the corresponding variables for the i-th training pair.

Remark 8 Here, we provide some intuitive explanations of the VINet. From formula
(2.44), we know that the problems (2.47) and (2.48) are equivalent. If there is only one
piece of training data, the optimization problem (2.48) will find the parameters WI and
WS of DNNs that make the parameterized measure (2.32) similar to the approximate poste-
rior measure calculated from the mean-field assumption based IDVI method. We can expect
that the learned model from one piece of training data will have poor generalization proper-
ties. During the training stage, we actually have Ne pieces of training data and solve the
minimization problem (2.58) that can be written as

min
WI ,WS

− 1

Ne

Ne∑
i=1

L(u(i),σ(i);d(i)). (2.59)

Hence, our training process intuitively finds common network parameters WI and WS that
perform well on all of the training datasets on average. In this sense, we can intuitively rec-
ognize that the DNet, ENet, and SNet capture the information shared by all training datasets
(prior and noise information) in some average sense. During the inference stage, there will
be no synthetic truth. The trained VINet will combine the information extracted from the
new data d, the physical model encoded in the CECInv layer, and the prior information
encoded in the DNet, SNet, and ENet to yield estimates of the function- and vector-valued
parameters of the probability measure (2.32).

At the end of this subsection, we present a preliminary analysis of the estimation error
of the mean function, which provides some intuitions for future study. The proof is given
in Subsection 5.3 of the Appendix.

Theorem 9 Let u† be the background truth function, ūp be the estimated function given by
(2.33), and E0 be the expectation corresponding to the distribution of the data. Then the
following estimate holds:

E0[‖ūp(d;WI)− u†‖Hu] ≤ E0[‖ūp(d;WI)− ūp‖Hu] + ‖ū0 − u†‖Hu
+ tr

(
CpH∗Σ∗invΣΣ∗invHC∗p

)1/2
,

(2.60)

where Σ is the background truth noise covariance matrix and Σ∗inv is the diagonal matrix

diag
(
α∗1/β

∗
1 , . . . , α

∗
Nd
/β∗Nd

)
defined in (2.21).

20

Variational Inverting Network

We have the following observations on the three terms appearing in (2.60). The first
term on the right-hand side of (2.60) reflects the approximation error arising from learning
by DNNs, which can be analyzed in detail, e.g., by introducing the concepts of sample
error and approximation error (Cucker and Smale, 2001). The DNNs employed here need
to learn a nonlinear operator between two separable Hilbert spaces, which, to the best of
our knowledge, can hardly be analyzed under the current learning theory. However, there
are some works on the learnability of the nonlinear operators (Chen and Chen, 1995) that
should be useful for future investigations.

The second term accounts for the error induced by the synthetic function parameter used
for training and the true background function. This term is difficult to analyze in its current
form since u† and ū0 cannot be obtained in the inverse computational stage. However, we
can assume that the residual of the synthetic function and the background truth can be
bounded by some constant with high probability. The third term on the right-hand side of
(2.60) represents the errors induced by noise and the prior covariance operator.

2.4 Parametric strategies

In the implementation of the algorithm, it is necessary to choose an appropriate prior
probability measure µ0 and approximate probability measure ν to ensure Assumption 7.
This subsection focuses on a possible parametric strategy.

For the finite-dimensional parameter σ, there are no singular issues with the prior
and posterior probability measures. Therefore, we focus on the more problematic function
parameter u. The major difficulty is that Gaussian measures defined on infinite-dimensional
space are singular with each other when the covariance operators are scaled by different
constants. It remains an open question as to how to resolve such a singularity problem in
terms of theory and algorithms (Agapiou et al., 2014; Dunlop et al., 2017).

Let us introduce some assumptions proposed in (Dashti and Stuart, 2017) that inspire us
to define appropriate covariance operators in the prior and posterior probability measures.

Assumption 10 (Dashti and Stuart, 2017) The operator A, densely defined on the Hilbert
space H = L2(Ω;R) where Ω ⊂ Rd is a bounded domain with smooth boundary, is assumed
to satisfy the following properties:

1. A is positive definite, self-adjoint and invertible;

2. The eigenfunctions {ej}j∈N of A form an orthonormal basis for H;

3. The eigenvalues of A satisfy λj � j2/d;

4. There is C > 0 such that

sup
j∈N

(
‖ej‖L∞ +

1

j1/d
Lip(ej)

)
≤ C,

where Lip(ej) denotes the Lipschitz constant of ej , j = 1, . . . ,∞.

With Assumption 10, we now restrict the prior probability measure of u to be µu0 =
N (ū0, Cε0) with Cε0 = (ε−1

0 Id + δAα/2)−2. Here, the parameters ε0, δ > 0 are positive con-
stants satisfying δ � ε−1

0 , and the parameter α > d/2 controls the regularity properties of

21

Jia, Wu, Li, Meng

the generated random samples. The mean function ū0 is taken as the simulated background
truth, which is available at the training stage but cannot be obtained at the inference stage.

For the posterior probability measure νu = N (ūp(d;WI), Cp(d;WI)), we specify the
covariance operator as follows:

Cp(d;WI) = (a(d;WI)Id + δAα/2)−2, (2.61)

where α and δ are taken the same as the prior measure, and a(d;WI) is a positive function
parameterized by the neural network with parameters WI . In the following, we let Hu = H
which is defined in Assumption 10.

The following result illustrates that µu0 and νu defined above are equivalent under certain
general conditions.

Theorem 11 Assume that Ω ⊂ Rd (d ≤ 3) is a bounded domain with a smooth boundary,
and the function a(d;WI) ∈ L∞(Ω) has positive lower and upper bounds, i.e., 0 < a ≤
a(d;WI)(x) ≤ ā for all x ∈ Ω with a, ā ∈ R+. Assume further that the mean functions

ū and ūp(d;WI) introduced in µu0 and νu belong to the Hilbert scale C1/2
ε0 Hu. Then, the

approximate posterior measure νu is equivalent to the prior measure µu0 .

The proof is provided in Subsection 5.3 of the Appendix.

3. Numerical Examples

In this section, we provide the specific settings of INet and SNet for inverse problems of
PDEs. We then apply the VINet to two examples: a simple smoothing model, which is
widely used for benchmark testing (Agapiou et al., 2014), and an inverse source problem of
the Helmholtz equation.

3.1 Network structures

In Section 2, we introduce a general inverse framework called VINet, wherein any type of
rational neural network can be chosen. Well-constructed neural networks typically perform
better and require a smaller training dataset, which is crucial for practical applications.

The INet proposed in the general inference framework has three functionalities:

1. The network should be able to accurately transmit the information of the noises ε,
which is assumed to be distributed according to some non-i.i.d. Gaussian distribution.

2. The network should be able to learn the prior information from the training data set,
which can be used to provide high-quality estimations.

3. The forward evaluation of the network can be calculated more efficiently than the
classical iterative algorithm.

Based on the three criteria above, we designed a specific INet structure in the previous
section, which is illustrated in Figure 2. The network contains three components. The first
component, named DNet, undertakes the denoising task, which is expected to learn the
noise structure and provide estimated clean data. The second component, named CECInv,

22

Variational Inverting Network

Input µ Σ

Figure 3: The tiny U-Net architecture employed for constructing DNet.

is a small-scale classical inversion, in which every inverse of sparse matrices can be explicitly
calculated, and the results are some dense matrices. Clearly, only matrix multiplications are
needed during the computations, which can be more efficiently implemented than solving
linear equations. The third component, named ENet, can be viewed as an enhancing layer,
which learns the residual of the inexact inversion obtained by the CECInv layer with the
background truth. More details of the three components are listed below:

1. DNet is chosen to be a small U-Net architecture, as illustrated in Figure 3, containing
three encoder blocks, two decoder blocks, and symmetric skip connections under each
scale.

2. A small-scale classical inversion (which may be different for each problem) is employed
as the CECInv layer, providing a low-resolution estimate (which may contain some
artifacts).

3. For the ENet, we adopt two types of neural networks: U-Net with rescale layers
(details are given in Remark 12) and Fourier neural network (FNO) (Li et al., 2020b).
We will provide specific settings later, since different parameters are employed for the
two numerical examples.

As for the SNet, it is adopted to infer the variational posterior parameters {αi(d;WS)}∞i=1,
{βi(d;WS)}∞i=1 from the noisy measurement data d. Similar to the finite-dimensional de-
noising case (Yue et al., 2019), we use the DnCNN (Zhang et al., 2017) architecture with
five layers, and the feature channels of each layer are set to be 64.

Combining INet and SNet, we illustrate the whole framework in Figure 4 with ENet
has chosen to be the U-Net that contains rescale layers. It is easy to train our model
based on the objective function presented in (2.58) by using the stochastic gradient descent
algorithm or any variant optimization techniques. As for the finite-dimensional case, each
term of (2.49) can be intuitively explained. The INet and SNet are updated from the terms
I1 and I2, respectively, by controlling the discrepancy between the variational posteriors
and the priors. Corresponding to the noise in the training dataset, the term I3 couples INet
and SNet together, generating gradients simultaneously during backpropagation.

For any new noisy data d, the trained INet can be used to obtain the final estimated
result directly and explicitly. Additionally, SNet can be used to easily infer the noise
information, even with complicated non-i.i.d. configurations, by inputting the noisy data.

23

Jia, Wu, Li, Meng

DNet

d

CECInv

est_u

ENet

SNet

INet

d

Figure 4: A particular example of the VINet framework (ENet is illustrated by a U-Net
architecture).

Numerically, the related PDEs are solved using the finite element method, which is
implemented with the open software FEniCS (Version 2019.1.0). Additional information on
FEniCS can be found in (Logg et al., 2012). The related neural networks are implemented
with the open software PyTorch (Version 1.12.1+cu115). The mesh of the finite element
method is generated automatically by the FEniCS command UnitSquareMesh(·). Since the
mesh is regular, the finite difference discretization can also be adopted based on the same
grid points. Therefore, we use the finite difference method to compute the integral formulas
involved in Terms 1 and 3 of the loss functional (2.49). All programs were run on a computer
with an Intel(R) Core(TM) i9-12900KF (CPU), a GeForce RTX 3080 (GPU) with 12 GB
memory, and Ubuntu 20.04.1 LTS (OS).

Remark 12 It should be mentioned that the ENet is a mapping between two infinite-
dimensional spaces, which is typically specified as a neural network with discretization-
invariant property, e.g., the neural network proposed in (Bhattacharya et al., 2021; Nelsen
and Stuart, 2021; Li et al., 2020a,b). In the present work, we employed the FNO (Li et al.,
2020b) as one possible choice of the ENet, which learns a fixed number of Fourier modes for
each layer, making the whole network process discretization-invariant. Besides the FNO,
we also used the U-Net as one option for the ENet. As is well-known, the U-Net structure
does not have discretization-invariant property. To overcome this obstacle, we added rescale
layers as the input and output layers. The core idea of the rescale layer is that the input
function is viewed as being discretized on a mesh by the finite element method, so we can
compute the function values on any different discretized meshes. With rescale layers, we
projected the input functions on a fixed mesh (e.g., a mesh generated by UnitSquareMesh(·)
command in FEniCS with mesh size 150 × 150) and then projected the output function on

24

Variational Inverting Network

a desired mesh by a rescale layer. Numerical examples show that the U-Net with rescale
layers processes the discretization-invariant property to some extent.

3.2 A simple smoothing model

3.2.1 Basic settings

Consider an inverse source problem of the elliptic equation

−α∆w + w = u in Ω,

∂w

∂n
= 0 on ∂Ω,

(3.1)

where Ω = [0, 1]2 ⊂ R2, α > 0 is a positive constant, and n denotes the outward normal
vector. The forward operator H is defined as follows:

Hu = (w(x1), w(x2), · · · , w(xNd))
T , (3.2)

where u ∈ Hu := L2(Ω), w denotes the solution of (3.1), and xi ∈ Ω for i = 1, . . . , Nd.
In our implementations, the measurement points {xi}Ndi=1 are taken at the coordinates{(

k
20 ,

`
20

)}20

k,`=1
. To avoid the inverse crime (Kaipio and Somersalo, 2005), we discretize

the elliptic equation by the finite element method on a regular mesh (the grid points are
uniformly distributed on the rectangular domain) with the number of grid points being
equal to 400 × 400. All of the training and testing data pairs are generated based on this
discretization. For revealing the impact of the discretization resolution, the related func-
tions are discretized by finite element method on a series of regular mesh with the number
of grid points n = {30× 30, 50× 50, 100× 100, 150× 150, 200× 200, 250× 250, 300× 300}
at the inverse stage.

For the operator A in Assumption 10 used in the prior probability measure, it is chosen
to be the negative Laplace operator with Neumann boundary condition, which is similar to
(Bui-Thanh et al., 2013). Hence, the operators in Subsection 2.4 can be specified explicitly
as follows:

Cε0 = (ε−1
0 Id + δ(−∆)α/2)−2, Cp(d;WI) = (a(d;WI)Id + δ(−∆)α/2)−2.

To simplify the numerical implementations, we choose α = 2, which makes the operators
Cε0 and Cp(d;WI) to be discretized as illustrated in (Bui-Thanh et al., 2013). Since the
fractional Laplace operator needs to be discretized differently (Bui-Thanh and Nguyen,
2016; Lischke et al., 2020), we leave the case α 6= 2 for our future research.

Concerned with the CECInv layer, we employed a classical truncated singular value
method (Engl et al., 1996). Specifically, the inverse method can be written in the form

Rλmd̂ = qλm(H∗H)H∗d̂, (3.3)

where d̂ is the output of the DNet, and

qλm(λ) =

{
λ−1, λ ≥ λm,
0, λ < λm,

(3.4)

25

Jia, Wu, Li, Meng

with λm denoting a predefined truncate level. In the above, the operator qλm(H∗H) ap-
pearing in (3.3) should be understood as the functional calculus for bounded self-adjoint
operators, as described in Chapter 2 of (Engl et al., 1996). The PDEs were discretized on a
regular mesh with the number of grid points being equal to 30×30, which is relatively small
compared with the forward discretization. Based on such a small mesh, we can calculate the
related inversion of the sparse matrices generated by the finite element method explicitly,
i.e., there is no need to solve a lot of sparse linear equations.

In our experiments, we generate 1000 training function parameters u based on a Gaussian
probability measure with mean function equal to constant 2 and covariance operator given
by

C−1 = α2(Id−∇ · (Θ∇·))2, (3.5)

where Θ := diag(10, 1) and α = 0.01. For testing the proposed methods, we generate two
types of testing datasets with 100 function parameters u for each one. Specifically, type 1
test datasets are generated by a Gaussian probability measure with the same settings as the
training datasets. Type 2 test datasets are generated by a Gaussian probability measure
with the mean function given by 2+0.2 sin(2πx) sin(2πy) and the same covariance operator
as the training datasets. Since, as mentioned in Remark 1, we may not know the ideal
background truth practically, type 2 test datasets are designed to test the generalization
abilities of the proposed VINet framework.

Previous studies (Yue et al., 2019, 2020) have implied that multiplicative noises can
be removed efficiently by a non-i.i.d. noise model. Therefore, multiplicative noises are
added to the clean data dc to generate noisy data d in order to test the performance of the
proposed VINet on non-i.i.d. noise cases. In the training stage, we add noises according to
d = dc+a(η�dc), where � is an element-wise product, η ∼ N (0, Id), and a ∼ U [−0.1, 0.1].
In the testing stage, we take a = 0.1, i.e., d = dc + 0.1(η � dc), where η ∼ N (0, Id).

Input

rescale

ūp Cp

rescale

Figure 5: The U-Net architecture is employed for constructing ENet. The input discretized
functions are projected onto a fixed mesh by a rescaling layer. Then, through a
conventional U-Net, the output functions are obtained on the fixed mesh. Finally,
the output functions are projected onto the required mesh by a rescaling layer.

On the one hand, the ENet has been chosen to be a U-Net, as illustrated in Figure 5,
which contains four encoder blocks, three decoder blocks, symmetric skip connections under
each scale, and two rescale blocks as the input and output layers. For simplicity, we refer
to this as U-ENet. On the other hand, we also take ENet to be an FNO, as illustrated

26

Variational Inverting Network

Fourier layer 1
rescale

Fourier layer 2 Fourier layer 3 Fourier layer 4

+

Fourier layer

(a)

(b)

Figure 6: The FNO architecture is employed for constructing ENet (this figure is nearly the
same as Figure 2 in (Li et al., 2020b)). (a) The full architecture of FNO: Input
functions are lifted to a higher-dimensional channel space by a neural network
P . Four Fourier layers are employed to enhance the results of the CECInv layer.
Finally, the functions are projected back to the target dimensions (2 in our setting)
by a neural network Q. (b) Fourier layers: Upper part: the Fourier transform
F is applied; a linear transform R is implemented on the lower Fourier modes;
then the inverse Fourier transform F−1 is applied. Lower part: a local linear
transform W is applied.

in Figure 6, which contains one lift layer, four Fourier integral operator layers, and one
project layer. We set the maximal number of Fourier modes to be twelve for each Fourier
integral operator, and the original inputs are lifted to a higher dimensional representation
with a dimension equal to thirty-two. These settings are the same as the original paper
of FNO (Li et al., 2020b) for two-dimensional problems. For simplicity, we refer to this as
FNO-ENet. Lastly, we should mention that the input layer of ENet contains two channels:
the output of the CECInv layer and the variance function obtained from DNet. The output
layer of ENet also contains two channels: the mean function and the function parameter in
the covariance operator.

For training the VINet, we first train the DNet and SNet, then train the ENet and
SNet with the trained DNet (parameters are fixed), which makes the two components more
interpretable and reduces the training time. For this example of DNet, we use the Adam
optimizer to train for 70 epochs with an initial learning rate of 0.0001, halved every 10
epochs. For the U-ENet and FNO-ENet, we also use the Adam optimizer to train for 15
epochs with an initial learning rate of 0.0001, halved every 10 epochs. The whole training
times of this example were 1789.89 and 1536.15 seconds (approximately 30 and 27 minutes)
for VINet with U-ENet and FNO-ENet, respectively.

3.2.2 Numerical results

We compare the results of VINet, the mean-field based variational inference method (MFVI)
exhibited in Algorithm 1, and the truncated singular value decomposition (TSVD) method

27

Jia, Wu, Li, Meng

shown in formula (3.3). For the MFVI method, the estimated function u highly depends on
the particular choices of the prior measure. Here, we assume that the distribution generating
the truth is known, which means the statistical properties of the truth are known exactly
for the MFVI method. For comparison, we define the relative error as follows:

relative error =
‖ũ− utruth‖L2

‖utruth‖L2

, (3.6)

where ũ is the estimated function.
For the TSVD method, its performance depends on the predefined truncation level. To

determine the optimal truncation level λm, we set the truncation level equal to 2, 1.5, 1, 0.5,
and 0.1. Then we applied the TSVD method to the type 1 test datasets, which provided the
optimal truncation level based on the average relative errors. Detailed results are given in
Table 1. From the table, we can see that the optimal truncation level is 1.0, no matter which
discrete levels are employed. Therefore, we always specify the truncation level to be 1.0 in
the following. In our opinion, the reason the discrete levels are not highly influential is that
the measured noisy data d can only provide limited information, and the background true
parameters are smooth in some sense. For the next numerical example, the discrete level
will be more influential due to the poor regularity of the parameter u. One point should
be mentioned: we employed the discrete strategy illustrated in (Bui-Thanh et al., 2013) to
calculate the eigen-system, i.e., the operator H will never be constructed (only Hu can be
calculated), so a randomized algorithm named double pass (Halko et al., 2011; Villa et al.,
2021) has been employed that does not require H and H∗ to be constructed explicitly.

Table 1: Average relative errors of the estimates obtained by the TSVD.

Truncate level 2.0 1.5 1.0 0.5 0.1

Relative error (n = 302) 0.1527 0.1523 0.1484 0.2020 1.1417

Relative error (n = 502) 0.1484 0.1484 0.1439 0.1945 1.1743

Relative error (n = 1002) 0.1489 0.1488 0.1448 0.1939 1.3359

Relative error (n = 1502) 0.1493 0.1493 0.1455 0.1942 1.3299

Relative error (n = 2002) 0.1494 0.1494 0.1456 0.1942 1.4759

Relative error (n = 2502) 0.1495 0.1495 0.1482 0.1942 1.4752

Relative error (n = 3002) 0.1495 0.1495 0.1482 0.1944 1.4752

From the iteration procedure of Algorithm 1, it is easily seen that the MFVI method
is computationally expensive (see Remark 5). Let us denote Nite as the iterative number
of linear equation solvers employed to solve (H∗Σk∗

invH + C−1
0)ũ = u mentioned in Remark

5. Let kmax be the maximum iterative number of Algorithm 1. In order to reduce the
computational time, we employ the methods given in (Jia et al., 2021b), which calculate

28

Variational Inverting Network

Figure 7: Comparison of the true noise variances and estimated noise variances by the
MFVI and VINet (output of SNet). (a) (b) (c) Noise variances of all parameters
for three different testing examples. (d) (e) (f) Noise variances estimated by
MFVI and the square real noises of some parameters.

the mean function uk in Algorithm 1 with a fine mesh and then project the mean function
to a rough mesh (mesh size n = 50 × 50) to reduce the computational complexity for
updating β. Although the computational complexity has been reduced, we still need to
solve approximately (2Nite + 2)kmax number of PDEs, e.g., if Nite = 100 and kmax = 20,
there are 4040 number of PDEs that need to be solved. Actually, the above illustration is
just a rough estimate, and we only control the errors for calculating uk but not the iteration
number Nite since the accuracy of uk has a large impact on the performance of MFVI. Hence
the number Nite may be larger than 100. Considering the large computational complexity,
we only apply the MFVI method to the first 50 types 1 and 2 testing examples. Since MFVI
is not a learning based method, we can expect that the average performance on the first 50
testing examples is similar to the average performance on the whole testing examples.

Before presenting the numerical results, we should mention that the VINets with U-ENet
and FNO-ENet were all trained when the related function parameters u were discretized
on a regular mesh with a mesh size of 100 × 100. All other inversion results on different
meshes were produced by the same trained VINet. In the following, let us visually compare
the results obtained by TSVD, MFVI, and VINet when the mesh size is equal to 150× 150.
Then, we will provide a detailed comparison of these methods with different mesh sizes.

Let us first compare the estimates of the noise variances given by the MFVI and VINet.
Because type 2 test datasets deviate from the training datasets (more challenging than type

29

Jia, Wu, Li, Meng

1 ones), we only show the results of type 2 test datasets to illustrate the effectiveness of the
proposed VINet. For interested readers, we exhibit the results of type 1 test datasets in the
Appendix. In Figure 7, we depict the estimated noise variances by the MFVI and VINet
and the background true noise variances for three randomly selected testing examples.
In the first line of Figure 7, the estimated variances of all 400 measurement points are
given, with the dashed red line representing the true noise variances, the dash-dotted light
orange line representing the estimation given by MFVI, and the solid green line representing
the estimation given by the SNet in VINet. Obviously, the SNet provides evidently more
accurate estimates of the noise variances for all of the three type 2 test datasets. In the
second line of Figure 7, we use the solid blue line and dash-dotted orange line to represent
the square real noises, i.e., (d − dc)2, and the estimations given by MFVI, respectively.
Obviously, the MFVI method only catches some features of the square real noises, but not
the true noise variances 0.12d2

c . From this figure, we see that the real noise variances 0.12d2
c

can be visually much different from one particular realization (d − dc)2. Hence, it is a
difficult task to estimate 0.12d2

c from the noisy data. Based on one piece of noisy data,
the MFVI method can hardly give a reasonable estimate. However, by learning from the
training datasets, the SNet captures the main features of the true noise variances.

Secondly, let us show the background truth and estimates obtained by the TSVD, MFVI,
VINet with U-ENet, and VINet with FNO-UNet for one randomly selected data from the
type 2 testing datasets. As before, the results of type 1 testing datasets are provided in
the Appendix. In Figure 8, we exhibit the true function in sub-figure (a) and the estimated
functions by the TSVD, MFVI, VINet with U-ENet, and VINet with FNO-ENet in sub-
figures (b)-(e), respectively. Obviously, the TSVD and MFVI methods can only provide a
rough estimate of the true parameter. Comparatively, no matter whether using U-ENet or
FNO-ENet, the proposed VINet captures more detailed structures of the true parameter.
In addition, we show the estimated variance functions of VINet with log-scale in sub-figures
(f) and (g). For this example, compared with the VINet with U-ENet, the VINet with
FNO-ENet gives a less accurate estimate of the dark part (lower right corner) of the true
parameter. The region of the darkest part in sub-figure (e) is larger than the darkest region
in sub-figures (a) and (d). The variance function show in sub-figure (g) just characterize
this inaccuracy, i.e., for the region of darkest part, the values of the variance function in
sub-figure (g) is higher than other region.

At last, let us provide a detailed comparison of these methods with various discrete
meshes. In Table 2, we list the average relative errors of the estimates obtained by the
TSVD, MFVI, VINet with U-ENet, and VINet with FNO-ENet for type 2 test datasets
when the mesh sizes are equal to 30×30, 50×50, 100×100, 150×150, 200×200, 250×250,
and 300× 300. From Table 2, we see that all four methods could provide stable estimates
with different discretized dimensions. It should be mentioned that the VINets with both
U-ENet and FNO-ENet were trained when the discrete mesh size was n = 100 × 100.
The relative errors of the proposed VINets were much smaller than those of the TSVD
and MFVI methods. The TSVD method could only provide an estimate of the function
parameter and the MFVI method gave the estimates with the highest relative errors. From
Figure 8, we actually found that the two VINets provided more details compared with
the TSVD and MFVI methods. In Table 3, we also provided the recorded computing
times on CPU since the TSVD and MFVI methods were tested on CPU. If we ran VINet

30

Variational Inverting Network

Figure 8: (a) Background true function randomly selected from type 2 testing datasets; (b)
Estimate obtained by the TSVD method; (c) Estimate obtained by the MFVI
method; (d) Estimate obtained by the VINet with U-ENet; (e) Estimate obtained
by the VINet with FNO-ENet; (f) Variance function obtained by the VINet with
U-ENet shown in log-scale; (g) Variance function obtained by the VINet with
FNO-ENet shown in log-scale.

on GPU, the running time would be nearly ten times faster than that shown in Table 3.
Obviously, in the inference stage, the two VINets were hundreds or thousands of times
faster than the TSVD and MFVI methods. For the VINets with U-ENet and FNO-ENet,
we took 1789.89 and 1536.15 seconds (approximately 30 and 27 minutes) to train the neural
networks, respectively. The training time plus the inference time was even smaller than that
of the MFVI with mesh sizes n = {250× 250, 300× 300}.

31

Jia, Wu, Li, Meng

Table 2: Average relative errors of the estimates obtained by the TSVD, MFVI, VINet
(U-ENet), and VINet (FNO-ENet) with mesh sizes n = {30 × 30, 50 × 50, 100 ×
100, 150× 150, 200× 200, 250× 250, 300× 300} for the type 2 test datasets.

TSVD MFVI VINet (U-ENet) VINet (FNO-ENet)

Relative error (n = 302) 0.1484 0.3287 0.0881 0.0802

Relative error (n = 502) 0.1439 0.3191 0.0940 0.0849

Relative error (n = 1002) 0.1448 0.3218 0.0980 0.0881

Relative error (n = 1502) 0.1455 0.3279 0.0989 0.0888

Relative error (n = 2002) 0.1456 0.3614 0.0996 0.0894

Relative error (n = 2502) 0.1482 0.3535 0.0997 0.0894

Relative error (n = 3002) 0.1482 0.3520 0.0999 0.0896

Table 3: Average computing times of the TSVD, MFVI, VINet (U-ENet), and VINet (FNO-
ENet) with mesh sizes n = {30× 30, 50× 50, 100× 100, 150× 150, 200× 200, 250×
250, 300 × 300} for the type 2 test datasets. The computing time is measured in
seconds.

TSVD MFVI VINet (U-ENet) VINet (FNO-ENet)

Average time (n = 302) 0.48 25.69 0.0296 0.0122

Average time (n = 502) 1.10 52.72 0.0296 0.0125

Average time (n = 1002) 5.65 330.72 0.0298 0.0203

Average time (n = 1502) 15.21 655.51 0.0299 0.0336

Average time (n = 2002) 31.71 1092.62 0.0305 0.0436

Average time (n = 2502) 55.39 2071.76 0.0305 0.0594

Average time (n = 3002) 86.82 2921.92 0.0311 0.0729

3.3 An inverse source problem

3.3.1 Basic settings

In this subsection, we consider an inverse source problem for the Helmholtz equation with
multi-frequency data which was studied in (Bao et al., 2015)2. Specifically speaking, we

2. Deep learning based methods are employed for statistical inverse problems under the finite-dimensional
setting for CT image reconstruction, PET image reconstruction, and MRI reconstruction (Arridge et al.,
2019). For these problems, the finite-dimensional formulation is widely employed. However, to the
best of our knowledge, there seems little such types of work focused on multi-frequency inverse source
problems governed by the Helmholtz equation (one of the typical and important mathematical models

32

Variational Inverting Network

consider the following Helmholtz equation:

∆w + κ2w = u in R2,

∂rw − iκw = o(r−1/2) as r = |x| → ∞,
(3.7)

where κ is the wavenumber, w is the acoustic field, and u is the acoustic source supported
in an open bounded domain Ω = [0, 1]2. To simulate the problem defined on the infinity
domain R2, we adopt the perfectly matched layer (PML) technique and reformulate the
scattering problem in a bounded domain. Let x = (x, y) ∈ R2. Denote D as a rectangle
containing Ω, and let d1 and d2 be the thickness of the PML layers in the x and y axes,
respectively. Let ∂D be the boundary of D. Define s1(x) = 1+iσ1(x) and s2(y) = 1+iσ2(y),
where σ1, σ2 are positive continuous functions satisfying σ1(x) = 0, σ2(y) = 0 in Ω. For more
details of the PML, please refer to (Bao et al., 2010).

Following the general PML technique, we can deduce the truncated PML problem:

∇ · (s∇w) + κ2s1s2w = u in D,

w = 0 on ∂D,
(3.8)

where the diagonal matrix s = diag(s2(y)/s1(x), s1(x)/s2(y)). The forward operator related
to κ is defined by the Helmholtz equation Hκ(u) = (w(x1), . . . , w(xNd))

T with {xi}Ndi=1 ∈
∂Ω and u ∈ Hu := L2(Ω). Since we consider the multi-frequency case, i.e., a series of
wavenumbers 0 < κ1 < κ2 < · · · < κNf < ∞ are considered, the forward operator has the
following form:

Hu = (Hκ1(u), . . . ,HκNf
(u)) ∈ RNd×NNf . (3.9)

Similar to the simple smoothing model, we generate the training and testing data based on
a fine mesh with the number of grid points equal to 500×500. In the inverse computational
stage, the related functions are discretized by the finite element method on a series of regular
meshes with the number of grid points n = {30× 30, 100× 100, 150× 150, 200× 200, 250×
250, 300× 300}. Concerning the operators Cε0 and Cp, we adopt the same settings as those
in Subsection 3.2 for the simple smoothing model.

For the CECInv layer, we employ the classical recursive linearization method (RLM)
reviewed in (Bao et al., 2015) with κ = 10, 20, 30, 40, 48. The PDEs are discretized on a
regular mesh with the number of grid points equal to 30 × 30, which makes it possible
to directly compute the inverse of all the sparse matrices generated by the finite element
method. Obviously, for a source function, the data generated by PDEs on a fine mesh
with grid points equal to 500 × 500 are different from the data obtained by PDEs on a
coarse mesh, especially when the wavenumber is large. For this example, we take the data
generated by PDEs on the fine mesh with random Gaussian noise as the noisy input data.
The accurate data are recognized as the data generated by solving PDEs with the coarse
mesh, i.e., a mesh with size n = 30 × 30. Hence, the DNet and SNet actually learn the
modeling error and random noise together in this example. Please refer to (Calvetti et al.,
2018; Jia et al., 2019) for more relevant references on model error learning algorithms.

usually defined on infinite-dimensional space (Bao et al., 2015)). So we compare the performance of the
proposed method with the classical recursive linearization method (RLM), which should be sufficient to
reveal the mechanism and superiority of the proposed method.

33

Jia, Wu, Li, Meng

Before presenting the numerical results, we clarify how the training and testing datasets
are constructed. Similar to the strategies employed in (Jia et al., 2019), we introduce the
following formula:

ũ(x, y) :=

3∑
k=1

a1
k exp

(
− a2

k(x− a3
k)

2 − a4
k(y − a5

k)
2

)
, (3.10)

where

a1
k ∼ U [−1, 1], a2

k, a
4
k ∼ U [50, 60], a3

k, a
5
k ∼ U [0.3, 0.7],

with k = 1, 2, 3 and U [a, b] being the uniform distribution between a and b. To demonstrate
the effectiveness of the proposed method, we consider the following nonsmooth source func-
tion:

u(x, y) =


ũ(x, y) for |x− x0| < r1,

−0.5 for r2 ≤ |x− x0| ≤ r1,

0.0 for |x− x0| > r2,

(3.11)

where x0 = (0.5, 0.5)T , r1 ∼ U [0.32, 0.4] and r2 ∼ U [0.42, 0.48]. Based on Eq. (3.11), we
generate 1000 source functions for training and 100 source functions for testing. For testing
the generalization properties, we also test the performance of the trained model on the
following source function:

u†(x, y) = u(x, y) + ũ(x, y), (3.12)

where u and ũ are two functions generated according to Eq. (3.11) and Eq. (3.10), re-
spectively. The functions defined by (3.12) and (3.11) exhibit similar properties but the
function defined in (3.12) can never be generated from Eq. (3.11), which mimics the follow-
ing situation: the constructed learning examples usually cannot contain completely correct
information, i.e., prior knowledge may exhibit bias. In the following, we call the 100 test
source functions generated from Eq. (3.11) and Eq. (3.12) as type 1 and type 2 test
datasets, respectively. One thing should be emphasized is that the training datasets can
be constructed by employing more sophisticated methods and are not restricted to the
presented simple parametric form.

Similar to the simple smooth example, the ENet has been chosen to be either U-Net or
FNO. If we choose ENet to be a U-Net, we will employ the same settings as in Subsection 3.2
and we will still call the ENet U-ENet in the following. When choosing ENet to be a FNO,
we also take the same network structures but set the maximal number of Fourier modes
to be 32 for each Fourier integral operator, and the original inputs are lifted to a higher
dimensional representation with a dimension equal to 64. As before, we call ENet with FNO
structure FNO-ENet in this section. Different from the simple smooth example, the current
CECInv layer uses the measured data of 5 different wavenumbers, i.e., κ = 10, 20, 30, 40, 48.
Due to the small number of wavenumbers, it is better to employ all of the 5 estimated
functions obtained by different wavenumbers. In addition, the variance function of the data
obtained from DNet needs to be propagated to the ENet. Hence, the input layer of ENet

34

Variational Inverting Network

for the current case has 6 channels (the 6 functions are projected on the same mesh) and
the output layer contains 2 channels, i.e., the mean function and function parameter in the
covariance operator.

The training procedure is similar to that in Subsection 3.2. We will first train DNet
and SNet, and then train ENet and SNet with the trained DNet. For the first stage of
training, we used the Adam optimizer to train for 80 epochs with an initial learning rate
of 0.0001, which is halved every 10 epochs. For training U-ENet and FNO-ENet, we also
used the Adam optimizer to train for 25 epochs with an initial learning rate of 0.0001,
which is halved every 10 epochs. The total training times for this example were 33950 and
39687 seconds (approximately 9.4 and 11 hours) for VINet with U-ENet and FNO-ENet,
respectively. The training time was much longer than that of the simple smooth model.
The reasons for this are twofold: a large discrete dimension was employed, which made
the computation of forward problems time consuming (during the training stage, we need
to solve forward PDEs); for the multi-frequency problem, the measured data were more
complex, and the function parameters had sharp edges which required more training loops.

3.3.2 Numerical results

We compare the results of the classical recursive linearization method (RLM) (Bao et al.,
2015), VINet with U-ENet, and VINet with FNO-ENet. The RLM uses multiple frequency
data, i.e., data obtained at a series of wavenumbers. Low frequency data make the RLM
stable with respect to the initialization (accurate initial function is usually hard to deter-
mine) and the high frequency data ensure the accuracy of the RLM. For our experiments,
the data for each wavenumber was added 5% random Gaussian noise. For the RLM, we em-
ployed two types of data, i.e., data d48 obtained when the wavenumbers are κ = 1, · · · , 48,
and data d80 obtained when the wavenumbers are κ = 1, · · · , 80. For the VINets with U-
ENet or FNO-ENet, we used 1000 training data pairs that contain the 1000 training source
functions generated by formula (3.11) and the data d48 generated by solving PDEs on a
fine mesh, i.e., mesh with size n = 500× 500. For training DNet, we also needed the data
d̃48 generated by solving Helmholtz equations on a mesh with mesh size n = 30× 30, which
is a cheap computational procedure due to the small mesh size (all sparse linear solvers
transform to matrix multiplications). The DNet in this example actually learns to remove
two types of noises: 5% random noises and the discrepancies of different discrete models at
measurement points. Lastly, we should emphasize that the VINets with U-ENet and FNO-
ENet were all trained when the mesh size was n = 150 × 150. All of the results for other
meshes were generated by VINets through the rescale layers of U-ENet or the FNO-ENet
directly.

As in Subsection 3.2.2, we only provide the results for type 2 testing datasets (which
have a different generation mechanism than the training datasets) and leave the results
of type 1 testing datasets (which have the same generation mechanism as the training
datasets) in the Appendix. Firstly, let us provide some visual comparisons to acquire
some intuitive impressions about the estimates of different methods. In Figure 9, we show
the results given by DNet with input data d48 that is randomly selected from the type 2
test datasets. In all of the sub-figures of Figure 9, we use the dashed blue line, dashed
orange line, and solid green line to represent the clean data (solution of the rough forward

35

Jia, Wu, Li, Meng

Figure 9: Noisy data (data generated by an accurate forward solver with random Gaussian
noise), clean data (data generated by a rough forward solver), and denoised data
(the output of the DNet) for a randomly selected source function u from type 2
test datasets are shown in (a) data when the wavenumber κ = 10; (b) data when
the wavenumber κ = 30; (c) data when the wavenumber κ = 45; (d), (e), and (f)
are partly enlarged versions of (a), (b), and (c), respectively.

solver with mesh size n = 30 × 30), noisy data (solution of the accurate forward solver
with mesh size n = 500 × 500), and the output of the DNet, respectively. Sub-figures (a)
(b) and (c) provide comparisons when the wavenumbers are chosen to be 10, 30, and 45,
respectively. To provide more details, we exhibit sub-figures (d) (e) and (f) that give the
partly enlarged versions of sub-figures (a) (b) and (c), respectively. When the wavenumber
is small, i.e., κ = 10, we see that the clean data, noisy data, and output of DNet exhibit
no significant differences. The reason is that we only need a rough forward solver when the
wavenumbers are small. As the wavenumbers increase, we need a larger mesh to obtain an
accurate forward solver. From sub-figures (b), (c), (e), and (f), we can clearly find that the
noisy data deviate significantly from the clean data and the outputs of DNet are visually
similar to the clean data, which reflects that DNet has learned the sophisticated model error
mechanism between the accurate and rough forward solvers.

In Figure 10, we show the results of one randomly selected test example from the type
2 test datasets. In sub-figure (a), we exhibit the background true source function. In sub-

36

Variational Inverting Network

Figure 10: (a) One of the background true function in type 2 test datasets; (b) Estimate
obtained by RLM with d48; (c) Estimate obtained by RLM with d80; (d) Es-
timate obtained by VINet with U-ENet; (e) Estimate obtained by VINet with
FNO-ENet; (f) Estimated variance function by VINet with U-ENet shown in
log-scale; (g) Estimated variance function by VINet with FNO-ENet shown in
log-scale.

figures (b) and (c), we provide the estimated source functions of RLM with data d48 and
d80, respectively. It is obvious that the classical RLM can hardly handle the discontinuity,
so the sharp circle cannot be accurately estimated even when the highest wavenumber is
set to 80. In sub-figures (d) and (e), we see that the VINets with U-ENet and FNO-ENet
both yield evidently more accurate estimates compared to the classical RLM. In sub-figures
(f) and (g), we show the variance functions obtained from the VINets with U-ENet and
FNO-ENet in log-scale. The high values of variance functions appear at the changing parts

37

Jia, Wu, Li, Meng

Table 4: Average relative errors of the estimates obtained by the RLM (using data d48

and d80), VINet with U-ENet, and VINet with FNO-ENet with mesh sizes n =
{30× 30, 100× 100, 150× 150, 200× 200, 250× 250, 300× 300} for the type 2 test
datasets.

RLM(d48) RLM(d80) VINet(U-ENet) VINet(FNO-ENet)

Relative error (n = 302) 0.3670 0.3515 - -

Relative error (n = 1002) 0.2727 0.2763 0.0693 0.0969

Relative error (n = 1502) 0.2623 0.2414 0.0630 0.0401

Relative error (n = 2002) 0.2596 0.2246 0.0625 0.0410

Relative error (n = 2502) 0.2581 0.2191 0.0630 0.0425

Relative error (n = 3002) 0.2575 0.2149 0.0645 0.0450

of the source function, especially at the discontinuous boundary, which is reasonable since
discontinuous boundaries are intuitively harder to estimate.

Next, let us give a detailed comparison of RLM and VINet with various discrete meshes.
In Table 4, we show the averaged relative errors on different meshes obtained by RLM with
d48, RLM with d80, VINet with U-ENet, and VINet with FNO-ENet, respectively. From
the table, it can be observed that the discrete level indeed influences the performance
of the classical RLM; the relative errors of the results obtained by RLM are larger than
1% when the discrete mesh size is smaller than n = 200 × 200. Using higher frequency
data d80, the inversion results indeed have lower relative errors. However, due to the
limited measured data (we only assume the measurement points are equally spaced along
the boundary with a number equal to 80), we see that the inverse accuracy increases slowly
when more wavenumbers are employed. When the VINets with U-ENet and FNO-ENet are
employed, the relative errors are around 6% and 4%, respectively. Both types of VINets
provide stable inversion results for different meshes, except the VINet with FNO-ENet when
the mesh size is equal to 100 × 100. This can be rationally explained by the fact that the
function parameter u has a discontinuous sharp boundary which leads to larger numerical
errors when the discrete dimension is small (compared with the frequency truncate level
of FNO). When the function parameter u has better regularity, there seems to be no such
phenomenon, as seen in Table 2.

At last, in Table 5, we give the computing times based on averages of the type 2 test
datasets. Obviously, the inference times of both types of VINet are significantly shorter
than those of the classical RLM. It should be mentioned that all of the computation in the
inference stage is performed on the CPU (not the GPU) since RLM seems more suitable
for running on the CPU. If we calculate the inference of VINet on GPU, the inference
times of VINet will be around 0.015 seconds for both types of VINets. For training the
VINets with U-ENet and FNO-ENet, we take 33950 and 39687 seconds (approximately
9.4 and 11 hours) respectively. The training stage needs only to be calculated once, and
the learned computationally cheap model can be repeatedly employed for similar inversion

38

Variational Inverting Network

Table 5: Average computing times of the RLM (using data d48 and d80), VINet with U-
ENet, and VINet with FNO-ENet with mesh sizes n = {40× 40, 100× 100, 150×
150, 200× 200, 250× 250, 300× 300} for the type 2 test datasets. The computing
time is measured in seconds.

RLM(d48) RLM(d80) VINet(U-ENet) VINet(FNO-ENet)

Average time (n = 302) 0.71 1.26 - -

Average time (n = 1002) 17.27 29.09 0.1929 0.3882

Average time (n = 1502) 53.21 83.32 0.1795 0.4011

Average time (n = 2002) 126.01 210.33 0.1799 0.4313

Average time (n = 2502) 245.93 407.71 0.1800 0.4697

Average time (n = 3002) 495.78 827.83 0.1801 0.5295

tasks. Therefore, using large training times to exchange much slower and more accurate
inversion results is reasonable.

4. Conclusion

In this paper, we have studied inverse problems governed by PDEs with non-i.i.d. noise
assumptions under the Bayesian analysis framework. We have provided a rigorous illustra-
tion of Bayes’ formula under the non-i.i.d. noise setting with the conjugate prior measure.
To construct an efficient approximate sampling algorithm, we have deduced the mean-field
based variational inference (MFVI) method with infinite-dimensional parameters. However,
this deduced algorithm is time-consuming as a large amount of computationally expensive
PDEs need to be solved. To address this issue, we have further constructed a parametric
form of posterior measures based on an intuitive analysis of the approximate measure pro-
posed in the MFVI method and proposed a general inference framework for inverse problems
named VINet. By introducing measure equivalence conditions, we have generalized the evi-
dence lower bound argument to the infinite-dimensional setting, which yields a computable
training method. We have also provided a possible parametric strategy of the parametric
posterior measure, which reflects the equivalent measure assumption that can be satisfied by
designing parametric strategies appropriately. Finally, we have provided a possible specific
network structure that yields a concrete VINet. The VINet has been applied to two inverse
problems that are governed by a simple elliptic equation and the Helmholtz equation. For
both inverse problems, the VINet was able to learn prior information of interested functions
and noises from training examples efficiently and provide proper estimates quickly.

The current VINet framework is proposed based on the analysis of the MFVI method
under the conjugate prior measure, which restricts the form of the posterior measures. Es-
pecially for nonlinear inverse problems, the VINet can only manage linearized problems and
provide an approximate probability measure. As for the MFVI, the approximate probability
measure may be inaccurate for some highly nonlinear problems. Hence, generalizing the

39

Jia, Wu, Li, Meng

semi-conjugate VI methods to the infinite-dimensional setting and constructing the corre-
sponding DNN-based inference method is worthy of investigation in future work. For the
current preliminary studies on numerical aspects, we only employ the U-Net with a rescale
layer and FNO, which is not designed for particular inverse problems. For specific inverse
problems such as inverse scattering problems, special neural networks (Khoo and Ying,
2019) may be employed to construct the INet in our general statistical inference framework.
For the CECInv layer, we only choose a rough discretized classical inverse algorithm for
simplicity. It is interesting to choose the CECInv layer as some classical inverse methods
with surrogates, e.g., polynomial approximations (Li and Marzouk, 2014) and Fourier neu-
ral operator (Li et al., 2020b). We will conduct further investigations on these issues in our
future research.

5. Appendix

5.1 Bayesian well-posedness theory

For inverse problems, it is necessary to find a probability measure µd on H (a separable
Hilbert space), which is known as the posterior probability measure, and is specified by its
density with respect to a prior probability measure µ0. Here, we assume the data d ∈ RNd
as in the main text. The Bayes’ formula on the Hilbert space is defined by

dµd

dµ0
(x) =

1

Zµd
exp

(
− Φ(x;d)

)
, (5.1)

where Φ(·;d) : H → R is a continuous function, and exp
(
− Φ(·;d)

)
is integrable with

respect to µ0. The constant Zµd is chosen to ensure that µd is a probability measure.
Under the current setting, Assumption 1 and Theorems 15–16 in (Dashti and Stuart, 2017)
can be stated as follows.

Assumption 13 (Assumption 1 in (Dashti and Stuart, 2017)) Assume that Φ ∈ C(H ×
RNd ;R). Further assume that there are functions Mi : R+ × R+ → R+, i = 1, 2, which are
monotonic and non-decreasing separately in each argument, and with M2 strictly positive.
For all x ∈ H and d,d1,d2 ∈ BRNd (0, r) := {d ∈ RNd : ‖d‖RNd < r}, the following holds:

Φ(x;d) ≥ −M1(r, ‖x‖H),

|Φ(x;d1)− Φ(x;d2)| ≤M2(r, ‖x‖H)‖d1 − d2‖Rd .

Theorem 14 (Theorem 15 in (Dashti and Stuart, 2017)) Let Assumption 13 hold. Assume
that µ0(H) = 1 and that µ0(H∩B) > 0 for some bounded set B in H. Additionally, assume
that for every fixed r > 0, exp (M1(r, ‖x‖H)) ∈ L1

µ0(H;R), where L1
µ0(H;R) represents H-

valued integrable functions under the measure µ0. Then, for every d ∈ RNd, Zµd is positive

and finite, and the probability measure µd given by (5.1) is well-defined.

Theorem 15 (Theorem 16 in (Dashti and Stuart, 2017)) Let Assumption 13 hold. Assume
that µ0(H) = 1 and that µ0(H∩B) > 0 for some bounded set B in H. Additionally, assume
that, for every fixed r > 0,

exp (M1(r, ‖x‖H))
(
1 +M2(r, ‖x‖H)2

)
∈ L1

µ0(H;R).

40

Variational Inverting Network

Then, there is a C = C(r) > 0 such that, for all d,d′ ∈ BRNd (0, r),

dHell(µ
d, µd

′
) ≤ C‖d− d′‖RNd ,

where dHell(·, ·) is the Hellinger distance between two probability measures.

5.2 The infinite-dimensional variational inference theory

In this section, we provide a brief introduction to the infinite-dimensional variational infer-
ence theory with the mean-field assumption. For interested readers, we suggest reading the
paper (Jia et al., 2021b), which comprehensively describes the full ideas and theories of this
topic. It should be emphasized that we have slightly improved the statement of Theorem
11 in (Jia et al., 2021b) to make the theory more applicable to practical problems. See
Theorem 17 below for details.

Remembering the Bayes’ formula (5.1) shown in Subsection 5.1 and denoting Φ(x) :=
Φ(x;d), the variational inference method can be formulated as solving the following opti-
mization problem:

arg min
ν∈A

DKL(ν||µd), (5.2)

where A ⊂M(H) is a set of measures. HereM(H) is the set of Borel probability measures
on H.

For a fixed positive constant M , we assume the variable x = (x1, . . . , xM). Restricted
to the settings in the main text, the constant M = 2 and x = (u,σ). Generally, the Hilbert
space H and set A can be specified as

H =
M∏
j=1

Hj , A =
M∏
j=1

Aj , (5.3)

where Hj , j = 1, · · · ,M are separable Hilbert spaces and Aj ⊂ M(Hj). Denote ν :=∏M
i=1 ν

i by a probability measure satisfying ν(dx) =
∏M
i=1 ν

i(dx). Based on these assump-
tions, we can rewrite the minimization problem (5.2) as

arg min
νi∈Ai

DKL

(M∏
i=1

νi
∣∣∣∣µd) (5.4)

for suitable sets Ai with i = 1, 2, · · · ,M . Now, we introduce the approximate probability
measure ν given in (5.2) which is equivalent to µ0, defined by

dν

dµ0
(x) =

1

Zν
exp

(
− Φν(x)

)
. (5.5)

Comparing with the finite-dimensional case, we may assume that the potential Φν(x) can
be decomposed as

exp (−Φν(x)) =
M∏
j=1

exp
(
−Φj

ν(xj)
)
, (5.6)

41

Jia, Wu, Li, Meng

where x = (x1, · · · , xM). As illustrated in (Jia et al., 2021b), this approach does not
incorporate the parameters in the prior probability measure into the hierarchical Bayes’
model. Therefore, the following assumption needs to be introduced.

Assumption 16 Let us introduce a reference probability measure

µr(dx) =

M∏
j=1

µjr(dxj), (5.7)

which is equivalent to the prior probability measure with the following relation:

dµ0

dµr
(x) =

1

Z0
exp(−Φ0(x)). (5.8)

For each j ∈ {1, 2, · · · ,M}, there exists a predefined continuous function aj(ε, xj) satisfying

Eµ
j
r [aj(ε, ·)] < ∞, where ε ∈ (0, εj0) with εj0 being a small positive number and xj ∈ Hj.

Additionally, we assume that the approximate probability measure ν is equivalent to the
reference measure µr and the Radon–Nikodym derivative of ν with respect to µr is given by

dν

dµr
(x) =

1

Zr
exp

(
−

M∑
j=1

Φr
j(xj)

)
. (5.9)

Following Assumption 16, we know that the approximate measure can be decomposed
as ν(dx) =

∏M
j=1 ν

j(dxj) with

dνj

dµjr
=

1

Zjr
exp

(
− Φr

j(xj)
)
, (5.10)

where Zjr = Eµ
j
r
(

exp
(
− Φr

j(xj)
))

ensures that νj is a probability measure. For j =
1, 2, . . . ,M , let Zj be defined as a Hilbert space embedded in Hj . Then, for j = 1, 2, · · · ,M ,
we introduce

R1
j =

{
Φr
j

∣∣∣ sup
1/N≤‖xj‖Zj≤N

Φr
j(xj) <∞ for all N > 0

}
,

R2
j =

{
Φr
j

∣∣∣ ∫
Hj

exp
(
−Φr

j(xj)
)

max(1, aj(ε, xj))µ
j
r(dxj) <∞, for ε ∈ [0, εj0)

}
,

where εj0 and aj(·, ·) are defined as in Assumption 16. With these preparations, we can
define Aj (j = 1, 2, · · · ,M) as follows:

Aj =

{
νj ∈M(Hj)

∣∣∣∣ νj is equivalent to µjr with (5.10) holding true,
and Φr

j ∈ R1
j ∩ R2

j

}
. (5.11)

Now, we state the main theorem that yields practical iterative algorithms.

42

Variational Inverting Network

Theorem 17 Assume that the approximate probability measure in problem (5.4) satisfies
Assumption 16. For j = 1, 2, · · · ,M , we define T jN = {xj | 1/N ≤ ‖xj‖Zj ≤ N}, where N

is a positive constant. Each reference measure µjr is assumed to satisfy supN µ
j
r(T

j
N) = 1.

In addition, we assume

sup
xi∈T iN

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)
1A(x)

∏
j 6=i

νj(dxj) <∞ (5.12)

and ∫
Hi

exp

(
−
∫
∏
j 6=iHj

(Φ0(x) + Φ(x))1Ac(x)
∏
j 6=i

νj(dxj)

)
Mi(x)µir(dxi) <∞, (5.13)

where A := {x |Φ0(x) + Φ(x) ≥ 0}, and Mi(x) := max (1, ai(ε, xi)) , i, j = 1, 2, · · · ,M .
Then, problem (5.4) admits a solution ν =

∏M
j=1 ν

j ∈M(H) satisfying

dν

dµr
∝ exp

(
−

M∑
i=1

Φr
i (xi)

)
, (5.14)

where

Φr
i (xi) =

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj) + Const (5.15)

and

νi(dxi) ∝ exp
(
− Φr

i (xi)
)
µir(dxi). (5.16)

It should be pointed out that this theorem and the meanings of R1
j and R2

j (j = 1, . . . ,M)
are slightly different from the statements given in (Jia et al., 2021b). The proof of Theorem
11 in (Jia et al., 2021b) can be taken step by step to prove Theorem 17. In fact, the present
version can be seen as an improved version of Theorem 11 in (Jia et al., 2021b), which can
be verified more easily for practical problems.

5.3 Proof details

Proof of Theorem 3
Proof To prove the theorem, it suffices to verify the conditions given in Theorem 17.
Specifically speaking, we need to verify the following four inequalities:

T1 = sup
u∈TuN

∫
(R+)Nd

Φ(u,σ)νσ(dσ) <∞,

T2 = sup
σ∈TσN

∫
Hu

Φ(u,σ)νσνu(du) <∞,

T3 =

∫
(R+)Nd

exp

(
−
∫
Hu

Φ(u,σ)νu(du)

)
max(1, a(ε,σ))µσ0 (dσ) <∞,

T4 =

∫
Hu

exp

(
−
∫

(R+)Nd
Φ(u,σ)νσ(dσ)

)
max(1, ‖u‖2Hu)µu0(du) <∞.

43

Jia, Wu, Li, Meng

For term T1, we have

T1 ≤ sup
u∈TuN

1

2

∫
(R+)Nd

(
Nd∑
k=1

1

σk
‖d−Hu‖22 +

Nd∑
k=1

log σk

)
νσ(dσ)

≤

(
1 + sup

u∈TuN
‖d−Hu‖22

)∫
(R+)Nd

Nd∑
k=1

(
1

σk
+ log σk

)
νσ(dσ)

≤C
∫

(R+)Nd

Nd∑
k=1

(
exp

(
ε′

σk

)
+ σε

′
k

)
νσ(dσ)

≤C
∫

(E+)Nd
exp (−Φσ(σ)) max(1, a(2ε′,σ))µσ0 (dσ) <∞,

where ε′ < ε0/2 and C is a generic constant that may be different from line to line.
For term T2, we have

T2 ≤ sup
σ∈TσN

1

2

Nd∑
k=1

(
1

σk
+ log σk

)∫
Hu

(
1 + ‖d−Hu‖22

)
νu(du).

Considering νu ∈ Au, we get∫
Hu

(
1 + ‖d−Hu‖22

)
νu(du) ≤ C

∫
Hu

(1 + ‖u‖2Hu)νu(du) <∞

and
Nd∑
k=1

(
1

σk
+ log σk

)
≤

Nd∑
k=1

(
1

σk
+ σk

)
≤ 2NNd <∞,

which indicates T2 <∞.
Using the estimate

exp

(
−
∫
Hu

1

2

(
‖d−Hu‖2Σ +

Nd∑
k=1

log σk

)
νu(du)

)
≤ exp

(
−1

2

Nd∑
k=1

log σk

)
,

we can estimate T3 as follows:

T3 ≤
∫

(R+)Nd

Nd∏
k=1

σ
−1/2
k max (1, a(ε,σ))µσ0 (dσ)

≤
√
Nd

∫
(R+)Nd

Nd∑
k=1

σ
−1/2
k max(1, a(ε,σ))µσ0 (dσ) <∞,

where the last inequality follows from the properties of inverse Gamma distribution. Notice
that

exp

(
−1

2

∫
(R+)Nd

‖d−Hu‖22 +

Nd∑
k=1

log σkν
σ(dσ)

)

≤ exp

(
−1

2

Nd∑
k=1

∫
(R+)Nd

log σkν
σ(σ)

)
<∞.

44

Variational Inverting Network

Then, for term T4, we have

T4 ≤ C
∫
Hu

max(1, ‖u‖2Hu)µu0(du) <∞. (5.17)

The proof is completed by noting the general theory shown in Subsection 5.2 in the Ap-
pendix.

Proof of Theorem 6
Proof Let us firstly give the explicit form of the operator H∗. Taking f = (f1, . . . , fNd)

T ∈
RNd and g =

∑∞
k=1 gkek ∈ Hu, we have

〈H∗f , g〉L2 = 〈f , Hg〉`2 =

∞∑
k=1

λkgk〈f , Sek〉`2 =

∞∑
k=1

λkgk

Nd∑
i=1

fiek(xi),

which implies

H∗f =
∞∑
k=1

(
Nd∑
i=1

fiλkek(xi)

)
ek(x). (5.18)

Then, we have

H∗Σ∗invHū0 =
∞∑
k=1

λkū0kH
∗Σ∗invSek

=
∞∑
k=1

λkū0kH
∗ (ek(x1)α∗1/β

∗
1 , . . . , ek(xNd)α

∗
Nd
/β∗Nd

)T
=
∞∑
j=1

(
Nd∑
i=1

α∗i
β∗i

∞∑
k=1

λkū0kek(xi)λjej(xi)

)
ej(x).

(5.19)

With these preparations, we find that

(H∗Σ∗invH + C−1
0)−1C−1

0 ū0 =
∞∑
j=1

α−1
j∑Nd

i=1
α∗i
β∗i

∑∞
k=1 λk

ū0k
ū0j
ek(xi)λjej(xi) + α−1

j

ū0jej(x),
(5.20)

which obviously implies the desired conclusion.

Proof of Theorem 9
Proof Based on Eq. (2.34), we have

ūp =Cp
[
(H∗Σ∗invH + C−1

0)u† +H∗Σ∗invε+ C−1
0 (ū0 − u†)

]
=u† + Cp

[
H∗Σ∗invε+ C−1

0 (ū0 − u†)
]
,

(5.21)

45

Jia, Wu, Li, Meng

which yields

E0

[
‖ūp − u†‖H

]
≤E0 [‖CpH∗Σ∗invε‖Hu] + ‖CpC−1

0 (ū0 − u†)‖Hu

≤E0

[
‖CpH∗Σ∗invε‖2Hu

]1/2
+ ‖ū0 − u†‖Hu

=tr
(
CpH∗Σ∗invΣΣ∗invHC∗p

)1/2
+ ‖ū0 − u†‖Hu .

(5.22)

Now, we have

E0[‖ūp(d;WI)− u†‖Hu] ≤E0[‖ūp(d;WI)− ūp‖Hu] + E0[‖ūp − u†‖Hu], (5.23)

which yields the required estimate by inserting the above inequality (5.22).

Proof of Theorem 11

Proof Because the operator A is assumed to be a self-adjoint and positive definite, it holds
for appropriate f that

〈(a+ δAα/2)f, f〉 ≤ 〈(a+ δAα/2)f, f〉 ≤ 〈(ā+ δAα/2)f, f〉, (5.24)

where we denote a := a(d;WI) and omit all of the identity operators. For concision, we
omit the identity operators in the proof when there are no ambiguities from the context.
Obviously, we also have

〈(a+ δAα/2)2f, f〉 ≤ 〈(a+ δAα/2)2f, f〉 ≤ 〈(ā+ δAα/2)2f, f〉, (5.25)

when choosing appropriate f in each estimate. According to Theorem 2.25 (Feldman-Hajek
theorem) in (Prato and Zabczyk, 2014), we only need to prove the following two results:

1. C1/2
ε0 H = C1/2

p H = H0,

2. the operator T := (C−1/2
p C1/2

ε0)(C−1/2
p C1/2

ε0)∗ − Id is a Hilbert-Schmidt operator on H̄0.

First, we prove (1). Taking arbitrary u ∈ C1/2
ε0 H gives

u = C1/2
ε0 v for some v ∈ H. (5.26)

The variable can be rewritten as u = C1/2
p C−1/2

p C1/2
ε0 v. Considering (5.25), we have

‖C−1/2
p C1/2

ε0 v‖2H =‖(a+ δAα/2)(ε−1
0 + δAα/2)−1v‖2H

≤‖(ā+ δAα/2)(ε−1
0 + δAα/2)−1v‖2H

=
∞∑
k=1

(
ā+ δλ

α/2
k

ε−1
0 + δλ

α/2
k

)2

v2
k

≤C‖v‖2H <∞,

(5.27)

46

Variational Inverting Network

which implies u ∈ C1/2
p H. Conversely, we assume u ∈ C1/2

p H with u = C1/2
p v for some

v ∈ H. Similarly, we can rewrite u = C1/2
ε0 C

−1/2
ε0 C1/2

p v. In the following, we give estimates of

C−1/2
ε0 C1/2

p v which is more complex than the estimate (5.27). Obviously, we have

‖C−1/2
ε0 C1/2

p v‖2H =
∞∑

k,`=1

vkv`〈C−1/2
ε0 C1/2

p ek, C−1/2
ε0 C1/2

p e`〉H =
∞∑

k,`=1

vkv`Bk,`. (5.28)

For the term Bk,`, we have

Bk,` =〈(a− ε−1
0)C1/2

p ek, (a− ε−1
0)C1/2

p e`〉H + 2〈(ε−1
0 − a)C1/2

p ek, e`〉+ 〈ek, e`〉
=B1

k,` +B2
k,` +B3

k,`.
(5.29)

For the term B1
k,`, we have

B1
k,` ≤C‖(a+ δAα/2)−1ek‖H‖(a+ δAα/2)−1e`‖H
≤C‖(a+ δAα/2)−1ek‖H‖(a+ δAα/2)−1e`‖H

=C
1

a+ δλ
α/2
k

1

a+ δλ
α/2
`

.

(5.30)

Hence, we further obtain

∞∑
k,`=1

B1
k,` ≤ C

 ∞∑
k=1

v2
k +

(
1

a+ δλ
α/2
k

)2
2

<∞. (5.31)

For the term B2
k,`, we have the following estimate

∞∑
k,`=1

vkv`B
2
k,` =2

∞∑
k

vk〈(ε−1
0 − a)C1/2

p ek,

∞∑
`=1

v`e`〉H

≤C
∞∑
k=1

v2
k +

(
1

a+ δλ
α/2
k

)2
 ‖v‖H <∞.

(5.32)

For the term B3
k,`, we find

∞∑
k,`=1

vkv`B
2
k,` ≤ ‖v‖2H <∞. (5.33)

Inserting estimates from (5.31) to (5.33) into (5.28), we arrive at

‖C−1/2
ε0 C1/2

p v‖2H <∞. (5.34)

Hence, the proof of (1) is completed. Before going further, we denote 〈·, ·〉H0 := 〈·, ·〉C1/2ε0
H =

〈(ε0 + δAα/2)·, (ε0 + δAα/2)·〉H. For proving (2), we introduce ẽj = 1

ε−1
0 +δλ

α/2
j

ej for j =

47

Jia, Wu, Li, Meng

1, 2, . . ., which is an orthonormal basis on C1/2
ε0 H. Following simple calculations, we obtain

∞∑
j=1

〈T ẽj , T ẽj〉H0 =
∞∑
j=1

〈(C−1/2
p Cε0C−1/2

p − Id)ẽj , (C−1/2
p Cε0C−1/2

p − Id)ẽj〉H0

=

∞∑
j=1

(I1
j + I2

j + I3
j),

(5.35)

where

I1
j = 〈(C−1/2

p Cε0C−1/2
p − C1/2

ε0 C
−1/2
p)ẽj , (C−1/2

p Cε0C−1/2
p − C1/2

ε0 C
−1/2
p)ẽj〉H0 ,

I2
j = 2〈(C−1/2

p Cε0C−1/2
p − C1/2

ε0 C
−1/2
p)ẽj , (C1/2

ε0 C
−1/2
p − Id)ẽj〉H0 ,

I3
j = 〈(C1/2

ε0 C
−1/2
p − Id)ẽj , (C1/2

ε0 C
−1/2
p − Id)ẽj〉H0 .

Since I2
j can be bounded by I1

j combined with I3
j , we only focus on the estimates of I1

j and

I3
j in the following.

Estimate of I1
j : Because

C−1/2
p C1/2

ε0 − Id =(a+ δAα/2)(ε−1
0 + δAα/2)−1 − Id

=
(
a+ δAα/2 − ε−1

0 − δA
α/2
)

(ε−1
0 + δAα/2)−1

=(a− ε−1
0)(ε−1

0 + δAα/2)−1,

(5.36)

we have

I1
j =〈(C−1/2

p C1/2
ε0 − Id)C1/2

ε0 C
−1/2
p ẽj , (C−1/2

p C1/2
ε0 − Id)C1/2

ε0 C
−1/2
p ẽj〉H0

=〈(a− ε−1
0)Bẽj , (a− ε−1

0)Bẽj〉H0

=〈C−1/2
ε0 [(a− ε−1

0)Bẽj], C−1/2
ε0 [(a− ε−1

0)Bẽj]〉H
≤2I11

j + 2I12
j ,

(5.37)

where Bẽj := Cε0C
−1/2
p ẽj and

I11
j = 〈(ε−1

0 + δAα/2)[aBẽj], (ε
−1
0 + δAα/2)[aBẽj]〉H,

I12
j = ε−2

0 〈(ε
−1
0 + δAα/2)Bẽj , (ε

−1
0 + δAα/2)Bẽj〉H.

For the term I11
j , we have

I11
j =〈(ε−1

0 + δAα/2)

∞∑
k=1

〈aBẽj , ek〉Hek, (ε−1
0 + δAα/2)

∞∑
`=1

〈aBẽj , e`〉He`〉H

=

∞∑
k=1

〈aBẽj , ek〉2H

(
1

ε−1
0 + δλ

α/2
k

)2

=

(
1

ε−1
0 + δλ

α/2
j

)2 ∞∑
k=1

(
1

ε−1
0 + δλ

α/2
k

)2

〈ej , C−1/2
p Cε0(aek)〉2H.

(5.38)

48

Variational Inverting Network

Because

∞∑
j=1

(
1

ε−1
0 + δλ

α/2
j

)2

〈ej , (a+ δAα/2)(ε−1
0 + δAα/2)−2(aek)〉2H

≤ C‖aek‖2H
∞∑
j=1

(
1

ε−1
0 + δλ

α/2
j

)2

<∞,

(5.39)

we obtain

∞∑
j=1

I11
j ≤ C‖aek‖2H

∞∑
j=1

(
1

ε−1
0 + δλ

α/2
j

)2 ∞∑
k=1

(
1

ε−1
0 + δλ

α/2
k

)2

<∞. (5.40)

For the term I12
j , we have

I12
j =〈(ε−1

0 + δAα/2)−1(a+ δAα/2)ẽj , (ε
−1
0 + δAα/2)−1(a+ δAα/2)ẽj〉H

≤2〈(ε−1
0 + δAα/2)−1(aẽj), (ε

−1
0 + δAα/2)−1(aẽj)〉H

+ 2δ2〈(ε−1
0 + δAα/2)−1Aα/2ẽj , (ε

−1
0 + δAα/2)−1Aα/2ẽj〉H.

(5.41)

For the first term on the right-hand side of the above inequality, we have

〈(ε−1
0 + δAα/2)−1(aẽj), (ε

−1
0 + δAα/2)−1(aẽj)〉H

=〈(ε−1
0 + δAα/2)−1

∞∑
k=1

〈aẽj , ek〉ek, (ε−1
0 + δAα/2)−1

∞∑
`=1

〈aẽj , e`〉e`〉H

=

∞∑
k=1

〈aẽj , ek〉2H

(
1

ε−1
0 + δλ

α/2
k

)2

≤ā2

(
1

ε−1
0 + δλ

α/2
j

)2 ∞∑
k=1

(
1

ε−1
0 + δλ

α/2
k

)2

.

(5.42)

For the second term on the right-hand side of (5.41), we have

〈(ε−1
0 + δAα/2)−1Aα/2ẽj , (ε

−1
0 + δAα/2)−1Aα/2ẽj〉H ≤ C

(
1

ε−1
0 + δλ

α/2
j

)2

. (5.43)

Substituting estimates (5.42) and (5.43) into (5.41), we obtain

∞∑
j=1

I12
j ≤ C

∞∑
j=1

(
1

ε−1
0 + δλ

α/2
j

)2

<∞. (5.44)

Combining estimates (5.37), (5.40), and (5.44) leads to

∞∑
j=1

I1
j <∞. (5.45)

49

Jia, Wu, Li, Meng

Estimate of I3
j : For the term I3

j , we find that

I3
j =〈(ε−1

0 + δAα/2)−1[(a− ε−1
0)ẽj], (ε

−1
0 + δAα/2)−1[(a− ε−1

0)ẽj]〉H0

=〈(a− ε−1
0)ẽj , (a− ε−1

0)ẽj〉H

≤C

(
1

ε−1
0 + δλ

α/2
j

)2

,

(5.46)

which implies

∞∑
j=1

I3
j <∞. (5.47)

Combining estimates of I1
j and I3

j , we obtain

∞∑
j=1

〈T ẽj , T ẽj〉H0 <∞, (5.48)

which indicates that T is a Hilbert–Schmidt operator. Hence, the proof is completed.

5.4 More numerical results of simple smoothing model

In this subsection, let us provide the results for TSVD, MFVI, and VINet obtained by
using the type 1 test datasets generated from the same probability measure as the training
datasets.

In Figure 11, we depict the estimated noise variances by the MFVI and VINet and the
background true noise variances for three randomly selected testing examples. In the first
line of Figure 11, the estimated variances of all 400 measurement points are given with
the dashed red line representing the true noise variances, the dashed-dotted light orange
line representing the estimation given by MFVI, and the solid green line representing the
estimation given by the SNet. As in the main test, the SNet provides accurate estimates
of the noise variances for all of the three type 1 test datasets. In the second line of Figure
11, we use the solid blue line and dashed-dotted orange line to represent the square real
noises, i.e., (d − dc)2, and the estimations given by MFVI, respectively. Obviously, the
MFVI method only captures some features of the square real noises but not the true noise
variances.

In Figure 12, we show the background truth and estimates obtained by the TSVD,
MFVI, VINet with U-ENet, and VINet with FNO-ENet for one randomly selected data
from the type 1 testing datasets. Similar conclusions can be drawn as in the main text: the
TSVD and MFVI methods can only capture some major trends of the truth, while the two
types of VINets provide more detailed structures.

At last, in Table 6, we provide a detailed comparison of TSVD, MFVI, VINet with
U-ENet, and VINet with FNO-ENet with various discrete meshes. Similar to the results in
the main text, the relative errors of the two VINets are lower than those of the TSVD and
MFVI methods. All of the methods are stable with respect to different discrete meshes.

50

Variational Inverting Network

Figure 11: Comparison of the true noise variances and estimated noise variances by the
MFVI and VINet (output of SNet). (a) (b) (c) Noise variances of all parameters
for three different testing examples. (d) (e) (f) Noise variances estimated by
MFVI and the square real noises of some parameters.

Table 6: Average relative errors of the estimates obtained by the TSVD, MFVI, VINet
(U-ENet), and VINet (FNO-ENet) with mesh sizes n = {30 × 30, 50 × 50, 100 ×
100, 150× 150, 200× 200, 250× 250, 300× 300} for the type 1 test datasets.

TSVD MFVI VINet (U-ENet) VINet (FNO-ENet)

Relative error (n = 302) 0.1406 0.2301 0.0878 0.0786

Relative error (n = 502) 0.1413 0.2328 0.0933 0.0822

Relative error (n = 1002) 0.1457 0.2499 0.0972 0.0854

Relative error (n = 1502) 0.1481 0.2504 0.0982 0.0865

Relative error (n = 2002) 0.1494 0.2371 0.0989 0.0870

Relative error (n = 2502) 0.1498 0.2499 0.0991 0.0871

Relative error (n = 3002) 0.1499 0.2406 0.0991 0.0871

51

Jia, Wu, Li, Meng

Figure 12: (a) Background true function randomly selected from type 1 testing datasets;
(b) Estimate obtained by the TSVD method; (c) Estimate obtained by the
MFVI method; (d) Estimate obtained by the VINet with U-ENet; (e) Estimate
obtained by the VINet with FNO-ENet; (f) Variance function obtained by the
VINet with U-ENet shown in log-scale; (g) Variance function obtained by the
VINet with FNO-ENet shown in log-scale.

52

Variational Inverting Network

5.5 More numerical results of inverse source problem

Figure 13: Noisy data (data generated by accurate forward solver with random Gaussian
noise), clean data (data generated by rough forward solver), and denoised data
(the output of the DNet) for a randomly selected source function u from type
1 test datasets. (a) Data when the wavenumber κ = 10; (b) Data when the
wavenumber κ = 30; (c) Data when the wavenumber κ = 45; (d)(e)(f) Partly
enlarged versions of (a), (b), and (c), respectively.

As in the main text, we first show the results of DNet. In Figure 13, we use the
dash-dotted blue line, dashed orange line, and solid green line to represent the clean data,
noisy data, and the output of the DNet, respectively. Sub-figures (a), (b), and (c) provide
comparisons when the wavenumbers are chosen to be 10, 30, and 45. To provide more
detail, we exhibit sub-figures (d), (e), and (f) that demonstrate the partly enlarged versions
of sub-figures (a), (b), and (c), respectively. Similar to the main text, the noisy data deviate
largely from the clean data and the outputs of DNet are visually similar to the clean data
when the wavenumber κ = 30, 45. Hence, the DNet learns the sophisticated model error
mechanism between the accurate and rough forward solvers.

In Figure 14, we exhibit the results of one randomly selected test example from the type
1 test datasets. Similar results can be obtained as in the main text. The classical RLM can
hardly handle the discontinuity, even when the highest wavenumber is set to be 80. VINets
with U-ENet and FNO-ENet both yield more accurate estimations.

Finally, we give a detailed comparison for RLM and VINet with various discrete meshes.
In Table 7, we show the average relative errors on different meshes obtained by RLM with
d48, RLM with d80, VINet with U-ENet, and VINet with FNO-ENet, respectively. We

53

Jia, Wu, Li, Meng

Figure 14: (a) One of the background true function in type 1 test datasets; (b) Estimate
obtained by RLM with d48; (c) Estimate obtained by RLM with d80; (d) Es-
timate obtained by VINet with U-ENet; (e) Estimate obtained by VINet with
FNO-ENet; (f) Estimated variance function by VINet with U-ENet shown in
log-scale; (g) Estimated variance function by VINet with FNO-ENet shown in
log-scale.

54

Variational Inverting Network

Table 7: Average relative errors of the estimates obtained by the RLM (using data d48

and d80), VINet with U-ENet, and VINet with FNO-ENet with mesh sizes n =
{30× 30, 100× 100, 150× 150, 200× 200, 250× 250, 300× 300} for the type 1 test
datasets.

RLM(d48) RLM(d80) VINet(U-ENet) VINet(FNO-ENet)

Relative error (n = 302) 0.3349 0.3250 - -

Relative error (n = 1002) 0.2310 0.2321 0.0474 0.1163

Relative error (n = 1502) 0.2114 0.1932 0.0426 0.0443

Relative error (n = 2002) 0.2087 0.1728 0.0406 0.0449

Relative error (n = 2502) 0.2084 0.1653 0.0405 0.0462

Relative error (n = 3002) 0.2100 0.1624 0.0452 0.0489

can see that the discrete level indeed influences the performance of the classical RLM as
illustrated in the main text. By comparing Tables 5 and 7, we see that the relative errors
of VINet with FNO-ENet are both around 4%, but the relative errors of VINet with U-
ENet are around 4% and 6%, respectively. Hence, under the current setting, the VINet
with U-ENet seems to have weaker generalization properties compared with the VINet with
FNO-ENet.

Acknowledgments

This work was supported in part by the National Key Research and Development Program
of China under Grant 2020YFA0713900 in part by the National Natural Science Foundation
of China (NSFC) Project under Grants 12271428, 12090020, and 12090021, in part by the
NSF grant DMS-2208256, in part by the Macao Science and Technology Development Fund
under Grant 061/2020/A2, and in part by the Natural Science Basic Research Plan in
Shaanxi Province of China under Grant 2023-JC-QN-0035.

References

J. Adler and O. Öktem. Deep Bayesian inversion. arXiv:1811.05910, 2018.

S. Agapiou, S. Larsson, and A. M. Stuart. Posterior contraction rates for the Bayesian
approach to linear ill-posed inverse problems. Stoch. Proc. Appl., 123(10):3828–3860,
2013.

S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart. Analysis of the Gibbs
sampler for hierarchical inverse problems. SIAM/ASA J. Uncertainty Quantification, 2:
511–544, 2014.

S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Importance sampling:
intrinsic dimension and computational cost. Stat. Sci., 32(3):405–431, 2017.

55

Jia, Wu, Li, Meng

S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse problems using
data-driven models. Acta Numer., 28:1–174, 2019.

G. Bao, S. N. Chow, P. Li, and H. Zhou. Numerical solution of an inverse medium scattering
problem with a stochastic source. Inverse Probl., 26(7):074014, 2010.

G. Bao, P. Li, J. Lin, and F. Triki. Inverse scattering problems with multi-frequencies.
Inverse Probl., 31(9):093001, 2015.

J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, New York,
second edition, 1980.

A. Beskos, G. Roberts, A. Stuart, and J. Voss. MCMC method for diffusion bridges. Stoch.
Dynam., 08(03):319–350, 2008.

A. Beskos, A. Jasra, E. A. Muzaffer, and A. M. Stuart. Sequential Monte Carlo methods
for Bayesian elliptic inverse problems. Stat. Comput., 25:727–737, 2015.

K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction and
neural networks for parametric PDEs. SMAI J. Comput. Math., 7:121–157, 2021.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

T. Bui-Thanh and Q. P. Nguyen. FEM-based discretization-invariant MCMC methods for
PDE-constrained Bayesian inverse problems. Inverse Probl. Imag., 10(4):943–975, 2016.

T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler. A computational framework for
infinite-dimensional Bayesian inverse problems part I: The linearized case, with applica-
tion to global seismic inversion. SIAM J. Sci. Comput., 35(6):A2494–A2523, 2013.

D. Calvetti, M. M. Dunlop, E. Somersalo, and A. M. Stuart. Iterative updating of model
error for Bayesian inversion. Inverse Probl., 34(2):025008, 2018.

T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE T.
Neural. Network, 6(4):904–917, 1995.

S. L. Cotter, M. Dashti, J. C. Robinson, and A. M. Stuart. Bayesian inverse problems for
functions and applications to fluid mechanics. Inverse Probl., 25(11):115008, 2009.

S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions:
modifying old algorithms to make them faster. Stat. Sci., 28(3):424–446, 2013.

F. Cucker and S. Smale. On the mathematical foundations of learning. B. Am. Math. Soc.,
39(1):1–49, 2001.

T. Cui, K. J. H. Law, and Y. M. Marzouk. Dimension-independent likelihood-informed
MCMC. J. Comput. Phys., 304:109–137, 2016.

56

Variational Inverting Network

M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. Handbook of
Uncertainty Quantification, pages 311–428, 2017.

Masoumeh Dashti, Stephen Harris, and Andrew Stuart. Besov priors for Bayesian inverse
problems. Inverse Probl. Imag., 6(2):183–200, 2012.

N. Davoudi, X. L. Deán-Ben, and D. Razansky. Deep learning optoacoustic tomography
with sparse data. Nat. Mach. Intell., 1:453–460, 2019.

M. M. Dunlop, M. A. Iglesias, and A. M. Stuart. Hierarchical Bayesian level set inversion.
Stat. Comput., 27:1555–1584, 2017.

M. M. Dunlop, D. Slepčcev, A. M. Stuart, and M. Thorpe. Large data and zero noise limits
of graph-based semi-supervised learning algorithms. Appl. Comput. Harmon. A., 49(2):
655–697, 2020.

H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer
Academic Publishers, Netherlands, 1996.

L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence,
RI, second edition, 2010.

Z. Feng and J. Li. An adaptive independence sampler MCMC algorithm for Bayesian
inferences of functions. SIAM J. Sci. Comput., 40(3):A1310–A1321, 2018.

S. Ghosal and A. v. d. Vaart. Fundamentals of Nonparametric Bayesian Inference. Cam-
bridge University Press, United States of America, 2017.

M. Giordano and R. Nickl. Consistency of Bayesian inference with Gaussian process priors
in an elliptic inverse problem. Inverse Probl., 36(8):085001, 2020.

E. Haber and L. Tenorio. Learning regularization functionals–a supervised training ap-
proach. Inverse Probl., 19(3):611–626, 2003.

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

F. Hoffmann, B. Hosseini, Z. Ren, and A. M. Stuart. Consistency of semi-supervised learning
algorithms on graphs: probit and one-hot methods. J. Mach. Learn. Res., 21(186):1–55,
2020.

Bamdad Hosseini and Nilima Nigam. Well-posed Bayesian inverse problems: Priors with
exponential tails. SIAM/ASA J. Uncertainty Quantification, 5(1):436–465, 2017.

J. Jia, J. Peng, and J. Gao. Bayesian approach to inverse problems for functions with a
variable index Besov prior. Inverse Probl., 32(8):085006, 2016.

J. Jia, S. Yue, J. Peng, and J. Gao. Infinite-dimensional Bayesian approach for inverse
scattering problems of a fractional Helmholtz equation. J. Funct. Anal., 275(9):2299–
2332, 2018.

57

Jia, Wu, Li, Meng

J. Jia, B. Wu, J. Peng, and J. Gao. Recursive linearization method for inverse medium
scattering problems with complex mixture Gaussian error learning. Inverse Probl., 35(7):
075003, 2019.

J. Jia, J. Peng, and J. Gao. Posterior contraction for empirical Bayesian approach to inverse
problems under non-diagonal assumption. Inverse Probl. Imag., 15(2):201–228, 2021a.

J. Jia, Q. Zhao, Z. Xu, D. Meng, and Y. Leung. Variational Bayes’ method for functions
with applications to some inverse problems. SIAM J. Sci. Comput., 43(1):A355–A383,
2021b.

J. Jia, P. Li, and D. Meng. Stein variational gradient descent on infinite-dimensional space
and applications to statistical inverse problems. SIAM J. Numer. Anal., 60(4):2225–2252,
2022.

B. Jin and J. Zou. Hierarchical Bayesian inference for ill-posed problems via variational
method. J. Comput. Phys., 229(19):7317–7343, 2010.

J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems. Springer-
Verlag, New York, 2005.

J. P. Kaipio, T. Huttunen, T. Luostari, T. Lähivaara, and P. B. Monk. A Bayesian approach
to improving the born approximation for inverse scattering with high-contrast materials.
Inverse Problems, 35(8):084001, 2019.

H. Kekkonen, M. Lassas, and S. Siltanen. Posterior consistency and convergence rates for
Bayesian inversion with hypoelliptic operators. Inverse Probl., 32(8):085005, 2016.

Y. Khoo and L. Ying. Switchnet: a neural network model for forward and inverse scattering
problems. SIAM J. Sci. Comput., (5):A3182–A3201, 2019.

D. P. Kingma. Variational inference & deep learning: A new synthesis. PhD thesis, Uni-
versity of Amsterdam, 2017.

B. T. Knapik, A. van Der Vaart, and J. H. van Zanten. Bayesian inverse problems with
Gaussian priors. Ann. Statist., 39:2626–2657, 2011.

N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error bounds
for Fourier neural operators. J. Mach. Learn. Res., 22:1–76, 2021.

M. Lassas and S. Siltanen. Can one use total variation prior for edge-preserving Bayesian
inversion? Inverse Probl., 20(5):1537, 2004.

Matti Lassas, Eero Saksman, and Samuli Siltanen. Discretization-invariant Bayesian inver-
sion and besov space priors. Inverse Probl. Imag., 3(1):87–122, 2009.

J. Latz. On the well-posedness of Bayesian inverse problems. SIAM/ASA J. Uncertainty
Quantification, 8(1):451–482, 2020.

J. Li and Y. M. Marzouk. Adaptive constuction of surrogates for the Bayesian solution of
inverse problems. SIAM J. Sci. Comput., 36(3):A1410–A1435, 2014.

58

Variational Inverting Network

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. M. Stuart, and
A. Anandkumar. Neural operator: graph kernel network for partial differential equa-
tions. arXiv:2003.03485, 2020a.

Z. Li, N. B. Kovachki, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier neural operator for parametric partial differential equations. In ICLR, 2020b.

A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M.
Meerschaert, M. Ainsworth, and G. E. Karniadakis. What is the fractional Laplacian?
A comparative review with new results. J. Comput. Phys., 404(1):109009, 2020.

A Logg, K. A. Mardal, and G. N. Wells. Automated Solution of Differential Equations by
the Finite Element Method. Springer, 2012.

N. H. Nelsen and A. M. Stuart. The random feature model for input-output maps between
Banach spaces. SIAM J. Sci. Comput., 243:A3212–A3243, 2021.

N. Petra, J. Martin, G. Stadler, and O. Ghattas. A computational framework for infinite-
dimensional Bayesian inverse problems, part II: Stochastic Newton MCMC with appli-
cation to ice sheet flow inverse problems. SIAM J. Sci. Comput., 36(4):A1525–A1555,
2014.

F. J. Pinski, G. Simpson, A. M. Stuart, and H. Weber. Kullback-Leibler approximation
for probability measures on infinite dimensional space. SIAM J. Math. Anal., 47(6):
4091–4122, 2015a.

F. J. Pinski, G. Simpson, A. M. Stuart, and H. Weber. Algorithms for Kullback-Leibler
approximation of probability measures in infinite dimensions. SIAM J. Sci. Comput., 37
(6):A2733–A2757, 2015b.

G. D. Prato. An Introduction to Infinite-Dimensional Analysis. Springer-Verlag, Berlin
Heidelberg, 2006.

G. D. Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge
University Press, Cambridge, second edition, 2014.

A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numer., 19:451–559, 2010.

S. Sun, G. Zhang, J. Shi, and R. Grosse. Functional variational Bayesian neural networks.
In ICLR, 2019.

B. Szabó, A. W. van der Vaart, and J. H. van Zanten. Frequentist coverage of adaptive
nonparametric Bayesian credible sets. Ann. Statist., 43(4):1391–1428, 2015.

N. G. Trillos, Z. Kaplan, T. Samakhoana, and D. Sanz-Alonso. On the consistency of graph-
based Bayesian semi-supervised learning and the scalability of sampling algorithms. J.
Mach. Learn. Res., 21(28):1–47, 2020.

U. Villa, N. Petra, and O. Ghattas. HIPPYlib: An Extensible Software Framework for
Large-Scale Inverse Problems Governed by PDEs: Part I: Deterministic Inversion and
Linearized Bayesian Inference. ACM Trans. Math. Softw., 47(2):1–34, 2021.

59

Jia, Wu, Li, Meng

Sebastian J. Vollmer. Posterior consistency for Bayesian inverse problems through stability
and regression results. Inverse Probl., 29(12):125011, 2013.

K. Wang, T. Bui-Thanh, and O. Ghattas. A randomized maximum a posteriori method
for posterior sampling of high dimensional nonlinear Bayesian inverse problems. SIAM
J. Sci. Comput., 40(1):A142–A171, 2018.

Z. Wang, T. Ren, J. Zhu, and B. Zhang. Function space particle optimization for Bayesian
neural networks. In ICLR, 2019.

J. Yoo, A. Wahab, and J. C. Ye. A mathematical framework for deep learning in elastic
source imaging. SIAM J. Appl. Math., 78(5):2791–2818, 2018.

Z. Yue, H. Yong, Q. Zhao, L. Zhang, and D. Meng. Variational denoising network: toward
blind noise modeling and removal. In NeurIPS, 2019.

Z. Yue, H. Yong, Q. Zhao, L. Zhang, and D. Meng. Variational image restoration network.
ArXiv, 2008.10796, 2020.

C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt. Advances in variational inference.
IEEE T. Pattern Anal., 41(8):2008–2026, 2018.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian denoiser: residual
learning of deep CNN for image denoising. IEEE T. Image Process., 26(7):3142–3155,
2017.

Q. Zhou, T. Yu, X. Zhang, and J. Li. Bayesian inference and uncertainty quantification
for medical image reconstruction with poisson data. SIAM J. Imaging Sci., 13(1):29–52,
2020.

60

	Introduction
	Variational Inverting Network
	The Bayesian inference method
	The infinite-dimensional variational inference method
	Variational inverting network
	Parametric strategies

	Numerical Examples
	Network structures
	A simple smoothing model
	Basic settings
	Numerical results

	An inverse source problem
	Basic settings
	Numerical results

	Conclusion
	Appendix
	Bayesian well-posedness theory
	The infinite-dimensional variational inference theory
	Proof details
	More numerical results of simple smoothing model
	More numerical results of inverse source problem

