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A Data-Assisted Two-Stage Method for the Inverse Random Source Problem\ast 

Peijun Li\dagger , Ying Liang\ddagger , and Yuliang Wang\S 

Abstract. We propose a data-assisted two-stage method for solving an inverse random source problem of the
Helmholtz equation. In the first stage, the regularized Kaczmarz method is employed to gener-
ate initial approximations of the mean and variance based on the mild solution of the stochastic
Helmholtz equation. A dataset is then obtained by sampling the approximate and corresponding
true profiles from a certain a priori criterion. The second stage is formulated as an image-to-image
translation problem, and several data-assisted approaches are utilized to handle the dataset and ob-
tain enhanced reconstructions. Numerical experiments demonstrate that the data-assisted two-stage
method provides satisfactory reconstruction for both homogeneous and inhomogeneous media with
fewer realizations.
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1. Introduction. Inverse source problems are of great importance in many fields, such
as antenna synthesis, medical imaging, and earthquake monitoring. These problems involve
determining the unknown sources that generate prescribed radiated wave patterns. Over
the past four decades, they have been extensively studied. However, due to the presence of
nonradiating sources, inverse source problems generally do not have unique solutions when
only boundary measurements at a fixed frequency are used [9, 14]. In order to tackle the
difficulty of these issues, attempts have been made to find the least-energy solution [31].
The use of multifrequency data has been employed to guarantee uniqueness and improve the
stability of the problem [7].

In many applications, it is desirable to take into account the uncertainties that may
arise from the unpredictability of the surrounding environment, incomplete information of the
system, or random noise of the measurements. These inverse problems involving such uncer-
tainties are called stochastic inverse problems. A number of theoretical studies for stochastic
inverse scattering problems can be found in [16, 22, 3]. The inverse random source problem
seeks to identify the mean and variance of random sources from the data they produce. In
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1930 PEIJUN LI, YING LIANG, AND YULIANG WANG

[6], a computational framework was proposed for the one-dimensional problem by using the
inverse sine or cosine transform to reconstruct the mean and variance of the random source.
For higher-dimensional problems, the regularized block Kaczmarz and eigenfunction-based
methods were developed in [4] and [27] for the inverse source problem in a homogeneous and
inhomogeneous medium, respectively. In [30], a stability analysis was carried out for the
inverse random source problem of the one-dimensional stochastic Helmholtz equation in a ho-
mogeneous medium driven by white noise. Uniqueness was examined in [29, 28] for the inverse
source problem where the random source was modeled as a generalized microlocally isotropic
Gaussian random field. The existing numerical methods for the inverse random source prob-
lem have several drawbacks: They require a large number of realizations of the stochastic
direct problem, the mean and variance of the source must be continuous for satisfactory re-
construction, and the medium is assumed to be either homogeneous or inhomogeneous but
known. In practice, the inhomogeneous medium may be unknown, which limits the feasibility
of existing numerical methods. Moreover, the accuracy of the reconstruction is affected by
the number of realizations of the stochastic direct problem and the continuity of the mean
and variance of the source.

Recently, machine learning techniques have been successfully applied to a wide range of
scientific areas, particularly for solving classification and segmentation problems. Motivated
by these successes, machine learning algorithms are being applied to solve inverse problems
modeled by parametric PDEs. We briefly introduce two common existing strategies based
on neural networks. The first strategy utilizes neural networks as surrogates for differential
equations, such as the physics-informed neural network [11], the Deep Ritz method [40], and
the weak adversarial neural network [41]. Algorithms are developed to search for unknown
parameters in the PDE model and to obtain numerical solutions over the approximation space
consisting of neural networks. However, retraining the neural network for a different problem
governed by the same PDE is quite expensive. The second main strategy utilizes the training
dataset in the form of paired observations and parameters to create a model that can be
used to make predictions. In such algorithms, the observations are treated as input and the
corresponding exact parameters as the output of a given neural network architecture. The
neural network is trained to learn the mapping from the observations to the parameters, as
demonstrated in [1, 43]. This strategy has been used for data-driven model discovery [10, 36]
to reconstruct governing equations from observed data. Besides these two strategies, there is
an emerging body of work on operator learning. In [13], the authors propose the operator
recurrent neural network to directly learn the inverse operator between infinite-dimensional
spaces. There has also been interest in learning regularizers for inversion, and a comprehensive
account of this topic can be found in [2].

A variety of research endeavors have focused on developing machine learning algorithms to
solve inverse scattering problems. For instance, [26] presents a neural network model featuring
a SwitchNet architecture, designed to learn the direct and inverse maps between the scatterers
and the scattered wave field. The study [38] offers another approach, where the authors blend
the physical model of wave propagation into a deep neural network architecture to address
the inverse problem associated with nonlinear wave equations. A different strategy is evident
in [18], where a fully connected neural network is trained to establish the mapping between
the limited-aperture radar cross-section data and the Fourier coefficients of the unidentified
scatterers.
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INVERSE RANDOM SOURCE PROBLEM 1931

In this work, we introduce a data-assisted two-stage method tailored to address the in-
verse random source problem. The objective is to enable satisfactory reconstructions for
discontinuous mean and variance of the random sources with fewer realizations, even within
a fixed but unknown inhomogeneous medium. During the first stage, the regularized block
Kaczmarz method is deployed to obtain initial approximations, leveraging the mild solution
of the stochastic Helmholtz equation within a homogeneous medium. As we transition to the
second stage, a variety of data-driven techniques are harnessed to learn the mapping from the
approximations to the exact parameters, thereby enhancing prediction accuracy. This stage
is thus structured as an image-to-image translation problem, with the goal of transferring
images between source and target domains while maintaining content representations. Our
approach is characterized by two salient features. First, the incorporation of partial physical
information into the approximation from the initial stage reduces the computational load on
the neural network during the subsequent stage. Second, the approximation matches the dis-
cretized statistics of the source in dimension, facilitating the application of various advanced
machine learning algorithms for image-to-image translation problems. Similar concepts have
been implemented in [42, 39, 12, 33] for deterministic inverse scattering problems and [20] for
diffusive optical tomography.

Data-driven techniques have found wide applications in solving image-to-image translation
problems, including in computer vision, medical imaging, and photo enhancement. In this
work, we carry out a comparative study on the performance of four different such techniques
in the second stage of the experiment. The first method utilizes principal component analysis
(PCA) to reduce the dimensionality of the training data, followed by regression to produce
the reconstructed statistics of the random source. The second method approximates the
image-to-image translation problem as a linear dynamical system using the dynamic mode
decomposition (DMD) approach [35]. The other two methods are based on convolutional
neural networks. The first approach utilizes the U-Net architecture [34], a supervised learning
approach originally designed for image segmentation. The second algorithm, pix2pix [25], is an
advanced method for image-to-image translation based on a conditional generative adversarial
neural network (cGAN). Numerical experiments have been conducted extensively to verify that
these algorithms can effectively improve the reconstruction of the random source.

The paper is outlined as follows. In section 2, the mathematical model for the inverse
random source problem is introduced. In section 3, we present a reconstruction scheme for
the inverse problem based on integral equations and the regularized block Kaczmarz method
and provide an error analysis of the method. In section 4, we detail the two-stage approach,
which involves obtaining an approximation of the statistics using the reconstruction scheme
in the first stage and enhancing it with data-driven techniques in the second stage. Finally,
we present numerical examples to demonstrate the performance of the proposed method in
section 5.

2. Problem statement. Consider the two-dimensional Helmholtz equation driven by a
random source

\Delta u(x,\kappa ) + \kappa 2(1 + \eta (x))u(x,\kappa ) = f(x), x\in \BbbR 2,(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1932 PEIJUN LI, YING LIANG, AND YULIANG WANG

where the wavenumber \kappa is a positive constant, \eta is a deterministic function representing the
relative permittivity of the medium, and the random source f is assumed to be given by

f(x) = g(x) + h(x) \.Wx

with g and h \geq 0 being two real-valued functions and \.Wx being the spatial white noise.
Additionally, we assume that g and h are compactly supported in a rectangular domain
D \subset \BbbR 2, where D \subset BR = \{ x \in \BbbR 2 : | x| <R\} for some R> 0 and \eta is compactly supported in
BR. As usual, the scattered field satisfies the Sommerfeld radiation condition

lim
r=| x| \rightarrow \infty 

\surd 
r(\partial ru - i\kappa u) = 0.(2.2)

There are two problems associated with the model (2.1)--(2.2). The direct problem is to
study the radiated random wave field u for a given random source f . This work focuses on
the inverse random source problem, which aims at determining the mean g and the variance
h2 of the random source f from the radiated wave field u that is measured on the boundary
\Gamma R = \{ x\in \BbbR 2 : | x| =R\} at a discrete set of wavenumbers \kappa j , j = 1,2, . . . ,m.

Previous studies have focused on solving the inverse random source problem with homoge-
neous background media. Based on Green's function, [4] showed that the direct source problem
has a unique mild solution, and a regularized block Kaczmarz method was developed for the
inverse problem. When the background medium is inhomogeneous with a fixed \eta , the explicit
Green function is no longer available. In this case, [27] examined the Lippman--Schwinger inte-
gral equation for the direct problem and tackled the inverse problem by analyzing the Dirichlet
eigenvalue problem of the corresponding Helmholtz equation. However, this strategy depends
on the assumption of an explicit form of \eta for their operation.

This study introduces an innovative data-driven approach suitable for solving the inverse
random source problems mentioned previously for both homogeneous and inhomogeneous
background media. It is worth mentioning that the solution procedure does not rely on the
explicit form of \eta . The training process of the method consists of two stages, which we
abstractly describe as follows:

Stage 1 The training dataset consists of M samples, denoted as \{ (pi, Yi)\} Mi=1, where each
pi represents multifrequency measurements of the wave field and each Yi repre-
sents the corresponding statistics of the source for the ith sample. We apply a
regularized block Kaczmarz method using measurement pi, which will be further
explained in section 3, leading to an initial approximation Xi.

Stage 2 Form a new dataset \{ (Xi, Yi)\} Mi=1, and employ data-driven techniques to obtain
a model \chi that approximates the mapping from the initial approximation Xi in
Stage 1 to the ground truth Yi.

Having obtained the model \chi in Stage 2, we can use it to reconstruct source statistics with
any wave measurement p\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} in two steps. First, by using the regularized Kaczmarz method
as in the training process, we obtain an initial approximation X\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} from the measurement
data p\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}. Second, we input X\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} into the model \chi to obtain a reconstruction \chi (X\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}), which
is expected to provide a better approximation of the exact statistics Y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} than the initial
approximation X\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVERSE RANDOM SOURCE PROBLEM 1933

In this work, we generate the synthetic data by creating random samples of Yi and solving
the direct problem numerically for the measurement data pi. The details for generating the
training dataset can be found in section 5. Note that the function \eta is not a prerequisite
in the Kaczmarz method in Stage 1 or the training process in Stage 2. Its necessity arises
only during the generation of the training dataset, which is a result of acquiring synthetic
data through numerical simulation. In a practical setting, it might be feasible to procure the
dataset via physical measurements, where the \eta can be fixed, but its form is not required
throughout the process. This is a notable aspect of our method, as existing methods typically
rely on a known form of \eta .

3. Stage 1: The Kaczmarz method. Stage 1 is to generate an initial image of the recon-
struction. In this section, we briefly introduce the mild solution to the direct source problem
of the stochastic Helmholtz equation in a homogeneous medium and the regularized block
Kaczmarz method for solving the inverse random source problem. The details can be found
in [4].

3.1. Integral equations. Following [4, Hypothesis 2.4], we assume that g \in L2(D), h \in 
C0,\alpha (D), where \alpha \in (0,1], and h\in L\beta (D), where \beta \in (\beta 0,\infty ] if 3

2 \leq \beta 0 \leq 2 or \beta \in (\beta 0,
3\beta 0

3 - 2\beta 0
) if

1\leq \beta 0 \leq 3
2 . It is shown in [4, Theorem 2.7] that the direct source problem (2.1)--(2.2) admits

a unique mild solution

u(x,\kappa ) =

\int 
D
G(x, y,\kappa )g(y)dy+

\int 
D
G(x, y,\kappa )h(y)dWy a.s.,(3.1)

where G(x, y,\kappa ) =  - \mathrm{i}
4H

(1)
0 (\kappa | x  - y| ) is Green's function of the two-dimensional Helmholtz

equation with H
(1)
0 being the Hankel function of the first kind with order zero.

Taking the expectation on both sides of (3.1), we get

\BbbE (u(x,\kappa j)) =
\int 
D
G(x, y,\kappa j)g(y)dy.

Splitting the above equation into the real and imaginary parts leads to

\BbbE (\Re u(x,\kappa j)) =
\int 
D
\Re G(x, y,\kappa j)g(y)dy,(3.2)

\BbbE (\Im u(x,\kappa j)) =
\int 
D
\Im G(x, y,\kappa j)g(y)dy.(3.3)

The mean g of the source f can be obtained by solving either (3.2) or (3.3). We use (3.2) to
present the results in the numerical experiments.

Taking the variance on both sides of the real and imaginary parts of (3.1) yields

\BbbV (\Re u(x,\kappa j)) =
\int 
D
| \Re G(x, y,\kappa j)| 2h2(y)dy,(3.4)

\BbbV (\Im u(x,\kappa j)) =
\int 
D
| \Im G(x, y,\kappa j)| 2h2(y)dy.(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1934 PEIJUN LI, YING LIANG, AND YULIANG WANG

Subtracting (3.5) from (3.4), we obtain

\BbbV (\Re u(x,\kappa j)) - \BbbV (\Im u(x,\kappa j)) =
\int 
D

\bigl( 
| \Re G(x, y,\kappa j)| 2  - | \Im G(x, y,\kappa j)| 2

\bigr) 
h2(y)dy.(3.6)

In accordance with [4], (3.6) yields better reconstruction results than (3.4) or (3.5) since the
singular values of the discretized integral kernel in (3.6) decay more slowly than those in (3.4)
or (3.5). Therefore, (3.6) is adopted to reconstruct h2 in our numerical experiments.

Neglecting the discretization error, the matrix equations corresponding to integral equa-
tions (3.2) and (3.6) can be formally expressed as

Ajq= pj , j = 1, . . . ,m,(3.7)

where pj denotes the data \BbbE (\Re u(x,\kappa j)) or \BbbV (\Re u(x,\kappa j)) - \BbbV (\Im u(x,\kappa j)) at measurement points
on \Gamma R, q stands for the unknown statistics g or h2 taken at sampling points in D, and Aj

represents the matrix arising from discretizing the integral kernels in (3.2) and (3.6). To solve
the ill-posed equation (3.7), a regularized block Kaczmarz method is introduced in [4]: Let
q0\gamma = 0, \left\{     

q0 = qk\gamma ,

qj = qj - 1 +A\ast 
j (\gamma I +AjA

\ast 
j )

 - 1(pj  - Ajqj - 1), j = 1, . . . ,m,

qk+1
\gamma = qm,

(3.8)

where k= 0,1, . . . is the iteration index of the outer loop, A\ast 
j denotes the conjugate transpose

of Aj , \gamma > 0 is the regularization parameter, and I is the identity matrix.
Combined with multifrequency data, the regularized Kaczmarz method effectively provides

reconstructions for the statistics of the random source. However, the method has several
limitations:

1. Accurately approximating the mean or variance using their corresponding averages in
(3.2) or (3.6) typically requires a large number of trials. In practice, only a limited
number of realizations are available, leading to significant errors in the approximation
on the left-hand side of (3.2) or (3.6). Figure 1 shows the reconstructions of the
mean of a random source using different numbers of realizations. The accuracy of the
reconstruction improves as more realizations are used for the reconstruction.

2. The sequence generated by the Kaczmarz method typically converges to a minimum
norm solution of the linear system as demonstrated by [32]. Consequently, it is difficult
for the method to reconstruct a random source with discontinuous statistics, particu-
larly for the regularized method. Figure 1 displays a random source with a piecewise
constant mean. Although increasing the number of realizations improves the result,
accurately capturing the edges of the true mean remains challenging.

3. The mild solution (3.1) and the Fredholm integral equations (3.2)--(3.6) are based
on the assumption that the medium is homogeneous. Consequently, this method is
inapplicable when the medium is inhomogeneous. In this case, [27] suggested an
approach utilizing the corresponding Dirichlet eigenvalue problem of the Helmholtz
equation. Nonetheless, this strategy falls short when dealing with complex media and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVERSE RANDOM SOURCE PROBLEM 1935

(a) (b) (c) (d)

Figure 1. Reconstructions with different numbers of trials: (a) the exact mean of a random source and
(b/c/d) the reconstruction of mean with measurements of 10/100/1000 realizations.

can become exceedingly time consuming when higher-order eigenfunctions are required
to depict sources exhibiting higher-frequency modes. Crucially, the technique becomes
inapplicable once more when the function \eta remains unidentified.

In this work, we adopt the regularized Kaczmarz method (3.8) as the first stage to generate
an initial image of the reconstruction, assuming a homogeneous background medium for both
homogeneous and inhomogeneous cases. Subsequently, the initial approximation is then passed
to the second stage of the image-to-image translation problem, which can be effectively handled
by data-driven techniques. When the medium is inhomogeneous, the information of the fixed
but unknown function \eta is encoded in the mapping from the initial approximation to the
ground truth and is thereby implicitly learned by the algorithms.

3.2. Error analysis. In this section, we present an error analysis for the regularized Kacz-
marz method (3.8). The total error is composed of two parts: The expectation or variance in
the expression of data pj must be approximated by the sample mean, and the measurement
of the wave field u(x,\kappa j) may be polluted by random noise. In [5], the convergence of the
regularized Kaczmarz method (3.8) was shown for noise-free data. However, since data always
contain noise in practice, an accumulated error may be generated during the iteration, leading
to the semiconvergence phenomenon, which was examined in [15] for the Kaczmarz method.
For a comprehensive account of the general Kaczmarz method for solving a linear system of
equations, we refer the reader to [32].

We provide a theoretical analysis of the semiconvergence property of the regularized block
Kaczmarz method. Recall that the integral equation (3.2) or (3.6) for the reconstruction of g
or h2 can be written as a matrix equation system (3.7):

Ajq= pj , j = 1, . . . ,m.

The system (3.7) is equivalent to

Aq= p,

where

A=

\left[   A1

...
Am

\right]   , p=

\left[   p1
...
pm

\right]   .
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1936 PEIJUN LI, YING LIANG, AND YULIANG WANG

In the inverse source problem, there are usually fewer measurement points compared to
the number of sampling points of the solution. As a result, it is reasonable to assume that
the matrix A has full row rank. Let A\dagger denote the pseudoinverse of A and q\dagger = A\dagger p denote
the minimal norm solution of the inverse source problem with the noise-free data p. Let
\~p = [\~p\ast 1, \~p

\ast 
2, . . . , \~p

\ast 
m]\ast denote the perturbed data and qk\gamma , \~q

k
\gamma denote the outputs of the scheme

(3.8) with p and \~p as inputs, respectively, after k iterations.
The error between the minimal norm solution q\dagger and the kth iteration \~qk\gamma can be decom-

posed into two terms:

\~qk\gamma  - q\dagger = (\~qk\gamma  - qk\gamma ) + (qk\gamma  - q\dagger ).

According to [5, Theorem 3.7], we have qk\gamma  - q\dagger \rightarrow 0 as k \rightarrow \infty and \gamma \rightarrow 0. In the following,

we analyze \~qk\gamma  - qk\gamma , which represents the data error accumulated to the kth iteration. To this
end, we decompose

\gamma I +AA\ast =

\left[   \gamma I +A1A
\ast 
1 \cdot \cdot \cdot A1A

\ast 
m

...
. . .

...
AmA\ast 

1 \cdot \cdot \cdot \gamma I +AmA\ast 
m

\right]   =D\gamma +L+L\ast ,

where the matrices D\gamma and L are given by

D\gamma =

\left[   \gamma I +A1A
\ast 
1 \cdot \cdot \cdot 0

...
. . .

...
0 \cdot \cdot \cdot \gamma I +AmA\ast 

m

\right]   , L=

\left[     
0 0 \cdot \cdot \cdot 0

A2A
\ast 
1 0 \cdot \cdot \cdot 0

...
. . .

. . .
...

AmA\ast 
1 \cdot \cdot \cdot AmA\ast 

m - 1 0

\right]     .

Let

M\gamma = (D\gamma +L) - 1, Q\gamma =A\ast M\gamma A, B\gamma = I  - Q\gamma .(3.9)

The regularized block Kaczmarz method (3.8) can be equivalently formulated as

qk+1
\gamma =B\gamma q

k
\gamma +A\ast M\gamma p.(3.10)

To estimate the error term \~qk\gamma  - qk\gamma , we define

\~B\gamma =B\gamma P, R\gamma = (D2\gamma )
1/2M\gamma A,(3.11)

where P is the orthogonal projection onto the range space of A\ast , i.e., \scrR (A\ast ), and D2\gamma denotes
the matrix D\gamma with \gamma being replaced by 2\gamma .

Lemma 3.1. Let \sigma \gamma be the smallest nonzero singular value of R\gamma . Then it holds that \sigma \gamma \leq 
1and

\| \~B\gamma \| =
\sqrt{} 

1 - \sigma 2
\gamma .
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INVERSE RANDOM SOURCE PROBLEM 1937

Proof. From (3.9), we can see that

B\ast 
\gamma B\gamma = (I  - Q\gamma )

\ast (I  - Q\gamma ) = I  - A\ast (M\gamma +M\ast 
\gamma )A+Q\ast 

\gamma Q\gamma .

By substituting the expression of Q\gamma and performing a straightforward calculation, we obtain

Q\ast 
\gamma Q\gamma =A\ast M\ast 

\gamma AA
\ast M\gamma A=A\ast M\ast 

\gamma (D\gamma +L+L\ast  - \gamma I)M\gamma A

=A\ast M\ast 
\gamma [(D\gamma +L) + (D\gamma +L\ast ) - D2\gamma ]M\gamma A

=A\ast M\ast 
\gamma 

\bigl[ 
M - 1

\gamma + (M\ast 
\gamma )

 - 1  - D2\gamma 

\bigr] 
M\gamma A

=A\ast (M\gamma +M\ast 
\gamma )A - A\ast M\ast 

\gamma D2\gamma M\gamma A.

Combining the above equations with the expression in (3.11) of R\gamma , we obtain

B\ast 
\gamma B\gamma = I  - A\ast M\ast 

\gamma D2\gamma M\gamma A= I  - R\ast 
\gamma R\gamma ,

which then implies that \sigma \gamma \leq 1.
A simple calculation shows that

\~B\ast 
\gamma 
\~B\gamma = P (I  - R\ast 

\gamma R\gamma )P = P  - PR\ast 
\gamma R\gamma P = P  - R\ast 

\gamma R\gamma P = (I  - R\ast 
\gamma R\gamma )P.

Let U\Sigma V \ast be the compact singular value decomposition (SVD) of R\gamma . Then we have P = V V \ast 

and

\~B\ast 
\gamma 
\~B\gamma = (I  - V \Sigma 2V \ast )V V \ast = V V \ast  - V \Sigma 2V \ast = V (I  - \Sigma 2)V \ast .

Letting \lambda \mathrm{m}\mathrm{a}\mathrm{x} denote the largest singular value of a square matrix, we get

\| \~B\gamma \| =
\sqrt{} 

\lambda \mathrm{m}\mathrm{a}\mathrm{x}( \~B\ast 
\gamma 
\~B\gamma ) =

\sqrt{} 
1 - \sigma 2

\gamma ,

which completes the proof.

The following result is concerned with the accumulated data error \~qk\gamma  - qk\gamma of the regularized
Kaczmarz method.

Theorem 3.2. Let ek = \~qk\gamma  - qk\gamma . Then

\| ek\| \leq 

\Biggl[ 
1 - (1 - \sigma 2

\gamma )
k

2

1 - (1 - \sigma 2
\gamma )

1

2

\Biggr] 
\| A\ast M\gamma (\~p - p)\| .(3.12)

Proof. Using (3.10), we can write

ek+1 =B\gamma e
k +A\ast M\gamma (\~p - p),

which leads to

ek =

\Biggl[ 
k - 1\sum 
i=0

(B\gamma )
i

\Biggr] 
A\ast M\gamma (\~p - p).(3.13)
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1938 PEIJUN LI, YING LIANG, AND YULIANG WANG

Since \scrR (A\ast ) is an invariant subspace of B\gamma , we can further deduce from (3.13) that

ek =

\Biggl[ 
k - 1\sum 
i=0

( \~B\gamma )
i

\Biggr] 
A\ast M\gamma (\~p - p).(3.14)

Let Sk
\gamma =

\sum k - 1
i=0 (

\~B\gamma )
i. Utilizing Lemma 3.1, we have

\| Sk
\gamma \| \leqslant 

k - 1\sum 
i=0

\| \~B\gamma \| i =
1 - \| \~B\gamma \| k

1 - \| \~B\gamma \| 
=

1 - (1 - \sigma 2
\gamma )

k

2

1 - (1 - \sigma 2
\gamma )

1

2

.

Combining the above inequality with (3.14), we obtain the estimate given in (3.12).

The following corollary further provides an upper bound of the accumulated data error.

Corollary 3.3. The error ek = \~qk\gamma  - qk\gamma in the regularized block Kaczmarz algorithm satisfies
the following estimates:

(i) if 2\leq k\leq 2\sigma  - 2
\gamma , then

\| ek\| \leq 
\delta \gamma \sigma 

2
\gamma 

2(1 - (1 - \sigma 2
\gamma )

1

2 )
k;(3.15)

(ii) if k > 2\sigma  - 2
\gamma , then

\| ek\| \leq \delta \gamma 

1 - (1 - \sigma 2
\gamma )

1

2

,(3.16)

where \delta \gamma = \| A\ast M\gamma (\~p - p)\| .
Proof. We start by introducing the function

\Psi (\sigma ,k) =
1 - (1 - \sigma 2)

k

2

1 - (1 - \sigma 2)
1

2

.

It follows from Lemma 3.1 that 0 < \sigma \gamma \leq 1. It is easy to verify that the function \Psi (\sigma \gamma , k)
admits an upper bound for any k:

\Psi (\sigma \gamma , k)\leq 
1

1 - (1 - \sigma 2
\gamma )

1

2

.(3.17)

Substituting (3.17) into (3.12) leads to the upper bound (3.16) for any k.

For k\geq 2, we observe that the function 1 - (1 - \sigma 2
\gamma )

k

2 satisfies the estimate

1 - (1 - \sigma 2
\gamma )

k

2 \leq k

2
\sigma 2
\gamma .

This implies that

\Psi (\sigma \gamma , k)\leq 
k\sigma 2

\gamma 

2(1 - (1 - \sigma 2
\gamma )

1

2 )
.(3.18)
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INVERSE RANDOM SOURCE PROBLEM 1939

When k\leq 2\sigma  - 2
\gamma , the estimate in (3.18) can be further reduced to

k\sigma 2
\gamma 

2(1 - (1 - \sigma 2
\gamma )

1

2 )
\leq 1

1 - (1 - \sigma 2
\gamma )

1

2

.

For 2\leq k\leq 2\sigma  - 2
\gamma , substituting (3.18) into (3.12) yields a sharper upper bound (3.15).

Remark 3.4. The above corollary indicates that the data error is bounded above by an
increasing function of k when k is smaller than 2\sigma  - 2

\gamma , which is consistent with the observed
accumulation of data errors during iteration in numerical experiments. In practice, the value
of \sigma  - 2

\gamma might be very large. Although it is unclear how to achieve a sharper estimate in
Corollary 3.3, the result tracks the behavior of the data error.

In the following analysis, we examine the impact of data perturbations on the reconstruc-
tion process, taking the example of reconstructing the mean g. For simplicity, we use the
same notation to represent the function and its discrete values obtained from measurements
or sampling. Recall that the data pj correspond to measurements of \BbbE (\Re u(x,\kappa j)). Due to
data noise, the perturbed data \~pj are modeled by \BbbE N (\Re \~u(x,\kappa j)), where N denotes the number
of realizations, \BbbE N stands for the sample mean, and \~u(x,\kappa j) represents the measurement of
u(x,\kappa j) with additive noise. We use \~uj and uj to denote \~u(x,\kappa j) and \BbbE (u(x,\kappa j)), respectively.
It should be noted that the analysis for reconstructing h2 follows a similar process.

By (3.1), the wave field uj satisfies

u(x,\kappa j) =

\int 
D
G(x, y,\kappa j)g(y)dy+

\int 
D
G(x, y,\kappa j)h(y)dWy a.s.

Neglecting the discretization error, we can express uj and \~uj as

\Re uj =Ajg, \Re \~uj =Aj(g+ h \.Wx) + rj ,

where h\sim \scrN (0,H), rj \sim \scrN (0, \delta 2I) with H =diag[h(xi)
2] and \delta indicating the noise level. We

define

uR =

\left[   \Re u1
...

\Re um

\right]   , \~uR =

\left[   \Re \~u1
...

\Re \~um

\right]   , and r=

\left[   r1
...
rm

\right]   .

We further assume that the components of h, r1, r2, . . . , rm are independent, leading to

\~uR \sim \scrN (Ag,AHA\ast + \delta 2I).

Thus, we obtain

\~uR  - uR \sim \scrN (0,\Theta ),

where \Theta =AHA\ast + \delta 2I. Moreover, from the definition of \~p and the central limit theorem, we
deduce that

\surd 
N(\~p - p)\sim \scrN (0,\Theta ).
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1940 PEIJUN LI, YING LIANG, AND YULIANG WANG

The following corollary provides an estimate for the accumulated data error in the distri-
bution sense and is a direct consequence of Theorem 3.2.

Corollary 3.5. Let ek = \~qk\gamma  - qk\gamma . Then

\surd 
Nek

d - \rightarrow \scrN (0,\Lambda k),

where

\| \Lambda k\| \leq 

\Biggl[ 
1 - (1 - \sigma 2

\gamma )
k

2

1 - (1 - \sigma 2
\gamma )

1

2

\Biggr] 2

\| A\ast M\gamma \| 2 \| \Theta \| .

These results demonstrate the dependence of the perturbation in the data and the variance
of the accumulated data error on the number of realizations N and the noise level \delta .

4. Stage 2: Data-driven techniques. In this section, we present four data-driven tech-
niques as the second stage of our proposed method. Let \{ (Xi, Yi)\} Mi=1 be the training dataset,
where Xi \in \BbbR n\times n represents a matrix computed using the measurement data corresponding
to the ith sample from the first stage, Yi \in \BbbR n\times n denotes the exact mean or variance of the
ith sample after discretization, and M is the total number of samples. The goal of the sec-
ond stage is to learn the mapping from the approximations obtained in the first stage to the
exact statistical properties by utilizing the training dataset. We present two methods in data
analysis and two methods based on neural networks.

4.1. PCA. PCA is a well-established approach for dimensionality reduction in statistical
analysis [23]. Recently, Bhattacharya et al. [8] combined PCA with neural network techniques
to solve inverse problems of parametric PDEs. In our work, we build on the idea of PCA to
reduce the dimension of input and output spaces and then apply linear regression as the second
stage of our algorithm.

To prepare for training, we flatten each Xi into a vector xi \in \BbbR n2

and construct the input
data matrix X \in \BbbR n2\times M by concatenating xi as columns. Similarly, we construct the output
data matrix Y \in \BbbR n2\times M with the flattened Yi, denoted by yi \in \BbbR n2

. After concatenating the
input and output data matrices, we perform mean subtraction and use X and Y to denote the
data matrices after the mean centering step for convenience. Then we utilize SVD to derive
the low-dimensional representation of the data. Specifically, we first implement SVD

E :=

\biggl[ 
X
Y

\biggr] 
=U\Sigma V\ast ,

whereU\in \BbbR 2n2\times 2n2

andV \in \BbbR M\times M are orthonormal matrices and\Sigma \in \BbbR 2n2\times M is the diagonal
singular value matrix. Then we keep the first s\mathrm{P}\mathrm{C}\mathrm{A} principal components to form a low-rank
approximation of the data matrix E. Let \Psi s\mathrm{P}\mathrm{C}\mathrm{A}

= [u1 u2 . . . us\mathrm{P}\mathrm{C}\mathrm{A}
], where ui denotes the ith

column of U. From the Eckart--Young theorem, we conclude that \Psi s\mathrm{P}\mathrm{C}\mathrm{A}
minimizes

\| E - \Psi \Psi \ast E\| F

over all orthonormal \Psi \in \BbbR 2n2\times s\mathrm{P}\mathrm{C}\mathrm{A} , where \| \cdot \| F is the Frobenius norm.
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INVERSE RANDOM SOURCE PROBLEM 1941

To predict reconstructions in the testing process, we use linear regression with the selected
principal components. Denote

\Psi s\mathrm{P}\mathrm{C}\mathrm{A}
=

\biggl[ 
\Psi X

\Psi Y

\biggr] 
,

where \Psi X ,\Psi Y \in \BbbR n2\times s\mathrm{P}\mathrm{C}\mathrm{A} . Given a matrix X\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} obtained from the first stage, we flatten it
into a vector x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} \in \BbbR n2

and compute the corresponding output y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} as

y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} =\Psi Y \Psi 
\dagger 
Xx\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t},

where \Psi \dagger 
X denotes the pseudoinverse of \Psi X . We finally obtain the prediction Y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} by reshap-

ing y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} into an n\times n matrix.

4.2. DMD. DMD is a powerful technique for dimensionality reduction of dynamic systems
[35]. By casting the mapping between the approximation and the exact statistical properties
as a dynamical system, DMD can be leveraged to linearly approximate the inverse mapping
for our problem.

We assume that the columns of data matrices X and Y obey a dynamical system of
the form yi = F (xi). The objective of DMD is to approximate this dynamic system using
a linear operator Y = AX. To this end, we employ the truncated SVD for matrix X to
obtain a rank-s\mathrm{D}\mathrm{M}\mathrm{D} low-dimensional approximation of the form Xs\mathrm{D}\mathrm{M}\mathrm{D}

=Us\mathrm{D}\mathrm{M}\mathrm{D}
\Sigma s\mathrm{D}\mathrm{M}\mathrm{D}

V\ast 
s\mathrm{D}\mathrm{M}\mathrm{D}

,

where Us\mathrm{D}\mathrm{M}\mathrm{D}
\in \BbbR n2\times s\mathrm{D}\mathrm{M}\mathrm{D} , Vs\mathrm{D}\mathrm{M}\mathrm{D}

\in \BbbR M\times s\mathrm{D}\mathrm{M}\mathrm{D} , and \Sigma s\mathrm{D}\mathrm{M}\mathrm{D}
\in \BbbR s\mathrm{D}\mathrm{M}\mathrm{D}\times s\mathrm{D}\mathrm{M}\mathrm{D} . The optimal linear

transformation As\mathrm{D}\mathrm{M}\mathrm{D}
is then computed from the reduced dimension-s\mathrm{D}\mathrm{M}\mathrm{D} coefficient space as

As\mathrm{D}\mathrm{M}\mathrm{D}
=U\ast 

s\mathrm{D}\mathrm{M}\mathrm{D}
YVs\mathrm{D}\mathrm{M}\mathrm{D}

\Sigma  - 1
s\mathrm{D}\mathrm{M}\mathrm{D}

.

Computing the eigendecomposition of matrix As\mathrm{D}\mathrm{M}\mathrm{D}
leads to an approximation of the spec-

trum of the underlying Koopman operator of the system.
To predict outputs using the linearized system, we take a matrixX\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} generated in the first

stage and flatten it to obtain x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}. Subsequently, the flattened prediction y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} is computed
via

y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} =Us\mathrm{D}\mathrm{M}\mathrm{D}
As\mathrm{D}\mathrm{M}\mathrm{D}

U\ast 
s\mathrm{D}\mathrm{M}\mathrm{D}

x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} =YVs\mathrm{D}\mathrm{M}\mathrm{D}
\Sigma  - 1

s\mathrm{D}\mathrm{M}\mathrm{D}
U\ast 

s\mathrm{D}\mathrm{M}\mathrm{D}
x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}.

Finally, we obtain the prediction Y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} by reshaping y\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t} into an n\times n matrix.

4.3. U-Net--based network. The disparity between the reconstructed profile from
Stage 1, exhibiting a smooth image, and the true sharp profile of the source (as shown in
Figure 1) presents an opportunity to leverage image segmentation tools for learning the map-
ping between them. In this regard, we test the applicability of the U-Net convolutional neural
network [34], which offers a unique encoder-decoder architecture that delivers highly accu-
rate image segmentation. As shown in Figure 2, the U-Net approach preserves features of
the input images with skip connections. The architecture of the neural network consists of a
contracting path and an expansive path. The contracting path involves sequentially applying
a convolution, followed by a batch normalization layer and a ReLU activation function, to
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Channel
number

1

64

128

256

512

512

512

Conv+ BN +ReLU

Up-Conv + BN+ReLU

Concatinate
and skip connection

Output reconstructionInput approximation1

64

128

256

512

512

512

Regularized Kaczmarz
method

Measurement

Figure 2. The U-Net architecture.

perform downsampling. The expansive path is comprised of three components: an upsam-
pling of the feature map, a batch normalization layer, and a ReLU activation function. The
first component is followed by an up-convolution that halves the number of feature channels,
and the third component is used to restore the image to the size of the input image. For each
convolutional layer in the contracting path, the feature maps are passed to the corresponding
layers in the expansive path via the skip connections.

In the training process of the U-Net model \chi , we adopt the L1 error as the loss func-
tion; i.e., we minimize the following functional over the parameter \theta of the neural network
model \chi :

\scrL L1(\chi ) =\BbbE (\| Y  - \chi (X;\theta )\| L1),

where \BbbE denotes the expectation of the underlying distribution from which the training dataset
is sampled. In practice, the expectation is approximated by taking the average value of the
loss function over a batch of training examples. Empirical results suggest that this choice of
L1 error yields more favorable performance as compared to the mean squared error.

Remark 4.1. If we consider the first stage of the overall method as a layer of the neural
network architecture, it may be regarded as a deconvolution layer that incorporates a priori
understanding of the physical characteristics.

4.4. Pix2pix neural network. As an alternative to the U-Net model, we also evaluated the
pix2pix neural network architecture. The pix2pix structure belongs to the family of cGANs,
comprised of a discriminator network \scrD and a generator network \scrG , which cooperate in order
to generate realistic reconstructions [25].

In our experiments, the generator network maps an input image, Xi \in \BbbR n\times n, derived
from the first stage, to an associated reconstruction, \scrG (Xi) \in \BbbR n\times n. On the other hand, the
discriminator network takes in a pair of images, (X,Y )\in \BbbR n\times n\times \BbbR n\times n, as input and produces
a scalar-valued output ranging between 0 and 1. The two networks are jointly trained in
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X G(X)

X

Y

X

Figure 3. The pix2pix algorithm. The generator \scrG learns to fool the discriminator \scrD , while the discrimi-
nator \scrD learns to distinguish the fake (X,\scrG (X)) and real (X,Y ) tuples in the training set.

a competitive manner wherein the generator network endeavors to generate images \scrG (Xi)
that resemble the target images Yi, while the discriminator network attempts to differentiate
between real image pairs (Xi, Yi) and generated image pairs (Xi,\scrG (Xi)), with the output
indicating the probability that an input image pair is real (i.e., it originates from the training
dataset) or generated (i.e., it was produced by the generator network). The training process
is illustrated in Figure 3.

The pix2pix algorithm utilizes a loss function consisting of two distinct components. The
first component, denoted as the adversarial loss, is expressed in terms of a binary cross-entropy
loss and is represented as follows:

\scrL \mathrm{c}\mathrm{G}\mathrm{A}\mathrm{N}(\scrG ,\scrD ) =\BbbE (log\scrD (X,Y )) +\BbbE (log(1 - \scrD (X,\scrG (X)))).

The second component of the loss function is referred to as the reconstruction loss and is
defined as follows:

\scrL L1(\scrG ) =\BbbE (\| Y  - \scrG (X)\| L1).

The total loss is then given by

\scrL (\scrG ,\scrD ) =\scrL \mathrm{c}\mathrm{G}\mathrm{A}\mathrm{N}(\scrG ,\scrD ) + \lambda \scrL L1(\scrG ),

where \lambda represents a weight term that determines the relative importance of each component
in the overall loss function. In practice, the expectations involved in the loss functions are
approximated by sample means over batches of the training data. In the training process, we
solve the optimization problem

argmin
\theta \scrG 

max
\theta \scrD 

\scrL (\scrG ,\scrD ),

where \theta \scrG and \theta \scrD denote the parameters of the neural network models \scrG and \scrD , respectively.
Following the approach proposed in [25], we employ the U-Net and patch-GAN architec-

tures for the generator and discriminator networks, respectively. This choice enables improved
performance and efficiency in a variety of image-to-image translation tasks.
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1944 PEIJUN LI, YING LIANG, AND YULIANG WANG

5. Numerical experiments. In this section, we present a comparative study of the data-
assisted methods for the inverse random source problem.

5.1. Preparation for training. For the reconstruction of the mean function g, the training
dataset is generated as follows. The support of g is the union of three disks Dl with radius
rl and center (al, bl), l = 1,2,3. For any fixed l, the radius rl is generated from the uniform
distribution on [0.2,0.4]. The coordinates al and bl are generated from the uniform distribution
in [ - 1 + rl,1 - rl] so that the disk is randomly located but always contained in the rectangle
D = [ - 1,1] \times [ - 1,1]. Note that the disks are allowed to overlap. All the random numbers
are generated independently from each other, with different but fixed seeds so that the results
can be reproduced. The source term g is set to 0 in D and l in Dl for l= 1,2,3 in a successive
manner. The source term h is fixed as

h(x) = 0.6e - 8[(x2
1+x2

2)
1.5 - 0.75(x2

1+x2
2)].(5.1)

The pseudocolor plot of the function h(x1, x2) is shown in Figure 4(a).
To generate the training dataset for the reconstruction of the variance function h, we

switch the roles of g and h. More specifically, we consider the mean function g to be fixed and
given by (5.1). In this setting, we set h to be equal to 0 within the domain D and assign the
values of 1+ l

2 inside each of the three respective disks, Dl, in a stepwise manner for l= 1,2,3.
The disks Dl are generated in accordance with the same method as that used for constructing
the mean function g.

For experiments with an inhomogeneous medium, the function \eta (x) is fixed as

\eta (x) = q(3x1,3x2),(5.2)

where

q(x) = 0.5
\Bigl[ 
0.3(1 - x1)

2e - x2
1 - (x2+1)2  - (0.2x1  - x31  - x52)e

 - x2
1 - x2

2  - 0.03e - (x1+1)2 - x2
2

\Bigr] 
.

The pseudocolor plot of \eta (x) is shown in Figure 4(b).
The infinite domain is truncated to a finite one using the technique of perfectly matched

layer (PML). The computational domain is [ - 3,3] \times [ - 3,3] with a rectangular PML layer
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Figure 4. (a) Pseudocolor plot of the function h, (b) pseudocolor plot of the function \eta , and (c) computa-
tional domain for the direct problems.
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of thickness 0.5. The direct problem is solved by the finite element method (FEM), and
the synthetic data are measured at 32 uniformly distributed points on the circle centered
at the origin with radius 2. For any fixed source terms, the direct problem is solved for 5
wavenumbers \kappa j = (0.5 + j)\pi , j = 0,1,2,3,4. A schematic of the computational domain for
the direct problems is shown in Figure 4(c).

To generate random numbers, the GNU Scientific Library [17] is used. Mesh generation
is carried out using Gmsh [19], and the FEM is implemented by FreeFEM [21]. To accelerate
the computation of numerous direct problems, PETSc [37] is employed to solve linear systems
with multiple right-hand sides for different realizations. Moreover, Open MPI is utilized for
parallel computing with varying source terms and wavenumbers.

5.2. Stage 1 configuration. The direct problem is solved for fixed source terms g and h,
with 5 distinct wavenumbers \kappa j = (0.5+ j)\pi , j = 0,1,2,3,4. The program is run for each fixed
\kappa j using either 100 realizations for the reconstruction of the mean or 1000 realizations for the
reconstruction of the variance. The resulting data on the measurement circle are processed
using the Kaczmarz algorithm for a homogeneous medium to produce initial reconstructed
images [4]. The reconstructed images are sampled at a uniform grid size of 64\times 64 within the
range of [ - 1,1]\times [ - 1,1]. For regularization, the parameter \gamma is set to 10 - 8. The number of
outer loops is taken to be 1.

5.3. Stage 2 configuration. For the PCA-based regression approach, the reduced di-
mension is set to s\mathrm{P}\mathrm{C}\mathrm{A} = 1000, while for the DMD approach, the reduced dimension is set
to s\mathrm{D}\mathrm{M}\mathrm{D} = 100. We implement the U-Net architecture comprised of convolutional layers of
kernel size 4\times 4 and batch normalization layers, following [24]. The weight \lambda in the pix2pix
algorithm is set to 10. All learning-based approaches are trained and tested using the PyTorch
framework. The training process is accelerated using an Nvidia Tesla P100 GPU.

5.4. Numerical experiments. We present numerical experiments in this section to com-
pare the performance of different data-assisted methods. Unless otherwise specified, the test-
ing dataset consists of 200 randomly generated samples.

Example 5.1. In the first example, we assess the performance of the U-Net method in
Stage 2 with training datasets of varying sizes.

The reconstruction quality of the samples in the testing set is measured by the averaged
L1 relative errors of all samples. The accuracy and training time of the U-Net method are
reported in Table 1. It is observed that as the size of the training dataset increases, the
training time increases and the relative error decreases. However, the accuracy does not
improve significantly when the number of examples exceeds 1600. Therefore, we present
results with a training dataset consisting of M = 1600 samples in the subsequent examples to
compare the performance of different approaches.

Figure 5 displays the loss versus epochs for the U-Net--based method, indicating that the
loss decays slowly after 100 epochs. In the following examples, we present the neural networks
trained with 100 epochs.

Example 5.2. In this example, we reconstruct the mean function g and variance function
h2 of the random source when the background medium is homogeneous.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

6/
23

 to
 1

28
.2

10
.1

07
.1

29
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1946 PEIJUN LI, YING LIANG, AND YULIANG WANG

Table 1
The training time and L1 relative error for the U-Net--based method with different numbers of training

samples.

Size of training set 400 800 1600 3200

Time 34 51 92 130
Relative error 0.24 0.21 0.20 0.19

Figure 5. Loss versus epoches for Example 5.1.

We show representative pseudocolor plots of reconstructed images in Figures 6 and 7.
Columns 1--2 display the ground-truth images and reconstructions from Stage 1 (the Kaczmarz
method), while columns 3--6 show reconstructions after Stage 2 using PCA, DMD, U-Net, and
pix2pix approaches.

The L1 relative error in the testing set is presented in Tables 2 and 3. We observe that the
Kaczmarz reconstructions capture the rough locations of the source but not their boundary
and amplitude. In Stage 2, the PCA and the DMD methods provide better reconstructions,
but the background is still not clear, and the boundary is blurry. With the two neural
network algorithms U-Net and pix2pix, the reconstructions are noticeably enhanced, and the
homogeneous background is clearly separated from the inclusions. This improvement is also
verified by the L1 relative errors in Tables 2 and 3.

Example 5.3. In this example, we reconstruct the mean function g and variance function
h2 of the random source when the medium is inhomogeneous, and the function \eta is given by
(5.2).

Figures 8 and 9 present pseudocolor plots of some representative reconstructions. The
reconstructions from the first stage are worse than the initial approximations in Example 5.2
since the Kaczmarz method is derived utilizing the integral equations corresponding to the
direct problem with a homogeneous medium. In the subsequent stage, the PCA and DMD
approaches provide enhanced reconstructions; however, the background is still unclear. The
U-Net and pix2pix algorithms lead to much improved reconstructions with a clean back-
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INVERSE RANDOM SOURCE PROBLEM 1947

Figure 6. Pseudocolor plots of the mean functions g and their reconstructions in a homogeneous medium.
The columns from the left are the ground-truth images followed by the reconstructed images by the Kaczmarz
method, the PCA-based method, the DMD-based method, the U-Net--based method, and the pix2pix method.

Figure 7. Pseudocolor plots of the variance functions h and their reconstructions in a homogeneous medium.
The columns from the left are the ground-truth images followed by the reconstructed images by the Kaczmarz
method, the PCA-based method, the DMD-based method, the U-Net--based method, and the pix2pix method.

ground, sharp boundary, and correct amplitude. The improvements are also confirmed by
the L1 relative errors shown in Tables 4 and 5, indicating that the hidden information of the
inhomogeneity has been successfully captured by the learning methods.
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Table 2
Training time and L1 relative error for the reconstruction of the mean function g in a homogeneous medium.

Algorithm PCA DMD U-Net pix2pix

Time 4 6 74 693
Relative error 0.62 0.63 0.20 0.22

Table 3
Training time and L1 relative error for the reconstruction of the variance function h in a homogeneous

medium.

Algorithm PCA DMD U-Net pix2pix

Time 4 6 74 729
Relative error 0.90 0.77 0.28 0.30

Figure 8. Pseudocolor plots of the mean functions g and their reconstructions in an inhomogeneous medium.
The columns from the left are the ground-truth images followed by the reconstructed images by the Kaczmarz
method, the PCA-based method, the DMD-based method, the U-Net--based method, and the pix2pix method.

Example 5.4. In this example, the methods are trained with noisy measurements to
reconstruct the mean of the random source when medium is inhomogeneous.

It can be observed from Table 6 that the reconstructions obtained through all the employed
techniques exhibit considerable stability with respect to measurement noise. The next example
is to address the generalization ability of our methods.

Example 5.5. In this example, we test the performance of the methods trained with the
Cylinder dataset on several samples that are distinct from the training set. The medium
is homogeneous, and the mean reconstruction is presented. The first sample includes five
inclusionsm and the second sample is comprised of one disk and two ellipses.
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INVERSE RANDOM SOURCE PROBLEM 1949

Figure 9. Pseudocolor plots of the variance functions h and their reconstructions in an inhomogeneous
medium. The columns from the left are the ground-truth images followed by the reconstructed images by the
Kaczmarz method, the PCA-based method, the DMD-based method, the U-Net--based method, and the pix2pix
method.

Table 4
Training time and L1 relative error for the reconstruction of the mean function g in an inhomogeneous

medium.

Algorithm PCA DMD U-Net pix2pix

Time 4 6 79 697
Relative error 0.74 0.64 0.27 0.28

Table 5
Training time and L1 relative error for the reconstruction of the variance function h in an inhomogeneous

medium.

Algorithm PCA DMD U-Net pix2pix

Time 4 6 104 694
Relative error 1.09 0.75 0.30 0.36

Table 6
L1 relative error of the mean reconstruction with different methods trained with measurement data of

different noise levels in an unknown inhomogeneous medium.

Noise level PCA DMD U-Net pix2pix

0.05 0.64 0.77 0.26 0.27
0.1 0.64 0.73 0.27 0.27
0.2 0.65 0.73 0.27 0.27
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Figure 10. Reconstructed mean of the random source of different shapes with the neural network trained
with the Cylinder dataset. The columns from the left are the ground-truth images followed by reconstructed
images by the Kaczmarz method, the PCA-based method, the DMD-based method, the U-Net--based method, and
the pix2pix method.

Although the test samples differ from the samples in the training set, with more inclusions
or inclusions of different shapes, the U-Net and pix2pix methods can still provide satisfactory
reconstructions of well-separated inclusions with accurate positions, as shown in Figure 10.
All data-based methods improve the reconstruction to varying extents. Compared to the other
methods, the reconstructions of the pix2pix algorithm are less blurry, with the edges clearly
reconstructed.

6. Conclusion. In this work, we have presented a novel approach to solving the inverse
random source problem, a fundamental challenge in many scientific and engineering appli-
cations. Our two-stage method leverages data-assisted techniques to provide accurate and
efficient solutions. In the first stage, we utilize the regularized Kaczmarz algorithm to ob-
tain an approximation of the statistical properties of the random source based on integral
equations. This approximation serves as the input to the second stage, where data-assisted
methods are used to learn the mapping from the approximations to the exact mean and
variance of the source.

To evaluate the effectiveness of our approach, we conduct a comparative study of different
data-assisted approaches. The results demonstrate that neural network--assisted techniques
outperform other methods, offering stable and accurate reconstructions with a relatively small
number of realizations for both homogeneous and inhomogeneous media.
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