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Abstract: We propose a scheme for imaging periodic surfaces using a superlens. By employing
an inverse scattering model and the transformed field expansion method, we derive an approximate
reconstruction formula for the surface profile, assuming small amplitude. This formula suggests
that unlimited resolution can be achieved for the linearized inverse problem with perfectly
matched parameters. Our method requires only a single incident wave at a fixed frequency and
can be efficiently implemented using fast Fourier transform. Through numerical experiments,
we demonstrate that our method achieves resolution significantly surpassing the resolution limit
for both smooth and non-smooth surface profiles with either perfect or marginally imperfect
parameters.
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1. Introduction

Resolution is a crucial factor in any wave imaging system. In traditional imaging systems, such
as optical microscopes, the resolution is limited by approximately half of the wavelength, a rule
known as the Rayleigh criterion or the Abbe diffraction limit. Decreasing the wavelength may not
always be feasible, especially in source imaging problems, and high-frequency incident waves
may cause side effects such as sample damage. Therefore, it is desirable to surpass the diffraction
limit, enabling high resolution to be achieved with low-frequency waves.

Typically, the diffraction limit arises from the inability to capture evanescent waves, which
convey fine details of the imaged object. However, these waves are confined near the object’s
surface, and their amplitude diminishes rapidly as the distance from the object increases.
Consequently, a viable strategy for overcoming the diffraction limit involves recovering evanescent
waves through measurements taken in close proximity to the object. This approach has been
employed in near-field optical microscopy techniques, such as scanning near-field optical
microscopy [1–4] and photon scanning tunneling microscopy [5].

Optical microscopy techniques generate images of samples directly on the measuring device,
often resulting in the loss of depth information or its recovery at a lower resolution. To
reconstruct the full profile of a sample, it is desirable to solve inverse scattering problems based
on the underlying wave equations. For infinite surfaces, the inverse scattering problem involves
reconstructing the surface profile using scattered waves measured on a surface. One prevalent
approach is to construct an objective functional derived from the discrepancy between measured
and computed data for a given surface profile. The surface profile is then identified as a minimizer
of the objective functional through optimization algorithms [6–9]. While these methods offer
versatility in terms of objective functionals and optimization algorithms, they are computationally
expensive and prone to issues related to local minima.

An alternative approach, known as sampling methods, involves designing an indicator function
with high contrast values across the surface profile. The surface can then be visually identified by
plotting the indicator function within a sampling region [10–13]. While sampling methods offer
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the advantages of speed and minimal reliance on prior knowledge, they typically necessitate a
substantial volume of measurement data, which may not be readily available in practical scenarios.
Furthermore, these methods are intrinsically qualitative, leading to potential limitations in the
quantitative precision of the resulting images.

In specific practical situations, surfaces may display a low profile with respect to period
and wavelength. In such instances, techniques based on the transformed field expansion (TFE)
can be utilized. The TFE was devised in [14,15] to address direct rough surface scattering
problems. It was initially employed in [16] to solve inverse scattering problems on infinite
rough surfaces and has since been expanded to various contexts, encompassing periodic surfaces
[17], obstacles [18,19], interior cavities [20], penetrable surfaces [21], elastic waves [22,23],
and three-dimensional problems [24–26]. These methods leverage the TFE and linearization to
derive explicit and accessible reconstruction formulas. They are not only straightforward but also
effective and efficient, necessitating merely a single incident field. Another advantage of these
techniques is their capacity to attain convergence results and error estimates [27,28], attributable
to the explicit and accessible reconstruction formulas.

In this paper, we re-examine the near-field inverse scattering problem for periodic surfaces,
aiming to further improve imaging resolution by integrating a superlens into the model. An
ideal superlens is a slab of material characterized by a relative permittivity ε = −1 and relative
permeability µ = −1. The notion of materials with negative permittivity and permeability was
initially proposed by Veselago in [29], who contended that such materials could exhibit atypical
optical properties, including a negative refractive index. Subsequently, Pendry introduced the
concept of employing a slab of this material as an imaging lens and illustrated the potential for
eliminating the resolution limit, coining the term "superlens" in [30].

Following this, a multitude of numerical and experimental demonstrations of superlenses
for electromagnetic waves have been showcased in the literature [31–33]. In more recent
developments, the concept has been expanded to include acoustic waves and elastic waves.
Nevertheless, the general imaging approach in these studies remains akin to that of a traditional
microscope, where light from a source passes through the lens, ultimately forming a two-
dimensional projection of the imaged profile on the image plane. In contrast, our imaging scheme
relies on inverse scattering, providing a comprehensive reconstruction of the entire profile.

In this study, we propose an imaging model that comprises an impenetrable periodic surface, a
slab of negative index material situated above the surface, a measurement surface atop the slab,
and a single incident field. By employing the low-profile assumption and the TFE method, we
derive an explicit reconstruction formula. We illustrate that, in the ideal case, unlimited resolution
can be achieved, while high resolution can be obtained with slightly non-ideal parameters. To the
best of our knowledge, this research represents the first instance of integrating negative index
material into inverse scattering problems, thereby unlocking the full-profile imaging resolution
enhancement potential offered by the superlens.

This work can be viewed as an extension of our previous study [34], wherein we attained
enhanced resolution utilizing a slab with a high refractive index. The enhancement factor in [34]
is approximately proportional to the slab’s refractive index; however, it tends toward infinity in
this paper as the parameters approach ideal values. Furthermore, we apply the TFE differently
in this work by treating the entire domain as a single boundary value problem. As a result, the
reconstruction formula becomes substantially simpler, facilitating preliminary resolution analysis.
Moreover, we commence with the most general settings for the slab’s material parameters to derive
a comprehensive formula, which encompasses the no-slab, high-index slab, and negative-index
slab as special cases. When it comes to quantifying imaging performance, a succession of studies
from the literature has delved into the geometrical parameters of the background medium and
the configuration of the measurement. The works in [35,36] offer a quantitative analysis of how
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inhomogeneous scenarios influence performance. Meanwhile, [37,38] distinctly establish the
impact of the evanescent contribution and the confines of the measurement domain, respectively.

The remainder of the paper is organized as follows. In Section 2, we establish the physical
model and derive the boundary value problem for the entire domain using interface conditions
and a transparent boundary condition. Section 3 presents the TFE, which reduces the problem
into a recursive system of one-dimensional boundary value problems. In Section 4, we obtain the
analytical solutions for the leading and linear terms. By solving the linearized inverse problem,
we derive the reconstruction formula and conduct elementary resolution analysis in Section
5. Numerical experiments are presented in Section 6 to demonstrate the effectiveness of the
proposed imaging scheme. Finally, Section 7 offers a conclusion and discusses future research
directions.

2. Model problem

Consider the electromagnetic scattering by a periodic surface defined as

Γf = {(x, y) ∈ R2 : y = f (x)},

where f is a periodic function with period Λ. We assume that f can be expressed as

f (x) = δg(x), (1)

where 0<δ ≪ 1 is a small constant, referred to as the surface deformation parameter. The
surface Γf is assumed to be perfectly electrically conducting (PEC), and the half space above it is
assumed to be a vacuum.

We introduce a slab of double negative index material above the scattering surface, with its
two surfaces defined by Γa = {(x, a) : x ∈ R} and Γb = {(x, b) : x ∈ R}. The domain bounded
between Γf and Γa is denoted by Ω = {(x, y) ∈ R2 : f (x)<y<a}, and the domain between Γa and
Γb is represented by D = {(x, y) ∈ R2 : a<y<b}. The problem geometry is illustrated in Fig. 1.
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Fig. 1. Geometry of the model problem. The slab is positioned with its lower boundary Γa
and upper boundary Γb above the scattering surface Γf , and the measurements are taken on
Γb.

The propagation of electromagnetic waves is described by the time-harmonic Maxwell’s
equations:

∇ × H + iωεE = 0, ∇ × E − iωµH = 0, (2)
where E and H are the electric and magnetic fields, respectively, ω represents the angular
frequency, ε and µ are the permittivity and permeability, respectively. In this work, we consider
the transverse electric (TE) mode, assuming all variables are independent of the z coordinate,
and E = [0, 0, u]⊤, H = [H1, H2, 0]⊤. Then, Eq. (2) reduces to

(∆ + ω2εµ)u = 0. (3)

The relative permittivity and permeability are denoted by εr = ε/ε0 and µr = µ/µ0, respectively,
where ε0 and µ0 are the permittivity and permeability of vacuum, respectively. Define the
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free-space wavenumber κ = ω√ε0µ0, then Eq. (3) can be rewritten as

(∆ + η2)u = 0,

where η = κ√εrµr. In this paper, the square root of any complex number is chosen to have a
nonnegative imaginary part. The term √

εrµr is commonly referred to as the refractive index.
A plane wave with an incident angle θ ∈ (−π/2, π/2) is described by uin(x, y) = ei(αx−βy),

where α = κ sin θ and β = κ cos θ. However, we will focus on normal incidence, i.e., θ = 0. In
this case, the incident field simplifies to

uin(x, y) = e−iκy, (4)

where both uin and u are periodic in x with a period of Λ.
Given a scattering surface and incident field, the direct scattering problem aims to determine

the total field u(x, y). The near-field imaging problem we consider in this paper is an inverse
scattering problem, seeking to determine the scattering surface function f (x) from the measured
data of the total field at Γb.

The incident field given by Eq. (4) clearly satisfies the Helmholtz equation:

(∆ + κ2)uin(x, y) = 0, y>b.

Let usc = u − uin denote the scattered field, which satisfies the same Helmholtz equation:

(∆ + κ2)usc(x, y) = 0, y>b. (5)

Assuming that usc consists only of upward propagating and evanescent waves, we can obtain
the Rayleigh expansion from Eq. (5) as follows:

usc =
∑︂
n∈Z

u(n)sc (b)ei[αnx+βn(y−b)], y ≥ b, (6)

where u(n)sc (b) denotes the Fourier coefficient of usc(x, b), and

αn =
2πn
Λ

, βn =

√︂
κ2 − α2

n . (7)

Taking ∂y in Eq. (6) and evaluating at Γb, we get

∂+y usc = Tu+sc on Γb, (8)

where the boundary operator T is defined by

T v =
∑︂
n∈Z

iβnv(n)eiαnx

for any periodic function v(x) with periodicity Λ. The "+" sign indicates taking partial derivative
or limit from above. It is straightforward to verify

∂+y uin = Tu+in+ρ on Γb, (9)

where
ρ = −2iκe−iκb. (10)

Adding Eq. (9) to Eq. (8) yields the transparent boundary condition:

∂+y u = Tu++ρ on Γb. (11)



Research Article Vol. 31, No. 19 / 11 Sep 2023 / Optics Express 30898

From the interface conditions ν ×E+ = ν ×E− and ν ×H+ = ν ×H− on Γb with ν = [0, 0, 1]⊤,
we obtain

u−=u+,
1
µr
∂−y u = ∂+y u on Γb, (12)

where the "−" sign indicates taking partial derivative or limit from below. Combining Eqs. (11)
and (12) leads to

1
µr
∂−y u = Tu + ρ on Γb.

Similarly, we have

u+=u−,
1
µr
∂+y u = ∂−y u on Γa.

For simplicity of notations, we will denote the relative permittivity and permeability by ϵ and
µ, respectively, in the following. To summarize, we obtain the following boundary-interface
value problem for the total field u in D ∪Ω:

∂−y u = µ(Tu + ρ) on Γb, (13a)

(∆ + η2)u = 0 in D, (13b)

u+=u−, ∂+y u = µ∂−y u on Γa, (13c)

(∆ + κ2)u = 0 inΩ, (13d)

u = 0 on Γf . (13e)

Remark 1 It is worth noting that our model presumes an idealized infinite transverse dimension
for the surface. When dealing with periodic surfaces with bounded transverse dimensions, it
might be beneficial to incorporate approximation methodologies, as studied in [39]. However,
such intricacies fall outside the scope of this particular study.

3. Transformed field expansion

We apply the TFE method, along with power series and Fourier series expansions, to reduce the
governing Eqs. (13) to a recursive system of ordinary differential equations. This approach has
been previously employed in [16] for the purpose of near-field imaging of infinite rough surfaces.

Consider the change of variables

x̃ = x, ỹ = a
(︃
y − f
a − f

)︃
, (x, y) ∈ Ω,

x̃ = x, ỹ = y, (x, y) ∈ D,

which transforms the domain Ω to the rectangle Ω0 = (0,Λ) × (0, a), the surface Γa to itself,
the surface Γf to the plane Γ0 = {(x, 0) : x ∈ R}, and the domain D to itself. It is important
to note that the change of variables is defined in the whole computational domain, as opposed
to focusing solely on the domain Ω as in [34]. This approach allows us to derive significantly
simpler solution forms and reconstruction formulas.
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Applying the chain rule leads to the following differentiation rules in Ω:

∂x = ∂x̃ − f ′
(︃
a − ỹ
a − f

)︃
∂ỹ,

∂y =

(︃
a

a − f

)︃
∂ỹ,

∂xx = ∂x̃x̃ + (f ′)2
(︃
a − ỹ
a − f

)︃2
∂ỹỹ − 2f ′

(︃
a − ỹ
a − f

)︃
∂x̃ỹ

−

[︃
f ′′

(︃
a − ỹ
a − f

)︃
+ 2(f ′)2

(a − ỹ)
(a − f )2

]︃
∂ỹ,

∂yy =

(︃
a

a − f

)︃2
∂ỹỹ.

Let
ũ(x̃, ỹ) = u(x, y), (x, y) ∈ Ω ∪ D.

Substituting the differentiation rules to the boundary-interface value problem Eqs. (13) and
dropping the tilde over the variables for simplicity of notations, we obtain the transformed
problem:

∂−y u = µ(Tu + ρ) on Γb, (14a)(︂
∆ + η2

)︂
u = 0 in D, (14b)

u+ = u−,
(︃
1 −

f
a

)︃
∂+y u = µ∂−y u on Γa, (14c)(︂

c1∂xx + c2∂yy + c3∂xy + c4∂y + c1κ
2
)︂

u = 0 inΩ0, (14d)

u = 0 on Γ0, (14e)

where the coefficient functions ci are given by

c1 = (a − f )2,

c2 = [(a − y)f ′]2 + a2,

c3 = −2(a − y)(a − f )f ′,

c4 = −(a − y)
[︁
(a − f )f ′′ + 2 (f ′)2

]︁
.

Based on the smallness assumption (1), we consider the power series expansion

u(x, y) =
∞∑︂

m=0
δmum(x, y), (x, y) ∈ Ω0 ∪ D. (15)

Substituting Eqs. (1) and (15) into Eqs. (14) yields the recursive system of equations

∂−y um = µ (Tum + ρm) on Γb, (16a)(︂
∆ + η2

)︂
um = 0 in D, (16b)

u+m = u−m, ∂+y um = µ∂
−
y um + τm on Γa, (16c)
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(︂
∆ + κ2

)︂
um = vm inΩ0, (16d)

um = 0 on Γ0, (16e)

where
vm = D1um−1 + D2um−2, τm = Tu+m−1, ρm = δ0,mρ, (17)

where δi,j is the Kronecker delta, and the differential operators D1, D2, T are given by

D1 =
1
a
[2g∂xx + 2g′(a − y)∂xy + g′′(a − y)∂y + 2κ2g],

D2 = −
1
a2 {g

2∂xx + (g′)2(a − y)2∂yy + 2gg′(a − y)∂xy

− [2(g′)2 − gg′′](a − y), ∂y + κ
2g2}.

As the variables um, vm, τm, and ρm are periodic in the x direction with a period of Λ, the
Fourier series expansion can be applied to the governing Eqs. (16) to obtain a recursive system of
boundary-interface value problems:

∂−y u(n)m = µ
[︂
iβnu(n)m + ρ

(n)
m

]︂
, y = b, (18a)

∂yyu(n)m + γ
2
nu(n)m = 0, a<y<b, (18b)(︁

u+m
)︁ (n)
=
(︁
u−m

)︁ (n) , ∂+y u(n)m = µ∂
−
y u(n)m + τ

(n)
m , y = a, (18c)

∂yyu(n)m + β
2
nu(n)m = v(n)m , 0<y<a, (18d)

u(n)m = 0, y = 0. (18e)

where βn are given in Eq. (7) and

γn =

√︂
η2 − α2

n . (19)

4. Analytical solutions

Solving Eqs. (18) by the variation of parameters leads to the general solution

u(n)m (y) =
⎧⎪⎪⎨⎪⎪⎩

am,neiγny + bm,ne−iγny, a<y<b,

cm,neiβny + dm,ne−iβny +
∫ y
0 Φn(y, z)v(n)m (z)dz, 0<y<a,

(20)

where am,n, bm,n, cm,n, dm,n are coefficients to be determined, and the integral kernel

Φn(y, z) =
sin βn(y − z)

βn
if βn ≠ 0.

Applying the boundary and interface conditions (18a), (18c), and (18e), we obtain the linear
system

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i(γn − µβn)eiγnb −i(γn + µβn)e−iγnb 0 0

eiγna e−iγna −eiβna −e−iβna

iγneiγna −iγne−iγna −iµβneiβna iµβne−iβna

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

am,n

bm,n

cm,n

dm,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

rm,n

sm,n

tm,n

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (21)
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where

rm,n = µρ
(n)
m , sm,n =

∫ a

0
Φn(a, z)v(n)m (z)dz, tm,n = µ

∫ a

0
∂yΦn(a, z)v(n)m (z)dz + τ(n)m . (22)

A direct calculation shows that the determinant of the matrix in Eq. (21) is given by

ϕn = (γn − µβn)eiγn(b−a)[(γn + µβn)eiβna − (γn − µβn)e−iβna]

+ (γn + µβn)eiγn(a−b)[(γn + µβn)e−iβna − (γn − µβn)eiβna].
(23)

4.1. Zeroth order term

For m = 0 it follows from Eq. (17) that

v0 = 0, τ0 = 0, ρ
(n)
0 = ρδ0,n.

The Fourier coefficients are given by

r0,n = µρδ0,n, s0,n = 0, t0,n = 0.

Solving Eq. (21) by Cramer’s rule yields the coefficients

a0,n =
2µρ
iϕ0

e−iηa(µκ cos κa + iη sin κa)δ0,n, (24a)

b0,n = −
2µρ
iϕ0

eiηa(µκ cos κa − iη sin κa)δ0,n, (24b)

c0,n =
2ηµρ
iϕ0

δ0,n, d0,n = −
2ηµρ
iϕ0

δ0,n. (24c)

Substituting Eqs. (24) into Eq. (20), we obtain the leading term of the solution

u0(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0,0eiηy + b0,0e−iηy, a ≤ y ≤ b,
4ηµρ
ϕ0

sin κy, 0 ≤ y ≤ a.
(25)

It should be noted that u0 is independent of x and corresponds to the total field when the
scattering surface is flat, i.e., when the surface height deviation δ is zero.

4.2. First order term

For m = 1 we have ρ1 = 0 and hence r1,n = 0. Solving Eq. (21) by Cramer’s rule for a1,n, b1,n
yields

a1,n =
2(γn + µβn)

ϕn
e−iγnb[µβn cos(βna)s1,n − sin(βna)t1,n],

b1,n =
2(γn − µβn)

ϕn
eiγnb[µβn cos(βna)s1,n − sin(βna)t1,n].

Substituting Eq. (22) with m = 1 into the above equations and using the difference formula for
the sine function, we obtain

a1,n = −
2(γn + µβn)

ϕn
e−iγnbψn, b1,n = −

2(γn − µβn)

ϕn
eiγnbψn, (26)

where
ψn = µ

∫ a

0
sin(βny)v(n)1 (y)dy + sin(βna)τ(n)1 . (27)
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By substituting Eq. (25) into Eq. (17) and taking the Fourier transform, we obtain the following
expressions for v(n)1 (y) and τ(n)1 :

v(n)1 (y) =
4κηµρ

aϕ0
[2κ sin(κy) − α2

n(a − y) cos(κy)]g(n), 0<y<a, (28a)

τ
(n)
1 =

4κηµ2ρ

aϕ0
cos(κa)g(n). (28b)

By substituting Eqs. (28) into Eq. (27) and using the identity κ2 = α2
n + β

2
n , we derive the

expression for ψn through a lengthy but straightforward calculation:

ψn =
4κηµ2ρβn

ϕ0
g(n). (29)

Substituting Eq. (29) into Eq. (26) yields the following expressions for a1,n and b1,n:

a1,n = −
8κηµ2ρβn

ϕ0ϕn
(γn + µβn)e−iγnbg(n), (30a)

b1,n = −
8κηµ2ρβn

ϕ0ϕn
(γn − µβn)eiγnbg(n). (30b)

Finally, substituting Eqs. (30) into Eq. (20) provides the Fourier coefficients of the linear term:

u(n)1 (y) = −
8κηµ2ρβn

ϕ0ϕn
[(γn + µβn)eiγn(y−b) + (γn − µβn)eiγn(b−y)]g(n), a<y<b. (31)

Evaluating Eq. (31) at y = b results in the fundamental identity of this paper:

g(n) = Υnu(n)1 (b), (32)

where the scaling factor is given by:

Υn = −
ϕ0ϕn

16κηµ2ρβnγn
. (33)

Remark 2 For the sake of conciseness, we omit specific cases where either βn = 0 or γn = 0
from this paper. However, it is important to note that these cases can be addressed separately if
necessary.

5. Reconstruction formula

By retaining only the zeroth and first order terms in the power series expansion given by Eq. (15),
we arrive at the approximation:

u(x, y) ≈ u0(x, y) + δu1(x, y). (34)

Evaluating Eq. (34) at y = b and applying the Fourier transform with respect to x gives

u(n)(b) ≈ u(n)0 (b) + δu(n)1 (b). (35)

Substituting Eqs. (32) and (1) into Eq. (35), we deduce

f (n) = Υn[u(n)(b) − u(n)0 (b)]. (36)

This implies that the Fourier coefficients of the scattering surface function f (x) can be computed
directly from the Fourier coefficients of the total field u(x, b). The scattering surface function is
then reconstructed as follows:

f (x) =
∑︂
|n | ≤N

f (n)eiαnx,

where N ∈ Z represents the cut-off frequency.
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By examining Eq. (36), we observe that the coefficients Υn play a significant role in character-
izing the stability and resolution of the inverse scattering problem. These coefficients typically
have complex forms. In the following section, we explore some special cases. Referring to the
Abbe diffraction limit, we define the minimum feature size dn for the n-th Fourier mode of f as
half of the period of eiαnx, which is expressed as dn = Λ/(2|n|). Additionally, we denote the
wavelength of the incident field in free space as λ = 2π/κ.

5.1. No-slab case

First, we consider the case in which the slab is absent, corresponding to the parameter values
ϵ = 1 and µ = 1. It follows that η = κ and γn = βn. Substituting these parameters into Eq. (23),
we obtain

ϕn = −4β2
ne−iβnb. (37)

Plugging Eq. (37) into Eq. (33) yields

|Υn | =
1
2κ

|e−iβnb |,

which is consistent with the result presented in [17]. We distinguish two cases:

1. If |αn |<κ, i.e., |n|<Λ/λ, then βn is a real number, and |Υn | = 1/(2κ) remains constant.
Therefore, we can achieve stable reconstruction of the corresponding Fourier modes f (n).
Moreover, since the minimum feature size dn>λ/2, the resolution of these modes falls
within the limits set by the Abbe diffraction limit.

2. If |αn |>κ, i.e., |n|>Λ/λ, then Re βn = 0, Im βn =
√︁
α2

n − κ2, and

|Υn | =
1
2κ

e |βn |b

is approximately an exponential function of |n|. Thus, the reconstruction of the corre-
sponding Fourier modes f (n) becomes increasingly unstable as |n| increases.

A comprehensive and precise analysis of errors in this scenario can be found in [27].

5.2. Ordinary dielectric material

Let us assume that the slab is made of an ordinary dielectric material with parameter values
ϵ>1 and µ = 1. This case was previously analyzed by [34]. The novel reconstruction formula
presented in this paper, Eq. (36), establishes a one-to-one correspondence between the Fourier
coefficients. This is in contrast to the convolutional type found in [34]. As a result, the formula is
significantly simpler and more convenient to analysis.

5.3. Double negative metamaterial

In this section, we focus on the main topic of our paper, which is the examination of slabs that
have negative permittivity ε (or negative real part) and negative permeability µ.

5.3.1. Perfectly matched parameters

We start by assuming ϵ = µ = −1, referred to as perfectly matched parameters, in line with the
original concept of the superlens proposed by [30]. As a result, we have η = κ and γn = βn. By
substituting these parameters into Eq. (23), we obtain

ϕn = 4β2
neiβn(b−2a). (38)

Substituting Eq. (38) into Eq. (33) gives

|Υn | =
1
2κ

|eiβn(b−2a) |.
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(i) If b ≥ 2a, then |Υn | ≤ 1/(2κ) for all n ∈ Z. Therefore, we can reconstruct all frequency
modes with stability, leading to unlimited resolution!

(ii) If b<2a, then
|Υn | =

1
2κ

e |βn |(2a−b).

Consequently, this scenario is equivalent to the case without a slab but with a measurement
distance of 2a − b. Furthermore, since 2a − b<b, we can expect an improvement in
resolution in this situation.

5.3.2. Imperfect parameters

Ideal parameters are often unattainable in practical applications due to physical and engineering
limitations. In particular, the lens constituent material is typically lossy, which leads to an
effective permittivity that is a complex-valued quantity. To address this issue, we introduce the
parameters

ϵ = −1 + ϵ ′, µ = −1 + µ′,
where ε′ and µ′ are small-amplitude, real or complex numbers. Using Eq. (19), we obtain
γ2

n = β
2
n + ι, where ι = κ2(ϵ ′µ′− ϵ ′− µ′). Let n be a fixed integer from Z. As ι→ 0, we can easily

confirm that |Υn | →
1
2κ

|eiβn(b−2a) |, which is the scaling factor for perfectly matched parameters.
This implies that the resolution limit approaches that of the perfectly matched parameters as
ε′ → 0 and µ′ → 0.

Remark 3 The proposed method presumes prior knowledge of the unknown surface’s period
Λ, which may not be known in real-world scenarios. One potential approach to address this
problem is establishing an inverse problem wherein the period acts as an unknown parameter,
set to be reconstructed separately or together with the profile function.

Remark 4 In this study, we focused solely on periodic surfaces. The derivation of our method
carries through to non-periodic surfaces by replacing Fourier series with Fourier transform. Since
the scattered field is not periodic anymore, the inverse problem then requires the measurement
data on an infinite plane above the surface, which is infeasible in practice. In fact, a more suitable
incident wave for such surfaces would be a tapered wave instead of a plane wave. We refer to [7]
for an iterative method developed to reconstruct multiscale rough surfaces (non-periodic) with
tapered waves of multiple frequencies.

6. Numerical experiments

In the following numerical experiments, we keep the period fixed at Λ = 1 and the wavelength at
λ = 1.1. The lower boundary of the slab is fixed at a = 0.1 while the upper boundary is fixed at
b = 0.2. To obtain the total field u for a given scattering surface f , we solve the corresponding
direct scattering problem using the finite element method along with the perfectly matched layer
(PML) technique to truncate the infinite computational domain to a finite one. Figure 2 shows a
sketch of the computational domain.

The field data undergoes sampling at uniformly distributed points on Γb. To simulate
measurement noise, random values are incorporated into these samples. The measurement data
is represented as:

ℜu(xm, b)(1 + rm), ℑu(xm, b)(1 + sm), xm =
m
M

, 0 ≤ m ≤ M,

where M ∈ N defines the sampling rate. The terms rm and sm both denote independent random
values sourced from the uniform distribution [−σ,σ]. Here, σ characterizes the noise level. In
all numerical experiments, unless stated otherwise, we adopt a default setting of M = 100 and
σ = 0.05.



Research Article Vol. 31, No. 19 / 11 Sep 2023 / Optics Express 30905

Γb

PML

Γfx

y

Fig. 2. Sketch of the computational domain for the finite element method. A PML is placed
above Γb to absorb the scattered field, allowing u = 0 to be used as the boundary condition
on the outer boundary of the PML. Periodic boundary conditions are enforced on the left
and right boundaries, while the usual PEC boundary condition u = 0 is imposed on Γf .

6.1. Smooth profile function

The scattering surface function is defined as f (x) = δg(x), where δ = 0.01, and the function

g(x) = 0.4 cos(2πx) + 0.3 cos(6πx) + 0.2 cos(20πx) (39)

represents frequency modes with |n| = 1, 3, 10. The clear cut-off of the Fourier modes is used to
test the proposed method’s capabilities.

To recover the first, first two, or all three Fourier modes of the profile, the cut-off frequency
N must be set to at least 1, 3, or 10, respectively. The reconstructions for the case without the
slab are shown in Row 1 of Fig. 3. When N = 1, only the first Fourier mode, 0.4 cos(2πx), is
recovered. To recover the surface profile up to the 3rd Fourier mode, N should be set to at least
3. However, using N = 3 leads to a solution with a significant error. Attempting to recover the
10th mode with N = 10 proves unsuccessful. Better resolution can be achieved by decreasing the
measurement distance b, but there is a lower limit for b, at least on top of the surface, and the
error is not a monotonic function of b. A detailed error estimate in this case can be found in [27].

We can increase the resolution by introducing a dielectric slab with a high refractive index. Let
us set ε = 16 and µ = 1, which correspond to a refractive index of 4. According to the analysis
presented in [34], the resolution can be increased by approximately a factor of 4. Therefore,
the profile can be reconstructed stably up to the 3rd Fourier mode, but not the 10th mode, as
confirmed by the numerical results shown in Fig. 3 (Row 2).

We now replace the dielectric slab with a double negative metamaterial having perfectly
matched parameters, i.e., ε = µ = −1. According to the analysis presented in Section 5.3, we
should be able to recover all the frequency modes of the profile. This claim is verified by the
numerical results shown in Fig. 3 (Row 3), where the reconstructed profile remains unpolluted
even when N = 10.

Next, we consider the case of imperfect parameters, taking ε = −1 + 0.05i and µ = −0.97
as an example. The corresponding reconstructions are shown in Fig. 3 (Row 4). As expected,
the results deteriorate with increasing deviation from the ideal case, particularly for N = 10,
but they are still relatively close to the ideal case. The reconstruction accuracy will naturally
decrease as ε and µ move further away from −1. Figure 3 (Row 5) displays the reconstruction
with ε = −1 + 0.1i and µ = −1.06. Note that the first and third modes are still well recovered,
while the 10th mode is not.

Lastly, we fix ε = −1.0, µ = −1 and N = 10 to investigate the effect of the sampling rate
M and the noise level σ. With σ fixed at 0.05, Fig. 4 (Row 1) shows the reconstructions with
M = 25, 50, 100 respectively. Note that the sampling rate M = 25 is barely above the threshold
specified by the Nyquist-Shannon sampling theorem. Consequently, the outcome is noticeably
less optimal compared to scenarios with M = 50 or M = 100. On the other hand, the results
from M = 50 and M = 100 are virtually indistinguishable, suggesting that M = 50 suffices for
this instance.
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Fig. 3. Numerical experiments for the smooth profile function depicted in Eq. (39). The red
solid line represents the true profile, while the blue dashed line illustrates the reconstructed
profile. The relative permittivity and permeability of the slab are specified as follows: Row
1: ε = 1.0 and µ = 1.0; Row 2: ε = 16.0 and µ = 1.0; Row 3: ε = −1.0 and µ = −1.0;
Row 4: ε = −1 + 0.05i and µ = −0.97; Row 5: ε = −1 + 0.1i and µ = −1.06. The cut-off
frequency is specified as follows: Column 1: N = 1; Column 2: N = 3; Column 3: N = 10.
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Fig. 4. Numerical experiments for the smooth profile function depicted in Eq. (39). The red
solid line represents the true profile, while the blue dashed line illustrates the reconstructed
profile. In all results, ε = −1.0, µ = −1 and N = 10. Row 1: σ = 0.05; Column 1–3:
M = 25, 50, 100. Row 2: σ = 1.0; Column 1–3: M = 50, 100, 200.
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To observe a noticeable impact from the noise, the noise level must be raised significantly beyond
0.05. When setting σ to 1.0, Fig. 4 (Row 2) displays the reconstructions for M = 50, 100, 200,
respectively. Observe that the outcomes at M = 100 or M = 200 are only marginally less optimal
than those achieved at σ = 0.05, indicating a high tolerance to noise.

In Fig. 5, we present the absolute value of the scaling factor |Υn | defined in Eq. (33) plotted
against the mode number n for the various values of ε and µ used in the previous numerical
experiments. We make the following observations:

(i) No slab (ε = 1, µ = 1): |Υn | increases exponentially from n = 0.

(ii) High refractive index (ε = 16, µ = 1): |Υn | remains small for a few small values of n before
increasing exponentially with n, resulting in enhanced resolution compared to case (i).

(iii) Perfectly matched parameters (ε = µ = −1): |Υn | remains small for all n, leading to
unlimited resolution.

(iv) Imperfect parameters (ε = −1 + 0.05i, µ = −0.97 and ε = −1 + 0.1i, µ = −1.06): Similar
to case (ii), |Υn | remains small for a few small values of n before increasing exponentially.
Hence the resolution is enhanced, and it would continue to improve as ε → −1 and
µ→ −1.

0 2 4 6 8 10 12
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10-1

100

101

102

103

104

105

106

Fig. 5. The scaling factor |Υn | in Eq. (33) is plotted on a logarithmic scale for various
values of ε and µ in the numerical experiments presented in Fig. 3.

6.2. Nonsmooth profiles

Although the derivation of the reconstruction formula requires the existence of g′ and g′′, our
method can still be applied to nonsmooth profiles due to the approximation properties of Fourier
series. We first consider a nonsmooth profile defined by f (x) = δg(x), where δ = 0.01 and

g(x) = (1 − 10|x − 0.3|)χ[0.2,0.4](x) + (1 − 10|x − 0.7|)χ[0.6,0.8](x). (40)

Note that this profile contains infinitely many nonzero Fourier modes. The results of the
experiment are displayed in Fig. 6. For the case without a slab (ε = 1.0, µ = 1.0), we begin
with the cut-off frequency N = 1. The reconstructed profile is smooth, but the two humps are
indistinguishable. With N = 2, the reconstruction starts capturing the humps, but the accuracy
remains low. When we attempt to increase the accuracy by raising N to 4, the reconstruction
becomes significantly contaminated by noise.
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Fig. 6. Numerical experiments for the nonsmooth profile function (40). The red solid
line represents the true profile, while the blue dashed line corresponds to the reconstructed
profile. Row 1: ε = 1.0, µ = 1.0, N = 1, 2, 4; Row 2: ε = 16.0, µ = 1.0, N = 1, 4, 5; Row 3:
ε = −1.0, µ = −1.0, N = 1, 4, 8.
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Fig. 7. Numerical experiments for the nonsmooth profile function (41). The red solid
line represents the true profile, while the blue dashed line corresponds to the reconstructed
profile. Row 1: ε = 1.0, µ = 1.0, N = 1, 2, 3; Row 2: ε = 16.0, µ = 1.0, N = 1, 2, 3; Row 3:
ε = −1.0, µ = −1.0, N = 1, 2, 20.

Next, we insert a slab with a high refractive index (ε = 16.0, µ = 1.0). The reconstruction
now becomes stable and more accurate with N = 4. However, increasing N to 5 leads to unstable
results again.

Finally, we replace the slab with a superlens (ε = −1.0, µ = −1.0). The reconstruction is now
stable and accurate up to at least N = 8.



Research Article Vol. 31, No. 19 / 11 Sep 2023 / Optics Express 30909

Next, we consider a discontinuous profile given by f (x) = δg(x), where δ = 0.001 and

g(x) = χ[0.2,0.4](x) + χ[0.6,0.8](x). (41)

We conducted another experiment using a setup similar to the previous one and present the results
in Fig. 7. In the case without a slab, with ε = 1.0 and µ = 1.0, we did not obtain satisfactory
results for any cut-off frequency, N. For the slab with a high refractive index characterized by
ε = 16.0 and µ = 1.0, the optimal reconstruction is achieved with N = 2, while the quality
deteriorates for N ⩾ 3. In the superlens case with ε = −1.0 and µ = −1.0, the reconstruction
remains stable up to at least N = 20. However, the Gibbs phenomenon becomes more pronounced
for larger values of N.

7. Conclusion

In this paper, we investigated the superresolution effect of double negative index materials using
an inverse scattering problem approach for diffraction gratings with low amplitude profiles. By
applying the transformed field expansion method, we derived a simple reconstruction formula for
the linear approximation of the scattering problem. Our findings suggest that it is feasible to
achieve unlimited resolution with perfectly matched values of permittivity and permeability. To
demonstrate the effectiveness of our reconstruction method, we conducted numerical experiments
for both smooth and nonsmooth profiles with perfect or imperfect parameters.

There are several directions for future research on this topic. Firstly, the direct scattering
problem with sign-changing coefficients for periodic structures requires further exploration to
establish its well-posedness. The uniqueness of the inverse problem can also be investigated, and
the convergence and error estimates of our proposed method can be analyzed. Moreover, it is
possible to extend our method to other forms of waves and to the three-dimensional scenarios.
For more general profile or inverse medium scattering problems, optimization or sampling
methods may prove effective. Finally, to apply our method in real-world scenarios, it is crucial to
incorporate the metamaterial’s constitution and measuring device into the model.
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