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Abstract. This work concerns the direct and inverse potential problems for

the stochastic diffusion equation driven by a multiplicative time-dependent

white noise. The direct problem is to examine the well-posedness of the sto-
chastic diffusion equation for a given potential, while the inverse problem is to

determine the potential from the expectation of the solution at a fixed obser-

vation point inside the spatial domain. The direct problem is shown to admit
a unique and positive mild solution if the initial value is nonnegative. More-

over, an explicit formula is deduced to reconstruct the square of the potential,

which leads to the uniqueness of the inverse problem for nonnegative potential
functions. Two regularization methods are utilized to overcome the instabil-

ity of the numerical differentiation in the reconstruction formula. Numerical

results show that the methods are effective to reconstruct both smooth and
nonsmooth potential functions.

1. Introduction. As a basic and important mathematical model, the diffusion
equation has been used to describe many physical, biological, chemical, economic,
and social phenomena. The inverse diffusion problem aims to determine unknown
parameters in the equation by using some measured data. It has significant applica-
tions in gas dynamics, chemical kinetics, biophysics, medicine, ecology, finance, and
many other sciences. Due to the applied and mathematical interests, the inverse
problem for the diffusion equation is one of the most studied problems in the inverse
problem community. There is a considerable amount of information regarding their
solutions [13]. This work is concerned with an inverse potential problem for the
diffusion equation.
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The topic of inverse potential problems for the diffusion equation has been exten-
sively explored from both the mathematical and numerical aspects. For example,
the uniqueness and stability results are available in [2, 4, 21, 29] and [10], respec-
tively; some of the computational studies can be found in [1, 3, 25]. During the
past two decades, the fractional diffusion equation has received much attention in
applied disciplines since it can capture more faithfully the dynamics of anomalous
diffusion processes. Correspondingly, it has become an area of intensive research
on inverse problems for the fractional diffusion equation. In [5], the authors con-
sidered the uniqueness of simultaneously recovering the fractional order and the
space-dependent diffusion coefficient. The results of global uniqueness were given
in [19] on the inversion of the density, conductivity, and potential functions. The
stability estimate was obtained in [10] for a time-dependent potential function in
cylindrical domains. Various reconstruction methods were also developed for the
numerical solutions, such as the iterative Newton-type method [17], the modified
optimal perturbation method [20], the fixed point iteration method [15], and the
Levenberg–Marquardt method [14]. Related results on uniqueness and stability
were also discussed in the above literature.

Recently, a lot of attention has been paid to inverse problems of the stochastic
diffusion equation, one of the fundamental models in stochastic partial differential
equations. Stochastic inverse problems are more challenging than their deterministic
counterparts due to uncertainties and randomness. They are much less studied
but remain topics of much ongoing research. In [31], a conditional stability was
obtained to determine the initial data for the stochastic parabolic equation. In [23],
the author considered the backward and inverse source problems for the stochastic
parabolic equations. The inverse random source problems were studied in [9, 11,
24] for the stochastic time-fractional diffusion equations. The inverse potential
problem was examined in [28] for the diffusion equation with a random source.
These problems are based on the stochastic diffusion equations with an additive
noise. The additive noise model is widely used to describe a system with an external
random force. In contrast, the multiplicative noise model is commonly adopted to
characterize the scenario where the parameter of a system, such as the potential or
medium function, is perturbed by random noises. The latter is more challenging to
solve and finds important applications in various scientific areas, including medical
imaging, geophysical exploration, and nondestructive testing. Up until now, there
has been no result for the inverse potential problem of the stochastic diffusion
equation with a multiplicative noise. In this work, we address this problem for the
first time.

Specifically, we consider the initial boundary value problem for the stochastic
diffusion equation driven by a multiplicative white noise

∂u

∂t
(x, t) = ∆u(x, t) + q(t)u(x, t)Ḃ(t), (x, t) ∈ D × (0, T ],

u(x, t) = 0, (x, t) ∈ ∂D × (0, T ],

u(x, 0) = u0(x), x ∈ D,

(1)

where D ⊂ Rd is a bounded and open domain with Lipschitz boundary ∂D, the
potential q ∈ L2(0, T ) is assumed to be a real-valued deterministic time-dependent
function, and the initial value u0 is a real-valued deterministic and nonnegative
function. Here, the white noise Ḃ is the formal derivative of the real-valued stan-
dard Brownian motion B and the multiplicative noise q(t)u(x, t)Ḃ(t) holds in the
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Itô integral sense. In this model, q(t)Ḃ(t) can be viewed as a random potential
depending on the time, where q represents the strength of the randomness. The
direct problem is to examine the existence, uniqueness, and regularity of the solu-
tion u to (1) for a given potential function q. The inverse problem is to determine
the potential function q from the measured data {u(x∗, t)}t∈(0,T ] at some interior
observation point x∗ ∈ D. In addition to being nonlinear, the inverse potential
problem is ill-posed.

In this paper, we study both the direct and inverse problems. It is worth mention-
ing that the stochastic diffusion equation in (1) should be interpreted as a stochastic
integral equation due to the roughness of the white noise. Using the theory of semi-
group and stochastic partial differential equations, we show that the direct problem
admits a unique mild solution and the mild solution is an analytically strong so-
lution if the initial condition u0 satisfies some regularity condition. Moreover, an
analytical solution is constructed by using the eigenfunctions of the Laplacian. The
analytical solution is shown to be strictly positive if the initial condition u0 is non-
negative and not identically zero. Based on the analytical solution and the relation
between the deterministic and stochastic diffusion equations, an explicit formula
is deduced to reconstruct q2 by the averaged data {E[lnu(x∗, t)]}t∈[0,T ] over the
sample space. As a byproduct of the explicit formula, the uniqueness is obtained
to recover q2, which further implies the uniqueness of the inverse problem if the
potential function is nonnegative. However, it is unstable to directly make use of
the explicit formula to reconstruct q2 numerically since it involves the temporal
derivative of the data. Two regularization methods, the Tikhonov method and the
spectral cut-off method, are employed to handle the instability issue. Based on a
periodic extension of the data function, the numerical differentiation is implemented
efficiently via the fast Fourier transform. Numerical experiments are carried out to
investigate the influence of various parameters on the reconstructions. The numer-
ical results show that the methods are effective for both smooth and nonsmooth
examples.

The paper is outlined as follows. Section 2 addresses the well-posedness of the
direct problem. The inverse problem is discussed in section 3. Section 4 presents
the numerical examples to demonstrate the effectiveness of the methods. Section 5
concludes the paper with some general remarks and future work.

2. The direct problem. In this section, we study the direct problem and show
that it has a unique mild solution. Moreover, an explicit solution is constructed
for the direct problem. The explicit solution plays an important role in the inverse
problem.

2.1. Mild solution. Omitting the spatial variable, we rewrite (1) into the standard
form of an evolution equation{

du(t) = ∆u(t)dt+ q(t)u(t)dB(t), t ∈ (0, T ],

u(0) = u0,
(2)

where {B(t)}t≥0 is the Brownian motion defined on a complete probability space
(Ω,F ,P).

It is known that the operator −∆ with the homogeneous Dirichlet boundary
condition in D admits a non-decreasing sequence of eigenvalues {λk}∞k=1, which
satisfy 0 < λ1 ≤ λ2 ≤ · · · with λk → ∞ as k → ∞, and the eigenfunctions of
the Dirichlet Laplacian {ϕk}∞k=1 form an orthonormal basis of L2(D). Denote by
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L2
0(D) the subspace of L2(D) with the homogeneous boundary condition. Define

the interpolation space

Ḣα(D) := Dom((−∆)
α
2 ) =

{
f ∈ L2

0(D) :

∞∑
k=1

λαk (f, ϕk)2
L2(D) <∞

}
,

which is equipped with the norm

‖f‖α :=

( ∞∑
k=1

λαk (f, ϕk)2
L2(D)

) 1
2

.

If α is a nonnegative integer, it is shown in [30, Lemma 3.1] that the norm ‖ · ‖α is
equivalent to the classical Sobolev norm ‖ · ‖Hα(D) under the boundary condition

(−∆)jf = 0 on ∂D for any j < α
2 . It can be verified that Ḣ0(D) = L2

0(D) and

Ḣ2(D) = H1
0 (D) ∩H2(D).

Let S(t) = et∆ be the analytic strongly continuous semigroup generated by the
Laplacian on L2(D). Then it satisfies the following smoothing property (cf. [30,
Lemma 3.2]).

Lemma 2.1. For any 0 ≤ α ≤ β and f ∈ Ḣα(D), it holds that

‖S(t)f‖β . t
α−β

2 ‖f‖α.
Hereinafter, the notation a . b stands for a ≤ Cb, where C is a positive constant

and may differ from line to line, and the notation P-a.s. indicates that an equation
holds almost surely.

The following definition describes the mild solution to a stochastic differential
equation (cf. [22, Definition 6.2.1]).

Definition 2.2. An L2(D)-valued adapted process {u(t)}t∈[0,T ] is called a mild
solution to (2) if

u(t) = S(t)u0 +

∫ t

0

S(t− s)q(s)u(s)dB(s) P-a.s.

for each t ∈ [0, T ] and the stochastic integral is well-defined.

Using the relation between analytic weak and mild solutions given in [22, Propo-
sition G.0.5 and Remark G.0.6], we may easily show from [22, Theorem 4.2.4] that
(2) has a unique L2(D)-valued mild solution u satisfying

E

[
sup
t∈[0,T ]

‖u(t)‖2L2(D)

]
<∞

provided that u0 ∈ L2(D).

2.2. Well-posedness. Since the eigenfunctions {ϕk}∞k=1 of the Dirichlet Laplacian
form an orthonormal basis of L2(D), the solution u(t) ∈ L2(D) admits the expansion

u(x, t) =

∞∑
k=1

uk(t)ϕk(x),

where the coefficient uk(t) := (u(t), ϕk)L2(D) satisfies the stochastic ordinary differ-
ential equation{

duk(t) =− λkuk(t)dt+ q(t)uk(t)dB(t), t ∈ (0, T ],

uk(0) = u0,k := (u0, ϕk)L2(D).
(3)
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By [8], the linear equation (3) has a unique solution given explicitly by

uk(t) = u0,k exp

(
−λkt+

∫ t

0

q(s)dB(s)− 1

2

∫ t

0

q2(s)ds

)
.

Hence, the solution to (1) can be expressed as

u(x, t) =

∞∑
k=1

uk(t)ϕk(x)

=

∞∑
k=1

u0,k exp

(
−λkt+

∫ t

0

q(s)dB(s)− 1

2

∫ t

0

q2(s)ds

)
ϕk(x)

=

[ ∞∑
k=1

u0,k exp(−λkt)ϕk(x)

]
exp

(∫ t

0

q(s)dB(s)− 1

2

∫ t

0

q2(s)ds

)
=: v(x, t)Z(t), (4)

where

v(x, t) =

∞∑
k=1

u0,k exp(−λkt)ϕk(x)

and

Z(t) = exp

(∫ t

0

q(s)dB(s)− 1

2

∫ t

0

q2(s)ds

)
.

Furthermore, the function v is the unique solution to the initial boundary value
problem of the deterministic heat equation

∂v

∂t
(x, t) = ∆v(x, t), (x, t) ∈ D × (0, T ],

v(x, t) = 0, (x, t) ∈ ∂D × (0, T ],

v(x, 0) = u0(x), x ∈ D.

(5)

If the initial value u0 is nonnegative, then the positivity of the solution v follows
directly from the strong maximum principle for the heat equation (cf. [7, Theorem
4]).

Lemma 2.3. Let u0 ∈ C(D) with u0 ≥ 0 being not identically zero. Then the
solution v ∈ C2

1 (D × (0, T ]) ∩ C(D × [0, T ]) and satisfies

v(x, t) > 0 ∀ (x, t) ∈ D × (0, T ],

where C2
1 (D × (0, T ]) denotes the space of functions belonging to C2 in space and

C1 in time.

Based on the expression (4), the well-posedness of the problem (1) can be further
obtained in the strong sense. The regularity and strict positivity of the solution can
also be deduced under proper assumptions on the initial data.

Theorem 2.4. Let q ∈ L2(0, T ) and u0 ∈ C(D) ∩ Ḣα(D) for some α ≥ 0 with

u0 ≥ 0 being not identically zero. Then the solution u ∈ C([0, T ]; Ḣα(D)) is strictly
positive almost surely and satisfies

E

[
sup
t∈[0,T ]

‖u(t)‖2α

]
. ‖u0‖2α.
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Moreover, if α ≥ 2, then the mild solution u is also an analytically strong solution
to (1) such that u ∈ C([0, T ], Ḣ2(D)) and

u(t) = u0 +

∫ t

0

∆u(s)ds+

∫ t

0

u(s)q(s)dB(s) P-a.s. (6)

Proof. For any nonnegative initial data u0 ∈ C(D) ∩ Ḣα(D), the positivity of u is
obtained directly from (4) and the positivity of the solution v to (5) given in Lemma
2.3.

By (4), it holds that
‖u(t)‖2α = ‖v(t)‖2αZ2(t), (7)

where we have from Lemma 2.1 that

‖v(t)‖2α = ‖S(t)u0‖2α . ‖u0‖2α ∀ t ≥ 0. (8)

The stochastic process {Z(t)}t∈[0,T ] is a continuous martingale (cf. [18, (5.2) and
(5.17)]) satisfying

E[Z(t)] = E
[
exp

(∫ t

0

q(s)dB(s)− 1

2

∫ t

0

q2(s)ds

)]
= 1 ∀ t ≥ 0. (9)

Using (7)–(8) and applying the martingale inequality (cf. [8]) lead to

E

[
sup
t∈[0,T ]

‖u(t)‖2α

]
. ‖u0‖2αE

[
sup
t∈[0,T ]

|Z(t)|2
]
≤ 4‖u0‖2αE

[
|Z(T )|2

]
= 4‖u0‖2α,

where the last equality is obtained from the same property as (9) by using the Itô
formula.

In particular, if u0 ∈ Ḣα(D) for some α ≥ 2, then we have v(t) ∈ Ḣ2(D),

t ∈ [0, T ]. It follows from [22, Proposition G.0.4] that u(t) ∈ Ḣ2(D), t ∈ [0, T ] is
also a strong solution satisfying (6).

3. The inverse potential problem. This section is devoted to the inverse poten-
tial problem. We present a simple uniqueness result and consider two regularization
approaches to overcome the ill-posendess of the inverse problem.

3.1. Uniqueness. By (4), together with the strict positivity of u and v in D, we
get for any fixed x∗ ∈ D that

E
[
ln
u(x∗, t)

v(x∗, t)

]
= −1

2

∫ t

0

q2(s)ds ∀ t ∈ (0, T ].

Taking the derivative of the above equation with respect to t yields

q2(t) = −2
d

dt
E
[
ln
u(x∗, t)

v(x∗, t)

]
, (10)

which is the key equation for the inverse problem.

Theorem 3.1. Let q ∈ L2(0, T ) and u0 ∈ C(D) ∩ Ḣα(D) for some α ≥ 0 with
u0 ≥ 0 being not identically zero. Then, for any fixed x∗ ∈ D, {q2(t)}t∈(0,T ] can be
uniquely determined by the data {E [lnu(x∗, t)]}t∈(0,T ].

Proof. Assume that u1 and u2 are solutions to (1) corresponding to two potentials
q1 and q2, respectively. If E[lnu1(x∗, t)] = E[lnu2(x∗, t)] for any t ∈ (0, T ] and
x∗ ∈ D, then we have

q2
1(t)− q2

2(t) = 2
d

dt

(
E
[
ln
u2(x∗, t)

v(x∗, t)

]
− E

[
ln
u1(x∗, t)

v(x∗, t)

])
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= 2
d

dt
(E [lnu2(x∗, t)]− E [lnu1(x∗, t)]) = 0

for any t ∈ (0, T ].

Remark 3.2. By Theorem 3.1, the uniqueness can be obtained for the inverse
potential problem if q is nonnegative.

3.2. Regularization. Although (10) provides an explicit formula to reconstruct q2,
it is unstable due to the temporal derivative of the data. To handle the instability
issue, we consider two regularization methods for the numerical differentiation, the
Tikhonov method [26] and the spectral cut-off method [27].

For a given function φ(t), let F(φ)(ξ) = φ̂(ξ) and φ′(t) be the Fourier transform
and the first order derivative of φ(t), respectively. Clearly, we have F(φ′)(ξ) =

iξφ̂(ξ), where i is the imaginary unit. Below, we present two simple yet effective
regularization methods to implement the numerical differentiation of the noisy data.

3.2.1. Tikhonov regularization. The Tikhonov regularization of the time derivative
takes the form

R1(φ′)(t) :=
1√
2π

∫ ∞
−∞

iξ

1 + (µξ)2
φ̂(ξ)eiξtdξ,

where µ > 0 is a regularization parameter. Given φ ∈ Hp(R) for some p > 1, it is
shown in [26, Lemma 3.2] that the regularized derivative R1(φ′) satisfies the error
estimate

‖φ′ −R1(φ′)‖L2(R) ≤ sup
ξ∈R

(
µ2|ξ|3

1 + (µξ)2
(1 + ξ2)−

p
2

)
‖φ‖Hp(R)

≤ max{µp−1, µ−1}‖φ‖Hp(R).

3.2.2. Spectral cut-off regularization. The spectral cut-off regularization for the time
derivative can be written as

R2 (φ′) (t) :=
1√
2π

∫ ξmax

−ξmax

iξφ̂(ξ)eiξtdξ,

where ξmax > 0 is the truncation frequency and plays the role of regularization.
Given φ ∈ Hp(R) for some p > 1, it is shown in [27, Lemma 3.2] that the spectral
cut-off regularization admits the error estimate

‖φ′ −R2(φ′)‖L2(R) =

(∫
|ξ|>ξmax

ξ2

(1 + ξ2)p
(1 + ξ2)p|φ̂(ξ)|2dξ

) 1
2

≤ ξ−(p−1)
max ‖φ‖Hp(R).

4. Numerical experiments. In this section, we present some numerical experi-
ments for the one-dimensional inverse problem. Several examples are reported to
demonstrate the effectiveness of the proposed methods.
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4.1. The synthetic data. The synthetic data is generated by solving the direct
problem numerically and then perturbed by a random noise to test the stability
of the methods. We consider the one-dimensional problem with the domain given
by D × (0, T ] = (−a, a) × (0, T ], which is discretized into M and N subintervals
with uniform step-sizes h = 2a

M and τ = T
N in the spatial and temporal directions,

respectively. Denote by

xm = mh, m = 0,±1, . . . ,±M,

tn = nτ, n = 0, 1, . . . , N
(11)

the discrete points in the spatial and temporal intervals, respectively.

4.1.1. Numerical approximations. In (10), it is required to solve the deterministic
diffusion equation (5) and the stochastic diffusion equation (1) to obtain v and u,
respectively.

Applying the central difference scheme in space and the backward Euler scheme
in time to the deterministic diffusion equation (5), we get

D+
t v

n
m = D+

xD
−
x v

n+1
m , m = 0, · · · ,±(M − 1), n = 0, . . . , N − 1,

vn−M = vnM = 0, n = 1, 2, . . . , N,

v0
m = u0(xm), m = 0, . . . ,±M,

(12)

where the numerical solution vnm is an approximation of v(xm, tn) and

D+
t v

n
m :=

vn+1
m − vnm

τ
, D+

x v
n
m :=

vnm+1 − vnm
h

, D−x v
n
m :=

vnm − vnm−1

h

stand for the difference operators. By the classical results (cf. [16, (3.77)]), the finite
difference scheme (12) is unconditionally stable and admits the error estimate

max
1≤n≤N

‖V (tn)− V n‖h . h2 + τ,

where V (tn) = (v(x−M , tn), . . . , v(xM , tn))>, V n = (vn−M , . . . , v
n
M )>, and ‖ · ‖h =

h
1
2 ‖ · ‖l2 is the weighted l2-norm for vectors.
For the stochastic diffusion equation (1), employing the central difference scheme

in space and the implicit Euler–Maruyama scheme in time, we have
D+
t u

n
m=D+

xD
−
x u

n+1
m +q(tn)unmD

+
t B(tn), m = 0, . . . ,±(M−1), n = 0, . . . , N−1,

un−M = unM = 0, n = 1, 2, . . . , N,

u0
m = u0(xm), m = 0, . . . ,±M,

(13)
where

D+
t B(tn) =

B(tn+1)−B(tn)

τ
∼
√
τηn+1, n = 0, · · · , N − 1

with {ηn}n=1,··· ,N being independent and identically distributed standard normal
random variables. The notation a ∼ b means that a and b have the same distri-
bution. We mention that the stochastic Itô integral should be approximated by
evaluating the integrant at the left endpoint tn on each subinterval [tn, tn+1]. If the
initial value is smooth enough, e.g., u0 ∈ C3(D), the numerical scheme (13) is also
unconditionally stable and has the error estimate(

E‖U(tn)− Un‖2h
) 1

2 . h2 + τ
1
2 ,

where the notations U(tn) and Un are defined similarly as V (tn) and Vn. We refer
to [12, Theorem 3.1 (iii)] for the detailed convergence analysis of the scheme (13).
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4.1.2. Noisy data and regularization. For any fixed interior point x∗ ∈ D, without
loss of generality, we may assume that x∗ = xm is one of the grid points in (11).
Then the data {u(xm, t)}t∈(0,T ] can be generated as {unm}n=0,...,N by implementing
the numerical scheme (13). In addition, we add some random noise to the data in
order to test the stability of the reconstructions. Let un,εm be the noisy data given
by

un,εm = unm (1 + εζn) , n = 0, . . . , N,

where ε > 0 is the noise level and {ζn}n=0,··· ,N are independent standard normal
random variables with mean zero and variance one. It is clear to note that ε satisfies

ε =
(
E|εζn|2

) 1
2 =

(
E

[∣∣∣∣un,εm − unmunm

∣∣∣∣2
]) 1

2

,

which corresponds to the relative error in L2(Ω).
Once vnm, u

n,ε
m , n = 0, . . . , N, are available, we may define the data points

ψn := E
[
ln
un,εm
vnm

]
= E[lnun,εm ]− ln vnm, n = 0, . . . , N (14)

and the linearly interpolated data function

ψ(t) =
tn+1 − t

τ
ψn +

t− tn
τ

ψn+1, t ∈ [tn, tn+1]. (15)

It is worth mentioning that lnun,εm in (14) is a formal notation, as the noisy
data un,εm may take negative values. If un,εm is negative, then we can represent it
as un,εm = |un,εm |eπi, and consequently, lnun,εm = ln |un,εm | + πi. In the numerical
experiments, to handle the complex logarithm, we consider only its real part, i.e.,
<[lnun,εm ] = ln |un,εm |.

The function ψ needs to be periodically extended such that the fast Fourier
transform (FFT) can be applied to compute its derivative efficiently. For example,
the domain of ψ can be extended from [0, T ] to [−T, 2T ]. We adopt the cubic
smoothing spline developed in [6] and denote the extension by Ψ, which satisfies
Ψ(−T ) = Ψ(2T ) = 0. Specifically, the extension to the domain [T, 2T ] is generated
by using a cubic smoothing spline based on the last 16 components in {ψn}n=0,··· ,N
and assigning the last 7 components in {ψn}n=N+1,··· ,2N to be zeros. Then the
extended data {ψn}n=N+1,··· ,2N are obtained by the interpolation. The extension
to the domain [−T, 0] can be constructed similarly.

Based on (10) and (15), the function q2 can be approximated by −2ψ′, where
the derivative ψ′ is computed numerically by using the regularization methods in-
troduced in section 3.2 together with the FFT.

4.2. Numerical examples. In this section, we present three numerical examples
to illustrate the performance of the reconstruction for potentials with different reg-
ularity.

In all the experiments, we take the following setup: the computational domain
is [−a, a] × [0, T ] with a = 1 and T = 1, the initial condition of (1) is chosen as

u0(x) = e−16x2

, the observation point x∗ = x0 = 0, and the numbers of subintervals
M = 50 and N = 27. In practice, the expectation in (10) is approximated by the
average of P realizations, where the choice of P will be specified in the following
examples.
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Figure 1. Example 1: the data function ψ(t) on [0, 1] (top row)
and the corresponding periodization Ψ(t) on [−1, 2] (bottom row)
at different noise levels (ε = 0.5, 0.2, 0.1) with a fixed number of
realizations (P = 106).
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Figure 2. Example 1: the periodized data function Ψ(t) on [−1, 2]
with a different number of realizations (P = 104, 105, 106) at a fixed
noise level (ε = 0.5).

4.2.1. Example 1. The exact potential function is q(t) = sin(πt), t ∈ [0, 1]. Using
this potential function as a representative example, we examine the influence of
various parameters on the reconstructions and present the corresponding numerical
results.

First, we report the data functions under the influence of the noise level ε and the
number of realizations P . Figure 1 shows the data function ψ(t), t ∈ [0, 1] defined in
(15) and its periodization Ψ(t), t ∈ [−1, 2] at different noise levels (ε = 0.5, 0.2, 0.1)
with a fixed number of realizations (P = 106). As expected, the data function ψ is
smoother if the noise level ε is smaller. Figure 2 shows the periodized data function
Ψ(t), t ∈ [−1, 2] with a different number of realizations (P = 104, 105, 106) at a
fixed noise level (ε = 0.5). It is clear to note that a larger number of realizations
can produce a better approximation to the expectation in (14) and thus yield a data
function with less oscillation.

Next, we investigate the reconstructions by using different regularization param-
eters and noise levels at a fixed number of realizations. In Figures 3–5, the exact
function q2 is plotted against the reconstructed results by using the Tikhonov and
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Figure 3. Example 1: the reconstruction of q2 with different reg-
ularization parameters at a fixed noise level (ε = 0.5) and a fixed
number of realizations (P = 106).
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Figure 4. Example 1: the reconstruction of q2 with different reg-
ularization parameters at a fixed noise level (ε = 0.2) and a fixed
number of realizations (P = 106).

spectral cut-off regularization methods. In each figure, the results are shown for dif-
ferent regularization parameters (µ = 0.01 : 0.01 : 0.06 or ξmax = 70, 50, 30, 20, 10, 8)
at a fixed noise level and a fixed number of realizations (P = 106). It can be observed
that the methods are stable and produce good reconstructions for appropriately cho-
sen regularization parameters; the results are under-regularized for small µ or large
ξmax, while the results are over-regularized for large µ or small ξmax; the methods
work better for the regularization parameters given in the range µ ∈ [0.03, 0.04] or
ξmax ∈ [20, 30]. Fixing the regularization parameters, we may compare the corre-
sponding results shown in Figures 3–5 for different noise levels (ε = 0.5, 0.2, 0.1).
Apparently, the results are better for smaller noise levels.
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Figure 5. Example 1: the reconstruction of q2 with different reg-
ularization parameters at a fixed noise level (ε = 0.1) and a fixed
number of realizations (P = 106).
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Figure 6. Example 1: the reconstruction of q2 with a different
number of realizations (P = 104, 105, 106) at a fixed noise level
(ε = 0.2) and a fixed regularization parameter (µ = 0.03, ξmax =
30).

Finally, we consider the influence of the number of realizations. Figure 6 shows
the results by using a different number of realizations (P = 104, 105, 106) at a fixed
noise level (ε = 0.2) and a fixed regularization parameter (µ = 0.03, ξmax = 30). It
can be seen that a larger number of realizations gives a better approximation to the
expectation of the data and yields a better reconstruction.

4.2.2. Example 2. The exact potential function is

q(t) =
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Figure 7. Example 2: the data function ψ(t) on [0, 1] (left), the
periodization Ψ on [−1, 2] (middle), and the reconstruction of q2

(right) with the parameters given by P = 105, ε = 0.2, µ = 0.02,
ξmax = 30.
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Figure 8. Example 3: the data function ψ(t) on [0, 1] (left), the
periodization Ψ on [−1, 2] (middle), and the reconstruction of q2

(right) with the parameters given by P = 105, ε = 0.2, µ = 0.02,
ξmax = 70.

which is continuous on [0, 1] but is not differentiable at t = 1
5 ,

1
2 ,

4
5 . We shall

not document the detailed results with different parameters since the patterns are
similar to those of Example 1.

As suggested from the experiments of Example 1, the regularization parameters
are chosen as µ = 0.02 and ξmax = 30. Figure 7 shows the data function ψ(t) for
t ∈ [0, 1], the periodization Ψ(t) for t ∈ [−1, 2], and the reconstruction of q2 with
the number of realizations P = 105 and the noise level ε = 0.2. It can be seen that
the Tikhonov regularization method and the spectral cut-off method give similar
numerical results, and both methods work well for such a nonsmooth function.

4.2.3. Example 3. The exact potential is a piecewise constant function defined by

q(t) =
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As a discontinuous function, it contains infinitely many Fourier modes and the
Fourier coefficients decay slowly. Thus this example is more difficult than the pre-
vious ones.
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Again, we shall not present the influence of the various parameters on the re-
constructions but choose to show the results by using representative parameters.
Figure 8 shows the data function ψ(t) for t ∈ [0, 1], the periodization Ψ(t) for
t ∈ [−1, 2], and the reconstruction of q2 with the regularization parameters µ = 0.02
and ξmax = 70 for the fixed number of realizations P = 105 and the fixed noise level
ε = 0.2. It is worth mentioning that a larger frequency cut-off ξmax should be cho-
sen so that more Fourier modes of the potential function can be recovered for this
discontinuous example. Comparing the two regularization methods, we observe
that the Tikhonov regularization method yields a smoother reconstruction while
the spectral cut-off method displays the Gibbs phenomenon for the reconstructed
function, which is common for the Fourier based method to recover discontinuous
functions.

5. Conclusion. We studied both the direct and inverse problems for the stochas-
tic diffusion equation with a multiplicative time-dependent white noise. For the
direct problem, we examined the existence, uniqueness, and regularity of the mild
solution. For the inverse problem, an explicit reconstruction formula was deduced
by establishing the relation between the deterministic diffusion equation and the
stochastic diffusion equation. The uniqueness was obtained to determine q2, which
implies the uniqueness of the inverse problem for nonnegative potential functions.
To overcome the ill-posedness of numerical differentiation, we adopted the Tikhonov
and spectral cut-off regularization methods which were implemented efficiently by
using the FFT. The results show that the methods are effective to reconstruct both
smooth and nonsmooth potential functions.

In this work, the potential function is assumed to be time-dependent and the
stochastic diffusion equation is driven by the multiplicative time-dependent white
noise. We plan to consider the inverse problems for more general potential functions
and other types of noise, such as the colored noise, the fractional Brownian motion,
or the space-time white noise. The progress will be reported elsewhere in the future.
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