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A B S T R A C T   

Flexural wave scattering plays a crucial role in optimizing and designing structures for various 
engineering applications. Mathematically, the flexural wave scattering problem on an infinite 
thin plate is described by a fourth-order plate wave equation on an unbounded domain, making it 
challenging to solve directly using the regular linear finite element method (FEM). In this paper, 
we propose two numerical methods, the interior penalty FEM (IP-FEM) and the boundary penalty 
FEM (BP-FEM) with a transparent boundary condition (TBC), to study flexural wave scattering by 
an arbitrary-shaped cavity on an infinite thin plate. Both methods decompose the fourth-order 
plate wave equation into the Helmholtz and modified Helmholtz equations with coupled condi-
tions on the cavity boundary. A TBC is then constructed based on the analytical solutions of the 
Helmholtz and modified Helmholtz equations in the exterior domain, effectively truncating the 
unbounded domain into a bounded one. Using linear triangular elements, the IP-FEM and BP-FEM 
successfully suppress the oscillation of the bending moment of the solution on the cavity 
boundary, demonstrating superior stability and accuracy compared to the regular linear FEM 
when applied to this problem.   

1. Introduction 

Flexural wave scattering is a widespread phenomenon with practical engineering applications, including the design of lightweight 
mechanical structures with low noise [1], ultra-broadband elastic cloaking devices [13,18], platonic diffraction gratings and arrays 
[22,23], massive floating concrete runways offshore, and health monitoring of thin-walled structures such as aircraft wings, oil tank 
walls, and pressure vessels [41]. This phenomenon arises from the interaction of incident waves with different types of scatterers (e.g., 
voids, rigid, and elastic scatterers) on thin-wall structures [33], attracting considerable attention in the research community. For 
instance, Akrucci et al. [1] investigated the effect of acoustic black holes on flexural wave scattering on infinite thin plates, effectively 
reducing plate oscillations without increasing structure mass. Liu et al. [36] realized a broadband cylindrical cloak for flexural waves 
in elastic thin plates using nonlinear transformation, guiding flexural waves more effectively outside the cloak region. Haslinger et al. 
[24] studied scattering and transmission of flexural waves in a thin plate with a semi-infinite array of point scatterers, demonstrating 
dynamically anisotropic wave effects in semi-infinite platonic crystals. Evans et al. [17] explored flexural wave scattering in an elastic 
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thin plate floating on water. Wang et al. [42] investigated the scattering behavior of extensional and flexural plate waves by a cy-
lindrical inhomogeneity for structural health monitoring, characterizing the interaction of plate waves with structural damage. 
Consequently, studying flexural wave scattering in thin-walled structures holds great importance for optimizing and designing new 
structures. 

Mathematically, the scattering problem of flexural waves on infinite thin plates can be described by a fourth-order plate wave 
equation on an unbounded domain. Analytical solutions for such problems are only attainable for isotropic thin plates containing 
scatterers with simple geometries, posing challenges for complex geometries and media. Apparently, numerical methods are necessary 
to simulate and solve these problems. Several numerical approaches have been proposed for solving flexural wave scattering problems. 
For instance, Norris et al. [38] explored the energy flux conservation and the optical theorem in the context of flexural wave scattering, 
applying them to flexural scattering by circular scatterers. Matus et al. [37] employed the transfer matrix (T-matrix) method for 
flexural wave scattering by a single noncircular scatterer. Climente et al. [9,10] utilized T-matrix and impedance matrix methods to 
study flexural wave scattering by a hole containing beam resonators in an infinite thin plate for vibration control. Lee et al. [30–32] 
investigated flexural wave scattering in a thin plate with multiple circular inclusions using the multipole method, the multipole Trefftz 
method, and the null-field integral equation approach. Cai et al. [6] applied the T-matrix method for the multiple scattering of flexural 
waves by different types of circular scatterers on thin plates. Wang et al. [43] studied the multiple scattering of flexural waves by 
varying-thickness annular inclusions on infinite thin plates using a semi-analytical method. Wang et al. [44] developed a 
semi-analytical model for a novel plate-harvester system, combining multiple flexural scattering theories of thin plates with coupled 
electroelastic dynamics of piezoelectric composite beams. Dong et al. [14] proposed a novel formulation of boundary integral 
equations for the scattering of flexural waves by obstacles on infinite thin plates. 

However, the finite element method (FEM), known for its efficiency and stability in numerical algorithms, is rarely employed to 
solve the scattering problem of flexural waves due to the challenges posed by the unbounded domain of the problem and the presence 
of high-order partial differential equations (PDEs). To address the unbounded domain issue, common truncating techniques, such as 
absorbing boundary condition (ABC) [11,16], perfectly matched layer (PML) [4], and transparent boundary condition (TBC) [27,28, 
34], are used to truncate the unbounded domain into bounded computational domains when applying FEM. However, these techniques 
are primarily constructed for second-order PDEs in exterior domains, such as acoustic, electromagnetic, and elastic wave scattering 
problems. Directly applying these techniques to flexural wave scattering problems, which involve a fourth-order wave equation, is 
challenging. Therefore, the development of an effective truncation technique specifically for flexural wave scattering is crucial. 
Moreover, to solve the fourth-order wave equation within the truncation domain, various numerical methods have been proposed, 
including meshless methods [40] and different types of FEMs. In the literature, classical FEM approaches include C1 conforming FEMs 
like the Argyris element [8] with 21 degrees of freedom, as well as nonconforming FEMs like the Adini element [25] and Morley 
element [45]. However, these elements are rarely practical due to either their high number of degrees of freedom or the complexity 
involved in their implementation. It remains a challenge to find a simpler and more efficient approach to solve the fourth-order wave 
equation in the truncation domain. 

As a result, numerous FEMs based on linear triangular elements have been proposed to solve fourth-order problems, including 
mixed methods [2,3,5,19,20] and the recovery-based linear FEM [7,21,26,29]. While mixed methods are widely used, they require 
careful treatment of essential and natural boundary conditions. In particular, the Ciarlet–Raviart mixed FEM exhibits oscillation 
behavior of the middle variable on the boundary, necessitating the addition of corresponding penalty terms [2]. On the other hand, the 
recovery-based linear FEM is a nonconforming FEM that discretizes the Laplace operator by utilizing the gradient recovery operator 
acting on the gradient of the C0 linear element. 

This paper first reduces the biharmonic plate wave equation to the Helmholtz and modified Helmholtz equations with coupled 
conditions on the cavity boundary using two auxiliary functions. To truncate the unbounded domain into a bounded one, the trans-
parent boundary conditions (TBCs) are constructed using Fourier series solutions of the Helmholtz and modified Helmholtz equations, 
satisfying the Sommerfeld radiation conditions. The finite element approximation with linear triangular elements [12] is then utilized 
to solve the decomposed problem with coupled boundary conditions. However, our numerical experiments demonstrate that the 
solutions obtained through this method exhibit oscillatory behavior on the cavity boundary, similar to the phenomenon observed in 
[2] utilizing the linear FEM based on the Ciarlet–Raviart scheme. The underlying causes of this phenomenon remain unclear, and a 
rigorous mathematical analysis of it constitutes a topic for future research. Motivated by recent works [2,15,35,46], we introduce the 
interior penalty term or the boundary penalty term to the variational formulations of the Helmholtz and modified Helmholtz equa-
tions, effectively suppressing the oscillation of the bending moment of the solution on the cavity boundary. 

This paper focuses on the numerical computation of flexural wave scattering by an arbitrary shaped cavity with the clamped 
boundary and contributes in the following four aspects:  

(1) Construction of TBCs for flexural wave cavity scattering in two dimensions, which is equivalent to satisfying the Sommerfeld 
radiation conditions.  

(2) Deduction of a decomposed problem of the biharmonic plate wave equation by introducing two auxiliary functions, and proof of 
the uniqueness of its solution.  

(3) Proposal of the linear finite element method with interior penalty term (IP-FEM) and boundary penalty term (BP-FEM) for 
solving the coupled boundary Helmholtz and modified Helmholtz equations, providing stable numerical solutions.  

(4) Construction of an analytical solution for flexural wave scattering by a circular cavity with a clamped boundary, facilitating 
comparative analysis. 
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In this work, we propose the IP-FEM and the BP-FEM as numerical methods to simulate cavity scattering in an infinite thin plate. 
The paper is outlined as follows. Section 2 describes the cavity scattering problems using the biharmonic plate wave equation with the 
clamped boundary condition. In Section 3, we construct the transparent boundary conditions (TBCs) to truncate the unbounded 
domain for plate wave scattering. Section 4 presents a decomposed problem by introducing two auxiliary functions for the plate wave 
equation, along with the proof of the uniqueness of this decomposed problem. In Section 5, we provide the variational formulations 
and discretized systems of the IPFEM and the BP-FEM. Section 6 presents numerical experiments to validate the effectiveness of the 
proposed methods, comparing them with analytical solutions or reference solutions. Finally, in Section 7, we draw conclusions from 
this study. 

2. Problem formulation 

Let us consider a cavity denoted as D, located within an infinite thin plate, with a Lipschitz continuous boundary ∂D, as shown in 
Fig. 1. The structure is illuminated by a time-harmonic plane wave represented by uinc(x) = eiκx⋅d, where κ > 0 is the wavenumber 
determined by κ4 = ω2ρh/Dc. Here, ω denotes the angular frequency, while ρ, h, and Dc refer to the mass density, thickness, and 
flexural rigidity of the plate, respectively. The incident direction is given by d = (cosα,sinα), with α ∈ [0,2π) representing the incident 
angle. 

It can be verified that the incident wave field uinc satisfies the two-dimensional biharmonic wave equation given by: 

Δ2uinc − κ4uinc = 0 in R2. (2.1) 

The out-of-plane displacement of the plate, denoted as u, satisfies the two-dimensional biharmonic wave equation in the exterior of 
D, which is expressed as: 

Δ2u − κ4u = 0 in R2 \ D. (2.2) 

The total field u is assumed to satisfy the following clamped boundary condition on ∂D: 

u = 0, ∂νu = 0, (2.3)  

where ν is the unit normal vector on ∂D. 
It can be observed from (2.1)–(2.3) that the scattered field v = u − uinc satisfies: 

Δ2v − κ4v = 0 in R2 \ D, (2.4)  

and the following boundary conditions on ∂D: 

v = − uinc, ∂νv = − ∂νuinc (2.5) 

In addition, the scattered field v and its Laplacian Δv are required to satisfy the Sommerfeld radiation condition: 

lim
r→∞

r1/2(∂rv − iκv) = 0, lim
r→∞

r1/2(∂rΔv − iκΔv) = 0, r = |x|. (2.6) 

In [14], the boundary value problem (2.4)–(2.6) is reformulated into a coupled boundary value problem of the Helmholtz and 
modified Helmholtz equations through an operator splitting technique, and its well-posedness is established using a boundary integral 
formulation, which further indicates the well-posedness of the boundary value problem (2.4)–(2.6). 

We introduce standard notations used in this paper. Let BR = {x ∈ R2 : |x|< R} represent a disk with boundary ΓR = {x ∈ R2 : |x| =

Fig. 1. Problem geometry of an infinite thin plate containing an arbitrarily shaped cavity.  
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R}. The radius R is chosen to be sufficiently large such that the cavity D is completely contained within BR. We denote Ω = BR\D. The 
inner product and the norm in L2(Ω) are 

(ϕ,ψ) =
∫

Ω
ϕψdx, ‖ ϕ ‖0,Ω = (ϕ,ϕ)1/2

.

Define H1
∂D = {ϕ ∈ H1(Ω) : ϕ = 0 on ∂D}. It is known that H− 1/2(ΓR) is the dual space of H1/2(ΓR) with respect to the inner product 

〈ϕ,ψ〉ΓR
=

∫

ΓR

ϕψds.

3. Transparent boundary conditions 

In this section, we introduce the transparent boundary condition (TBC) on ΓR to transform the cavity scattering problem from the 
open domain R2\D to the bounded domain Ω. This allows us to truncate the unbounded domain into a bounded one for numerical 
simulation and analysis. 

Following [14], we consider two auxiliary functions vH and vM, defined as: 

vH = −
1

2κ2

(
Δv − κ2v

)
, vM =

1
2κ2

(
Δv+ κ2v

)
.

It can be observed that the quantities v, Δv, vH, and vM are related through the equations 

v = vH + vM , Δv = κ2(− vH + vM), (3.1)  

and 

vH =
1
2
(
v − κ− 2Δv

)
, vM =

1
2
(
v+ κ− 2Δv

)
. (3.2) 

The biharmonic wave Eq. (2.4) can be written as 
(
Δ2 − κ4)v =

(
Δ − κ2)(Δ+ κ2)(vH + vM) = 0 in R2 \ D,

which implies that vH and vM satisfy the Helmholtz equation and the modified Helmholtz equation, respectively: 

ΔvH + κ2vH = 0, ΔvM − κ2vM = 0. (3.3) 

Combining (2.6) and (3.3), we deduce that the functions vH and vM satisfy the Sommerfeld radiation condition: 

lim
r→∞

r1/2(∂rvH − iκvH) = 0, lim
r→∞

r1/2(∂rvM − iκvM) = 0. (3.4) 

From (3.3) and (3.4), we can conclude that vH and vM have the following Fourier series expansions in R2\BR: 

vH(r, θ) =
∑

n∈Z

H(1)
n (κr)

H(1)
n (κR)

v(n)H (R)einθ, vM(r, θ) =
∑

n∈Z

Kn(κr)
Kn(κR)

v(n)M (R)einθ,

where H(1)
n is the Hankel function of the first kind with order n, Kn is the modified Bessel function with order n, v(n)H and v(n)M are the 

Fourier coefficients given by 

v(n)H (R) =
1

2π

∫ 2π

0
vH(R, θ)e− inθdθ, v(n)M (R) =

1
2π

∫ 2π

0
vM(R, θ)e− inθdθ.

For any function ϕ ∈ L2(ΓR) with the Fourier series expansion 

ϕ(R, θ) =
∑

n∈Z

ϕ(n)(R)einθ, ϕ(n)(R) =
1

2π

∫ 2π

0
ϕ(R, θ)e− inθdθ,

we define two Dirichlet-to-Neumann (DtN) operators 

T1ϕ =
1
R
∑

n∈Z

hn(κR)ϕ(n)(R)einθ, T2ϕ =
1
R
∑

n∈Z

kn(κR)ϕ(n)(R)einθ, (3.5)  

where 

hn(z) = z
H(1)

n
′
(z)

H(1)
n (z)

, kn(z) = z
K′

n(z)
Kn(z)

.
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Using (3.5), we deduce the TBC on ΓR: 

∂rvH = T1vH , ∂rvM = T2vM . (3.6) 

Given that v and Δv are periodic functions with respect to θ on ΓR, they can be represented by their Fourier series expansions: 

v(R, θ) =
∑

n∈Z

v(n)(R)einθ, Δv(R, θ) =
∑

n∈Z

(Δv)(n)(R)einθ.

By combining (3.6) and (3.1) and (3.2), we obtain the TBC for the scattered fields: 

∂rv = T1vH + T2vM

=
1
2
T1
(
v − κ− 2Δv

)
+

1
2
T2
(
v + κ− 2Δv

)

=
1
2
(T1 + T2)v +

1
2κ2 (T2 − T1)Δv

(3.7)  

and 

∂rΔv = κ2( − T1vH + T2vM)

= κ2
(

−
1
2

T1
(
v − κ− 2Δv

)
+

1
2
T2
(
v + κ− 2Δv

)
)

=
κ2

2
(T2 − T1)v +

1
2
(T1 + T2)Δv.

(3.8) 

Using the above equations, we deduce the TBC for the total fields: 

∂ru =
1
2
(T1 +T2)u +

1
2κ2 (T2 − T1)Δu + g1 (3.9)  

and 

∂rΔu =
κ2

2
(T2 − T1)u +

1
2
(T1 + T2)Δu + g2, (3.10)  

where 

g1 = ∂ruinc − T1uinc, g2 = − κ2g1.

4. The decomposed problem 

In this section, we present a decomposed formulation for the cavity scattering problem, consisting of (2.2) and (2.3) and (3.9) and 
(3.10). 

Let us consider two auxiliary functions defined as follows: 

p =
1

2κ2

(
Δu − κ2u

)
, q =

1
2κ2

(
Δu+ κ2u

)
. (4.1) 

It is evident that p satisfies the Helmholtz equation, while q satisfies the modified Helmholtz equation. Moreover, it can be verified 
that 

u = q − p, Δu = κ2(p+ q), (4.2)  

and 

p = − uH , q = uM , (4.3)  

where uH and uM are the Helmholtz and modified Helmholtz wave components of u, respectively. 
Using (4.1)–(4.3), we obtain the following boundary value problem for p and q: 

⎧
⎪⎪⎨

⎪⎪⎩

Δp + κ2p = 0, Δq − κ2q = 0 in Ω,

p − q = 0, ∂νp − ∂νq = 0 on ∂D,

∂rp = T1p − g1, ∂rq = T2q on ΓR.

(4.4) 

Equivalently, we may consider two auxiliary functions for the scattered field: 
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ps =
1

2κ2

(
Δv − κ2v

)
, qs =

1
2κ2

(
Δv+ κ2v

)
.

Hence, we have 

v = qs − ps, Δv = κ2(ps + qs),

and 

ps = − vH , qs = vM .

It can be verified that ps and qs satisfy the following boundary value problem: 
⎧
⎪⎪⎨

⎪⎪⎩

Δps + κ2ps = 0, Δqs − κ2qs = 0 in Ω,

ps − qs = uinc, ∂νps − ∂νqs = ∂νuinc on ∂D,

∂rps = T1ps, ∂rqs = T2qs on ΓR.

(4.5) 

Clearly, the scattering problems (2.4)–(2.6) and (4.5) are equivalent through the relationships of (ps, qs) and (v,Δv). More precisely, 
the exact solutions that satisfy the sommerfeld radiation conditions are used for the construction of TBCs, thus indicating that the TBCs 
in (3.7) and (3.8) are equivalent to the sommerfeld radiation conditions in (2.6). Meanwhile, it is straightforward to confirm the 
equivalence between the TBCs in (3.7) and (3.8) and those in (4.5). 

Using the relationships of (ps, qs) and (v,Δv) and the TBCs in (3.7) and (3.8), we have 

∂rps =
1

2κ2

(
∂rΔv − κ2∂rv

)
=

1
2κ2

(
− κ2T1v+ T1Δv

)
= T1ps  

and 

∂rqs =
1

2κ2

(
∂rΔv+ κ2∂rv

)
=

1
2κ2

(
κ2T2v+ T2Δv

)
= T2qs.

On the other hand, utilizing the relationships of (ps, qs) and (v,Δv) and the TBCs in (4.5), we have 

∂rv = T2qs − T1ps

= T2

(
1

2κ2

(
Δv + κ2v

)
)

− T1

(
1

2κ2

(
Δv − κ2v

)
)

=
1
2
(T1 + T2)v +

1
2κ2 (T2 − T1)Δv  

and 

∂rΔv = κ2(T1ps + T2qs)

= κ2T1

(
1

2κ2

(
Δv − κ2v

)
)

+ κ2T2

(
1

2κ2

(
Δv + κ2v

)
)

=
κ2

2
(T2 − T1)v +

1
2
(T1 + T2)Δv.

Lemma 4.1. Let z be a positive real number. Then 

R(hn(z)) < 0, I(hn(z)) > 0, R(kn(z)) < 0, I(kn(z)) = 0.

Proof. Using the definition H(1)
n (z) = Jn(z)+ iYn(z), we can express hn(z) into 

hn(z) =
z

⃒
⃒H(1)

n (z)
⃒
⃒

2

(
J’

n(z)+ iY ’
n(z)
)
(Jn(z) − iYn(z)),

where the real-valued functions Jn(z) and Yn(z) are the Bessel functions of the first kind and second kind with order n, respectively. 
First, we consider the real part of hn(z): 

R(hn(z)) =
z

⃒
⃒H(1)

n (z)
⃒
⃒2

(
J’

n(z)Jn(z) + Y ’
n(z)Yn(z)

)

=
z

2
⃒
⃒H(1)

n (z)
⃒
⃒2

d
dz
(
Jn(z)2

+ Yn(z)2)
.

By the Nicholson’s integral in Eq. (10.9.30) of [39], 
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Jn(z)2
+ Yn(z)2

=
8
π2

∫ ∞

0
cosh(2nt)K0(2zsinh(t))dt,

where sinh(t) and cosh(t) are the hyperbolic sine and hyperbolic cosine functions, respectively, we have 

d
dz
(
Jn(z)2

+Yn(z)2)
=

16
π2

∫ ∞

0
cosh(2nt)sinh(t)K’

0(2zsinh(t))dt.

Given that cosh(t) > 0 for t ∈ R and sinh(t) > 0 for t > 0, along with the fact that Kn(z) is positive and decreasing throughout the 
interval 0 < z < ∞ for n ≥ 0 (cf. Section 10.37 of [39]), and K’

0(z) = − K1(z) < 0, we can conclude that ℜ(hn(z)) < 0. 
Second, we consider the imaginary part of hn(z): 

I(hn(z)) =
z

⃒
⃒H(1)

n (z)
⃒
⃒

2

(
Y ’

n(z)Jn(z) − J’
n(z)Yn(z)

)
.

Using the identities 

2J’
n(z) = Jn− 1(z) − Jn+1(z), 2Y ’

n(z) = Yn− 1(z) − Yn+1(z),

and the Wronskian [39]: 

W{Jn(z),Yn(z)} = Jn+1(z)Yn(z) − Jn(z)Yn+1(z) = 2 / (πz),

we have 

I(hn(z)) =
z

⃒
⃒H(1)

n (z)
⃒
⃒2
((Yn− 1(z) − Yn+1(z))Jn(z) − (Jn− 1(z) − Jn+1(z))Yn(z))

=
2
π

1
⃒
⃒H(1)

n (z)
⃒
⃒2
> 0.

Next, we examine the properties of ℜ(kn(z)) and ℑ(kn(z)). Since Kn(z) is a real-valued function, K’
n(z) is also real, implying that 

ℑ(kn(z)) = 0. For a given n and z > 0, Kn(z) > 0, and Kn(z) is monotonically decreasing with respect to z, i.e., K’
n(z) < 0. Consequently, 

we have ℜ(kn(z)) < 0 for z > 0. □ 

Theorem 4.2. The coupled boundary value problem (4.4) has at most one solution for κ > 0. 

Proof. It suffices to show that p = 0 and q = 0 in Ω when g1 = 0. Applying Green’s theorem in Ω and the boundary condition, we 
obtain 

(∇p,∇p) − κ2(p, p) − 〈T1p, p〉ΓR
− 〈∂νp, p〉∂D = 0,

(∇q,∇q) + κ2(q, q) − 〈T2q, q〉ΓR
− 〈∂νq, q〉∂D = 0.

Since 〈∂νp, p〉∂D = 〈∂νq, q〉∂D on ∂D, we have 

(∇p,∇p) − κ2(p, p) − 〈T1p, p〉ΓR
= (∇q,∇q) + κ2(q, q) − 〈T2q, q〉ΓR

.

A simple calculation yields 

〈T1p, p〉ΓR
= 2π

∑

n∈Z

hn(κR)
⃒
⃒p(n)

⃒
⃒2, 〈T2q, q〉ΓR

= 2π
∑

n∈Z

kn(κR)
⃒
⃒q(n)

⃒
⃒2,

where p(n) and q(n) are the Fourier coefficients of p and q on ΓR. Taking the imaginary part of the above equation gives 

ℑ
(
− 〈T1p, p〉ΓR

+ 〈T2q, q〉ΓR

)
= − 2π

∑

n∈Z

ℑ(hn(κR))
⃒
⃒p(n)

⃒
⃒2

+ 2π
∑

n∈Z

ℑ(kn(κR))
⃒
⃒q(n)

⃒
⃒2 = 0,

which gives p(n) = 0 for n ∈ Z using Lemma 4.1. Thus we have p = 0 and ∂rp = 0 on ΓR. According to the Holmgren uniqueness 
theorem, we obtain p = 0and ∂rp = 0 in R2\BR. Furthermore, a unique continuation result implies that p = 0 and ∂rp = 0 in Ω. 
Considering the boundary conditions on ∂D, we find that q = 0 and ∂νq = 0 on ∂D. Consequently, by applying the Holmgren uniqueness 
theorem, we can deduce that q = 0 in Ω. □ 

To solve the decomposed problem (4.4) by using the linear FEM, we introduce its variational formulation. Using the test functions 
(ϕ, ψ , φ) ∈ H1

∂D(Ω)× H1
∂D(Ω)× H1(Ω), the weak formulation of (4.4) aims to find (p, q) ∈ H1(Ω) × H1(Ω) that satisfy the following 

equations: 
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{
b1(p,ϕ) = − 〈g1,ϕ〉ΓR

∀ϕ ∈ H1
∂D(Ω),

b2(q,ψ) = 0 ∀ψ ∈ H1
∂D(Ω),

(4.6)  

and 

(∇(p − q),∇φ) − κ2(p+ q,φ) − 〈T1p − T2q,φ〉ΓR
= 0 ∀φ ∈ H1(Ω), (4.7)  

where p = p0 + wD and q = q0 + wD with p0, q0 ∈ H1
∂D(Ω) and wD = p|∂D = q|∂D. Here the sesquilinears b1 : H1 × H1

∂D→C and b2 : H1 ×

H1
∂D→C are defined by 

b1(ϕ,ψ) = (∇ϕ,∇ψ) − κ2(ϕ,ψ) − 〈T1ϕ,ψ〉ΓR
,

b2(ϕ,ψ) = (∇ϕ,∇ψ) + κ2(ϕ,ψ) − 〈T2ϕ,ψ〉ΓR
.

5. The linear finite element methods 

In this section, we introduce the IP-FEM and BP-FEM methods for solving the problem (4.6)–(4.7). First, we define the linear finite 
element spaces and the corresponding symbols. Next, we construct the variational formulations by incorporating an interior penalty 
term and a boundary penalty term, respectively. Finally, we present the discretized systems using the linear FEM. 

5.1. Finite element spaces 

Let Mh be a triangulation of Ω such that Ω = ∪K∈Mh K, where K denotes a triangular element. Let CI
h and CB

h be the set of all interior 
and boundary edges of mesh Mh, respectively. 

We define the finite element space using piecewise linear functions, denoted as P1, associated with Mh. We consider the following 
discrete spaces: 

Sh =
{

ϕh ∈ C(Ω) : ϕh|K ∈ P1(K) ∀K ∈ Mh
}
.

Furthermore, we introduce its subspaces, denoted as S0
h and SΩ

h . These subspaces exhibit vanishing degrees of freedom (DoFs) on the 
nodes of ∂D and Ω ∪ ΓR, respectively. 

5.2. The variational formulation for IP-FEM 

We derive the variational formulation with an interior penalty term for the problem (4.6) and (4.7). To facilitate the formulation, 
we assign a unique index iK ∈ N to each element K ∈ Mh. Furthermore, we define the jump of a function ϕ across an interior edge e =
∂K ∩ ∂K′ as follows: 

[ϕ]e :=
{

ϕ|K − ϕ|K’ if iK > iK’ ,

ϕ|K’ − ϕ|K if iK < iK’ .

For any functions ϕ,ψ ∈ Sh, we define the sesquilinear form of the interior Neumann penalty by 

J(ϕ,ψ) :=
∑

e∈CI
h

γehe〈[∂νϕ], [∂νψ ]〉e,

where he is the length of interior edge e and γe is a complex-valued penalty parameter with positive real part. 
The sesquilinear forms bh

1 : Sh × S0
h→C and bh

2 : Sh × S0
h→C are defined by 

bh
1(ϕ,ψ) = b1(ϕ,ψ) − J(ϕ,ψ), bh

2(ϕ,ψ) = b2(ϕ,ψ)+ J(ϕ,ψ). 
It is important to note that the sign of the penalty term should be consistent with that of the lower-order term (i.e., the mass matrix 

term) in the variational formulation. This consistency ensures enhanced stability of the solution for discrete systems constructed using 
linear finite elements, from a numerical computational perspective. 

Through substituting the expansion for ph in place of p and qh for q and choosing a discrete test function φh ∈ SΩ
h ⊂H1(Ω) in (4.7), the 

discrete variational formulation with an interior penalty term for problem (4.6) and (4.7) is to find (ph, qh) ∈ Sh × Sh such that 
{

bh
1(ph,ϕh) = − 〈g1,ϕh〉ΓR

∀ ϕh ∈ S0
h,

bh
2(qh,ψh) = 0 ∀ ψh ∈ S0

h,
(5.1)  

and 

(∇(ph − qh),∇φh) − κ2(ph + qh,φh) − J(ph + qh,φh) = 0 ∀ φh ∈ SΩ
h , (5.2)  

where ph = ph
0 + wh

D and qh = qh
0 + wh

D with ph
0, qh

0 ∈ S0
h and wh

D ∈ SΩ
h . It is important to note that φh ∈ SΩ

h in which SΩ
h is a subspace of 

J. Yue and P. Li                                                                                                                                                                                                        



Journal of Computational Physics 497 (2024) 112606

9

H1(Ω), and φh|ΓR
= 0 implying that 〈T1p − T2q,φh〉ΓR

= 0. 

5.3. The variational formulation for BP-FEM 

We now establish the variational formulation with a boundary penalty term for the problem (4.6) and (4.7). Consider any functions 
ϕ,ψ ∈ SΩ

h , the sesquilinear form of the boundary penalty term is defined as: 

G(ϕ,ψ) :=
∑

e∈CB
h

ηehe〈∂τϕ, ∂τψ〉e,

where he represents the length of the boundary edge e, ηe is a complex-valued penalty parameter with positive real part, and τ is the unit 
tangent vector on the boundary edge e. 

The variational formulation with a boundary penalty term for problem (4.6) and (4.7) is defined as follows: find (ph, qh) ∈ Sh ×Sh 
such that 

{
b1(ph,ϕh) = − 〈g1,ϕh〉ΓR

∀ ϕh ∈ S0
h,

b2(qh,ψh) = 0 ∀ ψh ∈ S0
h,

(5.3)  

and 

(∇(ph − qh),∇φh) − κ2(ph + qh,φh) − G
(
wh

D,φh
)
= 0 ∀ φh ∈ SΩ

h , (5.4)  

where ph = ph
0 + wh

D and qh = qh
0 + wh

D with ph
0, qh

0 ∈ S0
h and wh

D ∈ SΩ
h . 

Similarly, it is essential to ensure the consistency of the sign of the penalty term G(wh
D, φh)) with that of the lower-order term 

(ph +qh,φh) in the variational formulation with a boundary penalty. It is important to note that the boundary penalty term is con-
structed by employing the tangential derivative of the auxiliary function, making it a viable option for numerical implementation. The 
primary objective of the boundary penalty term is to enhance the maximal smoothness of the auxiliary function along the boundary, 
thereby effectively reducing oscillations at the cavity boundary. 

5.4. The discretized problems 

Next, we proceed to discretize the variational problem with the interior penalty term (5.1) and (5.2) and the boundary penalty term 
(5.3) and (5.4) using linear FEM. Subsequently, we express these equations in matrix form. 

Let {αj}
NI

h
j=1 and {βj}

NT
h

j=1 be sets of bases in the space S0
h . In the case of piecewise linear triangular elements, NI

h and NT
h correspond to 

the number of mesh nodes in the interior of Ω and on the boundary ΓR, respectively. Let {ζj}
ND

h
j=1 represent the set of basis functions for 

the space SΩ
h , where ND

h denotes the number of mesh nodes on the boundary ∂D. 
The discretized formulations of (5.1) and (5.2) and (5.3) and (5.4) for the IP-FEM and BP-FEM, using linear triangular elements, can 

be expressed as: 
(
K − κ2M − γKJ − Ktb)W = F, (5.5)  

(
K − κ2M − ηKG − Ktb)W = F. (5.6) 

In these equations, the penalty parameters γe and ηe are selected as γe = γ for all interior edges and ηe = η for all boundary edges, 
respectively. The unknown nodal vector W has a dimension of 2NI

h + 2NT
h + ND

h , given by 

W =

⎡

⎣
WI
WT
WD

⎤

⎦, WI =

[
PI
QI

]

, WT =

[
PT
QT

]

,

where PI and QI represent the values of p and q at the interior nodes, PT and QT denote the values of p and q at the nodes on ΓR, and PD 
corresponds to the unknown nodal vector associated with the cavity boundary ∂D. 

The stiffness matrix K and the mass matrix M are given in blockwise form as follows: 

K =

⎡

⎣
KII KIT KID
KTI KTT 0
KDI 0 0

⎤

⎦, M =

⎡

⎣
MII MIT MID
MTI MTT 0
MDI 0 2M̂DD

⎤

⎦,

where 
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Kij =

[
K̂ ij 0

0 K̂ij

]

, Mij =

[
M̂ij 0

0 − M̂ij

]

, i, j = I,T,

KID =

[
K̂ID

K̂ID

]

, MID =

[
M̂ID

− M̂ID

]

,

KDI = [ K̂DI − K̂DI ], MDI = [ M̂DI M̂DI ].

Specifically, the stiffness and mass matrices associated with the IP-FEM and the BP-FEM are given in Table 1, where we have the 
relationships K̂DI = (K̂ID)

∗, K̂TI = (K̂IT)
∗, M̂DI = (M̂ID)

∗, and M̂TI = (M̂IT)
∗. Here the superscript ∗ represents the conjugate trans-

position of a vector or matrix, the letters I, T, and D stand for the interior node in Ω, the boundary node on ΓR, and the boundary node 
on ∂D, respectively. 

The matrix Ktb is associated with the TBC and is given by 

Ktb =

⎡

⎢
⎢
⎣

0 0 0
0 Ktb

L 0
0 0 0

⎤

⎥
⎥
⎦,

where the matrix Ktb
L can be given by 

Ktb
L =

∑

|n|≤N

[
anKtb

n 0
0 bnKtb

n

]

.

Here the truncation parameter N is a positive integer, an = hn(κR)/2π, bn = kn(κR)/2π, and Ktb
n is evaluated as follows: 

Ktb
n =

(∫ 2π

0
Ntbeinθdθ

)

NT
h ×1

(∫ 2π

0

(
Ntb)T e− inθ’

dθ’
)

1×NT
h

,

where Ntb is a vector consisting of base functions {βj}
NT

h
j=1 on the boundary ΓR. The matrix K̂J associated with the interior penalty term 

J(ϕ, ψ) is given by 

K̂J =
∑

e∈CI
h

he

∫

e
geg∗

eds =
∑

e∈CI
h

h2
eke =

⎡

⎣
ĴII ĴIT ĴID
ĴTI ĴTT 0
ĴDI 0 ĴDD

⎤

⎦,

where ĴTI = (ĴIT)
∗, ĴDI = (ĴID)

∗, ke = geg∗e with ge being the discretized vector associated with the jump [∂νϕ]. Specifically, the jumps 
[∂νϕ] and [∂νψ ] on the interior edge e = ∂K ∩ ∂K′ in the interior penalty term J(ϕ,ψ) can be written as 

[∂νϕ] = ∂K
ν ϕK + ∂K′

ν ϕK′
= g∗

eϕe, [∂νψ] = ∂K
ν ψK + ∂K′

ν ψK′
= g∗

eψe,

where ϕe and ψe are vectors composed of the function values of ϕ and ψ at the nodes associated with the interior edge e, respectively. 

Additionally, the normal direction in ∂K
ν is opposite to that in ∂K′

ν . 
Therefore, the interior penalty stiffness matrix KJ can be expressed as 

KJ =

⎡

⎣
JII JIT JID
JTI JTT 0
JDI 0 2JDD

⎤

⎦,

where 

Table 1 
The stiffness and mass matrices for the IP-FEM and BP-FEM.  

Matrix Dimension Matrix entries 

K̂II , M̂II NI
h × NI

h (K̂II)j,l =
∫

Ω∇αj ⋅ ∇αldx, (M̂II)j,l =
∫

Ωαjαldx 

K̂IT , M̂IT NI
h × NT

h (K̂IT)j,l =
∫

Ω∇αj ⋅ ∇βldx, (M̂IT)j,l =
∫

Ωαjβldx 

K̂ID, M̂ID NI
h × ND

h (K̂ID)j,l =
∫

Ω∇αj ⋅ ∇ζldx, (M̂ID)j,l =
∫

Ωαjζldx 

K̂TT , M̂TT NT
h × NT

h (K̂TT)j,l =
∫

Ω∇βj ⋅ ∇βldx, (M̂TT)j,l =
∫

Ωβjβldx 

M̂DD ND
h × ND

h (M̂DD)j,l =
∫

Ωζjζldx  
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Jij =

[
Ĵij 0
0 − Ĵ ij

]

, i, j = I, T, JID =

[
ĴID
− ĴID

]

, JDI = [ ĴDI ĴDI ].

Let us assume that the boundary ∂D of the cavity is divided into K(= ND
h ) segments Γk, where k = 1,⋯,K, in the mesh Mh. The 

boundary penalty stiffness matrix KG is associated with the boundary penalty term G(wh
D,φh) and can be obtained by mapping KL

G from 
local to global numbering. Specifically, in the term G(wh

D,φh), ∂τwh
D and ∂τφh on the segment Γk with the k-th and (k + 1)-th nodes can be 

written as 

∂τwh
D

⃒
⃒

Γk
=

1
hk

[ − 1 1 ]

[
wk

D

wk+1
D

]

, ∂τφh|Γk
=

1
hk

[ − 1 1 ]
[

φk
φk+1

]

, k = 1, 2,⋯,K,

where wK+1
D = w1

D and φK+1 = φ1. Hence, the matrix KL
G can be evaluated as follows: 

KL
G =

∑K

k=1
hk

∫

Γk

1
h2

k

[
− 1
1

]

[ − 1 1 ]ds =
∑K

k=1

[
1 − 1
− 1 1

]

.

6. Numerical experiments 

In this section, we present numerical results obtained using the IP-FEM and BP-FEM for three examples: a circular-shaped cavity, an 
ellipse-shaped cavity, and a kite-shaped cavity. In the experiments, we investigate the out-of-plane displacement of the scattered field v 
and its bending moment w = κ− 2Δv by solving the boundary value problem (4.5) and using the relationships (ps, qs) and (v,Δv). The 
relative errors in the L2 norm and the H1 semi-norm are employed to assess the numerical solutions. For the circular-shaped cavity, we 
compare the results against the analytic solution, while for the ellipse-shaped and kite-shaped cavities, we use reference solutions, i.e., 
the numerical solutions obtained with fine meshes. The relative errors of the L2 norm and the H1 semi-norm of any function ϕ are 
defined as follows: 

EL2 =
‖ ϕe − ϕn ‖0,Ω

‖ ϕe ‖0,Ω
, EH1 =

‖ ∇ϕe − ∇ϕn ‖0,Ω

‖ ∇ϕe ‖0,Ω
,

where ϕe and ϕn represent the analytical or reference solution and the numerical solution, respectively. 

6.1. A circular-shaped cavity 

Consider a circular-shaped cavity D = BR̂, which is illuminated by a plane wave 

uinc(x) = eiκx⋅d,

where κ > 0 is the wavenumber and d = (cosα, sinα) is the incident direction with α being the incident angle. The parameter equation of 
the circular-shaped cavity with radius R̂ is 

x(θ) = R̂cosθ, y(θ) = R̂sinθ, θ ∈ [0, 2π).

6.1.1. The analytical solution 
The Helmholtz and modified Helmholtz wave components vH and vM of the out-of-plane displacement of the scattered field v satisfy 

the coupled boundary value problem 
{

ΔvH + κ2vH = 0, ΔvM − κ2vM = 0 in R2 \ BR̂,

vH + vM = f (θ), ∂rvH + ∂rvM = g(θ) on ∂BR̂,
(6.1)  

where f(θ) = − uinc and g(θ) = − ∂ruinc. The analytical solution of (6.1) has the Fourier series expansion in polar coordinates: 

vH(r, θ) =
∑

n∈Z

H(1)
n (κr)

H(1)
n (κR̂)

v(n)H (R̂)einθ, vM(r, θ) =
∑

n∈Z

Kn(κr)
Kn(κR̂)

v(n)M (R̂)einθ, (6.2)  

where the Fourier coefficients v(n)H (R̂) and v(n)M (R̂) are given by 

v(n)H (R̂) =
1

2π

∫ 2π

0
vH(R̂, θ)e− inθdθ, v(n)M (R̂) =

1
2π

∫ 2π

0
vM(R̂, θ)e− inθdθ.

Since f(θ) and g(θ) are periodic functions with period 2π, we have 

f (θ) =
∑

n∈Z

f (n)einθ, g(θ) =
∑

n∈Z

g(n)einθ, (6.3) 
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Fig. 2. Example 1: The bending moment w on the boundary of cavity: (left) The regular linear FEM (γ = 0); (right) The IP-FEM γ = 4.2 × 10− 3) and 
the BP-FEM (η = 2.5κ× 10− 3). 

Fig. 3. Example 1: The relative errors are plotted against the real parameter γ for κ = π.  
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where the Fourier coefficients f (n) and g(n) are 

f (n) =
1

2π

∫ 2π

0
f (θ)e− inθdθ, g(n) =

1
2π

∫ 2π

0
g(θ)e− inθdθ.

Substituting (6.2) and (6.3) into the boundary condition on ∂BR̂ yields a linear system of algebraic equations 
⎧
⎪⎪⎨

⎪⎪⎩

v(n)H + v(n)M = f (n),

κ
H(1)

n
’
(κR̂)

H(1)
n (κR̂)

v(n)H + κ
K’

n(κR̂)
Kn(κR̂)

v(n)M = g(n),

which has a matrix form 

A

⎡

⎢
⎣

v(n)H

v(n)M

⎤

⎥
⎦ =

⎡

⎢
⎢
⎣

1 1

κ
H(1)

n
’
(κR̂)

H(1)
n (κR̂)

κ
K’

n(κR̂)
Kn(κR̂)

⎤

⎥
⎥
⎦

⎡

⎢
⎣

v(n)H

v(n)M

⎤

⎥
⎦ =

[
f (n)

g(n)

]

. (6.4) 

We can obtain the solution of (6.4) using Cramer’s rule that 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v(n)H =
1
bn

(

κ− 1g(n) −
K’

n(κR̂)
Kn(κR̂)

f (n)
)

,

v(n)M =
1
bn

(
H(1)

n
’
(κR̂)

H(1)
n (κR̂)

f (n) − κ− 1g(n)

)

,

(6.5)  

where bn is the determinant of the coefficient matrix A and is given by 

bn = −

(
H(1)

n
’
(κR̂)

H(1)
n (κR̂)

−
K’

n(κR̂)

Kn(κR̂)

)

. 

From (6.2) and (6.5), we can obtain the analytical solutions vH and vM. Then, using the following relationships, the scattered field v 
and its bending moment w can be expressed as follows: 

v = vH + vM, w = vM − vH. 

Theorem 6.1. The linear system (6.4) has a unique solution. 

Proof. It suffices to show that the coefficient matrix A of (6.4) is nonsingular, i.e., det(A) ∕= 0. A simple calculation gives 

Fig. 4. The optimal real parameter γ with different wavenumbers and mesh sizes h for the IP-FEM.  
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det(A) =
κK’

n(κR̂)
Kn(κR̂)

−
κH(1)

n
’
(κR̂)

H(1)
n (κR̂)

=
1
R̂
(kn(κR̂) − hn(κR̂)).

Taking the imaginary part of det(A) and using Lemma 4.1, we have 

ℑ(det(A)) = −
1
R̂

ℑ(hn(κR̂)) = −
2

πR̂
1

⃒
⃒H(1)

n (κR̂)
⃒
⃒

2 ∕= 0,

which implies that the coefficient matrix A of (6.4) is nonsingular and there exists a unique solution to the system of Eq. (6.4). □ 
In the experiments, we set R̂ = 0.3 for the circular-shaped cavity and the radius R = 0.6 for the TBC. The incident angle α = π /3 

and the wavenumber κ = π, corresponding to a wavelength λ = 2. We select a sufficiently large truncation number N = 15 for the DtN 
operator to reduce any potential impact of the wavenumber on the outcomes of the IP-FEM and BP-FEM. 

6.1.2. The influence of γ 
In IP-FEM, the penalty parameter γ plays a crucial role. In this subsection, we investigate the influence of the penalty parameter γ on 

the accuracy of the IP-FEM and derive an optimal complex penalty parameter γ. In our experiments, we investigate the optimal 
parameter γ through a two-step process: first, determining its optimal real part while fixing its imaginary part to zero, and subse-
quently, determining its imaginary part with the real part fixed at the optimal value. 

First, let us consider that the penalty parameter γ is a positive real number. In this scenario, if γ is too large, it introduces artificial 
dissipation in the numerical results. On the other hand, if γ is too small, we observe an oscillation behavior of the bending moment w on 
the cavity boundary, similar to what is seen in the regular linear FEM (γ = 0), as shown in the left part of Fig. 2. 

Fig. 5. The relative errors are plotted as functions of the complex parameter γ with varying imaginary parts and a fixed real part (π × 10− 3) for 
IP-FEM. 
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Fig. 6. The relative L2 errors of v and w are examined for different imaginary parts and fixed real parts (κ× 10− 3) of the complex parameter γ, using 
the wavenumbers κ = π,1.5π, and 2π, at a mesh size of h = 0.05 for IP-FEM. Note that the black dashed line, red dashed line, and blue dashed line 
represent x = ±0.005 for κ = π, x = ±0.075 for κ = 1.5π, and x = ±0.01 for κ = 2π, respectively. 

Fig. 7. Example 1: The relative errors are plotted against the real parameter η for κ = π.  
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Fig. 3 presents the relative errors of the L2 norm and the H1 semi-norm of v and w with different values of the real parameter γ at the 
mesh size h = 0.05. The relative L2 and H1 errors of v increase as γ becomes larger, but they remain at levels of 10− 3 and 10− 2, 
respectively. However, the relative L2 and H1 errors of w first decrease and then increase with increasing γ, with the minimum relative 
L2 error of w occurring at γ = 4.2× 10− 3. The solution of w on the cavity boundary for the IP-FEM with the optimal parameter γ = 4.2 
×10− 3 is shown in the right part of Fig. 2. It is evident that the boundary oscillation behavior of w is reduced compared to the regular 
linear FEM, i.e., the linear FEM without any penalty term (γ = 0). Based on these observations, we conclude that there exists a range of 
values for γ that significantly improves the results for the bending moment w while maintaining good results for the displacement v. 

Fig. 4 presents the optimal real penalty parameter γ at different wavenumbers (κ = 0.5π,π,1.5π,2π) and mesh sizes (h = 0.04, 0.06,
0.08, 0.1). The figure contains sixteen cases, and each subfigure shows the variation of the relative L2 error of w with the real 
parameter γ. In this paper, relative L2 errors of w within 1 × 10− 3 (shown by two horizontal red dashed lines from the smallest error elow 

to elow + 1× 10− 3) are considered acceptable, and the corresponding penalty parameters γ are considered acceptably optimal. From 
these subfigures, we observe that for κ = 0.5π, the optimal parameters are located at γ = 1.57 × 10− 3 for h = 0.04, 0.06, 0.08, 0.1, and 
similar results are obtained for other cases (κ = π,1.5π,2π). This implies that the optimal real parameter γ is directly proportional to the 
wavenumber κ and is less affected by the mesh size h. For the discretized problem (5.5), a suitable choice for the penalty parameter is γ 
= κ× 10− 3, when γ is a real number. 

Next, we examine the scenario where the penalty parameter γ is a complex number with a fixed optimal real part (γ = κ × 10− 3). 
Fig. 5 illustrates the relative L2 errors and H1 errors of v and w for various imaginary parts of the parameter γ with the optimal real part 
(π × 10− 3) at a mesh size of h = 0.05. As observed in the figure, when the real part of γ is fixed at the previously determined optimal 
value, the relative L2 errors of w are optimal at ℑ(γ) = ±0.05 and remain within an acceptable range (error fluctuations of less than 3 ×
10− 3) for ℑ(γ) ∈ [ − 0.01,0.01]. Similarly, Fig. 6 depicts the relative L2 errors of v and w for different imaginary parts of the parameter γ 
using wavenumbers κ = 1.5π,2π at a mesh size of h = 0.05. We find that when the real part of γ is fixed at κ × 10− 3, the relative L2 

errors of w are optimal at ℑ(γ) = ±1.6κ× 10− 3, and when ℑ(γ) = 0, the relative L2 error of w falls within an acceptable range 
(particularly, error fluctuations of less than 6 × 10− 3 for 2π), while the relative L2 error of v is relatively small. Therefore, in the 
subsequent experiments for the sake of simplicity, we directly set the imaginary part of the penalty parameter γ to 0. This means that 
the penalty parameter can be chosen as γ = κ × 10− 3 for IP-FEM. 

6.1.3. The influence of η 
In this subsection, we explore the influence of the penalty parameter η in the BP-FEM. In this method, η plays an important role as a 

penalty parameter. An appropriate parameter value η can effectively suppress the oscillation of w on the cavity boundary, as shown in 
the right part of Fig. 2. In the experiments, the optimal complex parameter η is determined through the same two-step process: first, its 
optimal real part is established with its imaginary part fixed at zero, and then its imaginary part is determined with the real part fixed at 
the optimal value. 

First, we consider that the penalty parameter η is a positive real number. In this situation, if η is too large, it introduces artificial 

Fig. 8. The optimal real parameter η with different wavenumbers and mesh sizes h in the BP-FEM.  
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Fig. 9. The relative errors are plotted against the complex parameter η with varying imaginary parts and a fixed real part (2.5κ × 10− 3) for BP-FEM.  

Fig. 10. The relative L2 errors of v and w with different imaginary parts and fixed real parts (2.5κ× 10− 3) of the complex parameter η using the 
wavenumbers κ = π,1.5π, and 2π at the mesh size h = 0.05 for BP-FEM. Note that the black dashed line, red dashed line, and blue dashed line are x 
= ±0.01 for κ = π, x = ±0.015 for κ = 1.5π, and x = ±0.02 for κ = 2π, respectively. 
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dissipation in the numerical results. Conversely, if η is too small, we observe oscillation behavior of the bending moment w on the 
cavity boundary, similar to what is seen in the regular linear FEM (η = 0), as shown in the left part of Fig. 2. 

Fig. 7 displays the relative L2 and H1 errors of v and w for different values of the real parameter η at a mesh size of h = 0.05. These 
figures reveal that the relative L2 and H1 errors of v increase as η increases, but they remain at levels of 10− 3 and 10− 2, respectively. 
Conversely, the relative L2 errors of w first decrease and then increase as η increases, with the smallest error obtained for η ∈ (7.0 ×

10− 3,1.7 × 10− 2). Based on these observations, we conclude that there exists a range of values for the real parameter η, where the 
results for w are significantly improved while maintaining good results for v. 

Fig. 8 presents the optimal real penalty parameter η at different wavenumbers (κ = 0.5π,π,1.5π,2π) and mesh sizes (h = 0.04,0.06,
0.08,0.1). The figure contains sixteen cases, and each subfigure shows the variation of the relative L2 error of w with the real parameter 
η. In this paper, relative L2 errors of w within 1 × 10− 3 (shown by two horizontal red dashed lines from the smallest error elow to elow + 1 
× 10− 3) are considered acceptable, and the corresponding penalty parameters η are considered acceptably optimal. From these 
subfigures, we observe similar results to those in Fig. 4. This also implies that the optimal parameter η is directly proportional to the 
wavenumber κ and is less affected by the mesh size h. Consequently, for convenience, the real penalty parameter η for the discretized 
problem (5.6) can be chosen as η = 2.5κ× 10− 3. 

Next, we consider the penalty parameter η as a complex number with an optimal real part. Fig. 9 displays the relative L2 errors and 
H1 errors of v and w for various imaginary parts of the parameter η at the mesh size h = 0.05 and wavenumber κ = π. As observed in this 
figure, when the real part of η is fixed at the previously determined optimal value, the relative L2 errors of w are optimal at ℑ(η) = ±

0.01 and fall within an acceptable range (less than 9× 10− 4) for ℑ(η) ∈ [ − 0.015,0.015]. Similarly, Fig. 10 shows the relative errors in 
the L2 norm of v and w for various imaginary parts of the parameter η, using the wavenumbers κ = 1.5π,2π at the mesh size h = 0.05. 
We find that when the real part of η is fixed at 2.5κ× 10− 3, the relative L2 errors of w are optimal at ℑ(η) = ±3.2κ× 10− 3, and when 
ℑ(η) = 0, the relative L2 error of w is within an acceptable range, while the relative L2 error of v is relatively small. Hence, in the 
following experiments, for the sake of simplicity, we set the imaginary part of the penalty parameter η to 0. In other words, the penalty 

Fig. 11. Example 1: The relative errors are plotted against the wavenumber with γ = κ × 10− 3 and η = 2.5κ × 10− 3.  
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parameter can be chosen as η = 2.5κ × 10− 3 for BP-FEM. 
Furthermore, it is worth noting that the optimal penalty parameters γ and η can also be derived by initially determining their 

optimal imaginary part while keeping their real part fixed at 0, and then investigating their real part with their imaginary part set to the 
optimal value. However, due to space constraints, we will not present a detailed explanation here but will instead provide a summary 
of the numerical findings. 

Through numerical verification, when their real parts are set to 0, the penalty parameters can be chosen as follows: γ = ±1.6κ ×
10− 3i for IP-FEM and η = ±3.8κ × 10− 3i for BP-FEM. Furthermore, when the imaginary part of γ is fixed at 1.6κ × 10− 3 and the mesh 
size is h = 0.05, the real part of γ can take values within the intervals [0,2.5 × 10− 3], [0,5.0 × 10− 3], [0,7.0 × 10− 3], and [0,7.5 × 10− 3]. 
These intervals correspond to the wavenumbers κ = 0.5π, π,1.5π, and 2π, respectively. This ensures that the relative L2 errors of w 
remain within an acceptable range (with error fluctuations of less than 1× 10− 3) for IP-FEM. Similarly, when the imaginary part of η is 
fixed at 3.8κ × 10− 3 and the mesh size is h = 0.05, the real part of η can take values within the intervals [0, 4.5 × 10− 3], [0, 1.2 ×

10− 2],[0,1.75 × 10− 2], and [0,2.1 × 10− 2]. These intervals correspond to the wavenumbers κ = 0.5π,π,1.5π, and 2π, respectively. This 
also ensures that the relative L2 errors of w remain within an acceptable range (with error fluctuations of less than 1 × 10− 3) for BP- 
FEM. Considering that when ℜ(γ) = 0 and ℜ(η) = 0, the relative L2 error of v is smaller, it is recommended that γ = ±1.6κ ×10− 3i for 
IP-FEM and η = ±3.8κ × 10− 3i for BP-FEM. This implies that penalty parameters γ and η as pure imaginary numbers can also effectively 
suppress oscillations of w on the cavity boundary. 

6.1.4. The influence of κ 
In this subsection, we consider the effects of the wavenumber on the solution accuracy with a fixed mesh size of h = 0.05. Fig. 11 

illustrates the relative L2 and H1 errors of solutions v and w obtained using the regular linear FEM (γ = 0), the IP-FEM (γ = κ × 10− 3), 
and the BP-FEM (η = 2.5κ× 10− 3). From these figures, we observe that the behavior of v is similar for all three methods. However, for 

Fig. 12. Example 1: The relative errors are plotted against the degrees of freedom (Dofs) for the IP-FEM (γ = κ× 10− 3) and the BP-FEM (η = 2.5κ 
× 10− 3). 
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the solution w, both the IP-FEM and the BP-FEM show significant improvements compared to the regular linear FEM. Additionally, the 
errors in both L2 and H1 norms increase as the wavenumber κ increases, regardless of the method used. 

6.1.5. Convergence 
In this subsection, we examine the convergence of the IP-FEM and the BP-FEM. Fig. 12 displays the relative errors of the L2 norm 

and the H1 semi-norm for the scattered field v and its bending moment w using different methods. From these figures, we observe that 
the convergence rates of the relative L2 and H1 errors of v and w for both the IP-FEM and the BP-FEM achieve the optimal convergence 
order. 

6.2. An ellipse-shaped cavity 

In this example, we study the flexural wave scattering by an elliptical cavity with the clamped boundary. The boundary of the 
ellipse is described by the following parametric equations: 

x(t) = acos(θ), y(t) = bsin(θ),

where the major semi-axis a = 0.4 and the minor semi-axis b = 0.2. The parameter θ ranges from 0 to 2π. In the experiments, the open 
domain is truncated by a circle with a radius R = 0.6, and we choose the penalty parameters as follows: γ = κ × 10− 3 for the IP-FEM 
and η = 2.5κ × 10− 3 for the BP-FEM. All other related parameters remain the same as in the first example. For the sake of comparison, 
we obtain the reference solution using the IP-FEM with γ = κ × 10− 3 on a very fine mesh. 

6.2.1. Accuracy 
In this subsection, we consider the effectiveness of the IP-FEM and the BP-FEM. The mesh size and the wavenumber are set as h =

0.05 and κ = π, respectively. Fig. 13 shows the modulus of the solutions w obtained using the regular FEM (γ = 0), the IP-FEM (γ = κ ×

Fig. 13. Example 2: The modulus of bending moment w on the boundary of cavity and the entire domain: (left) The regular linear FEM (γ = 0); 
(right) the IP-FEM (γ = κ× 10− 3) and the BP-FEM (η = 2.5κ× 10− 3). 
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Fig. 14. Example 2: The relative errors are plotted against the degrees of freedom (Dofs) for the elliptical cavity with γ = κ × 10− 3 for the IP-FEM 
and with η = 2.5κ × 10− 3 for the BP-FEM. 

Fig. 15. Geometry of a kite-shaped cavity: (a) The truncated domain; (b) A FEM mesh.  

J. Yue and P. Li                                                                                                                                                                                                        



Journal of Computational Physics 497 (2024) 112606

22

10− 3), and the BP-FEM (η = 2.5κ× 10− 3) on the cavity boundary. For the results on the entire domain, we only present the regular 
linear FEM and the IP-FEM, as the BP-FEM yields similar outcomes to the IP-FEM. From these figures, we observe that both the IP-FEM 
and the BP-FEM effectively suppress the oscillations of the bending moment w on the cavity boundary when compared with the regular 
linear FEM. 

6.2.2. Convergence 
The convergence of the IP-FEM and the BP-FEM is investigated in this subsection. Fig. 14 illustrates the convergence of the relative 

errors of the L2 norm and the H1 semi-norm for the scattered field v and its bending moment w using various methods. From these 
figures, it is evident that the convergence rates of the relative L2 and H1 errors for v and w with the IP-FEM and the BP-FEM achieve 
optimal convergence orders. 

6.3. A kite-shaped cavity 

The subsection investigates the scattering by a kite-shaped cavity. The parametric equations for the kite-shaped cavity boundary 
are given as follows: 

x(t) = acos(θ) + bcos(2θ) − c, y(t) = asin(θ),

where the parameters are defined as θ ∈ [0,2π), a = 0.3, b = 0.2, and c = 0.1. In the experiments, the open domain is truncated by a 
circle with a radius of R = 0.6. Fig. 15 displays the truncated domain and the mesh used for solving the kite-shaped cavity scattering 
problem. The remaining parameters for this problem are the same as those used in the second example. For the sake of comparison, the 
reference solution is obtained using the IP-FEM with γ = κ × 10− 3 on a very fine mesh. 

Fig. 16. Example 3: The modulus of bending moment w on the boundary of cavity and the entire domain: (left) the regular linear FEM (γ = 0); 
(right) the IP-FEM (γ = κ× 10− 3) and the BP-FEM (η = 2.5κ× 10− 3). 
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6.3.1. Accuracy 
In this subsection, we present the regular linear FEM, the IP-FEM, and the BP-FEM to validate the effectiveness of the proposed 

method. The mesh size and the wavenumber are set as h = 0.05 and κ = π, respectively. Fig. 16 displays the modulus of the solutions w 
obtained using the regular linear FEM (γ = 0), the IP-FEM (γ = κ × 10− 3), and the BP-FEM (η = 2.5κ× 10− 3) on the cavity boundary. 
Additionally, the corresponding results of the regular linear FEM and the IP-FEM on the entire domain are also presented in the figure. 
It is noted that the result of the BP-FEM on the entire domain is similar to that of the IP-FEM. From these figures, we observe that both 
the IP-FEM and BPFEM effectively suppress the oscillation of the bending moment on the cavity boundary compared with the regular 
linear FEM. 

6.3.2. Convergence 
In this subsection, we investigate the convergence of the IP-FEM and the BP-FEM. Fig. 17 illustrates the convergence of the relative 

errors of the L2 norm and the H1 semi-norm for the scattered field v and the bending moment w. From these figures, we observe that the 
convergence rates of v and w also achieve good convergence orders. 

7. Conclusion 

In this paper, we have introduced and applied the IP-FEM and the BPFEM to investigate the flexural scattering by a clamped cavity 
in an infinite thin plate. The proposed model utilizes the decomposition technique and the TBC technique to transform a fourth-order 
problem on an unbounded domain into two second-order equations with coupled boundary conditions and TBCs on a bounded domain. 

Fig. 17. Example 3: The relative errors are plotted against the degrees of freedom (Dofs) for the kite-shaped cavity with γ = κ × 10− 3 for the IP-FEM 
and with η = 2.5κ × 10− 3 for the BP-FEM. 
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To effectively suppress the oscillation of the bending moment on the cavity boundary, we have incorporated the interior penalty (IP) 
and boundary penalty (BP) techniques into the original variational formulation of the decomposed problem. The resulting two new 
variational formulations, augmented with penalty terms, are discretized using linear triangular elements. 

To verify the effectiveness of the proposed method, we conducted a numerical experiment involving flexural scattering by a circle- 
shaped cavity, for which we obtained an analytical solution. The results of this experiment confirm that both the IP-FEM and the BP- 
FEM successfully suppress the oscillations of the bending moment on the cavity boundary, leading to a significant improvement in the 
bending moment, while maintaining the accuracy of the displacement compared to the regular linear FEM. Furthermore, we extended 
the model to handle flexural scattering problems with cavities of different shapes and compared the results with corresponding 
reference solutions. The numerical results demonstrated that the convergence rates for the displacement and bending moment ach-
ieved by the IP-FEM and the BP-FEM approach optimal convergence orders. 

As part of our future work, we aim to conduct further investigations into the existence of decomposed problems using the varia-
tional method and explore the related mathematical theory of the IP-FEM and the BP-FEM and the stability theory of real and 
imaginary parts of complex penalty parameters. These research endeavors are expected to significantly contribute to enhancing the 
understanding and applicability of our proposed numerical methods in the field of flexural scattering and other related problems. 
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