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Abstract4

This paper investigates a novel approach for solving both the direct and inverse random source5

problems of the one-dimensional Helmholtz equation with additive white noise, based on the6

generalized polynomial chaos (gPC) approximation. The direct problem is to determine the7

wave field that is emitted from a random source, while the inverse problem is to use the boundary8

measurements of the wave field at various frequencies to reconstruct the mean and variance of the9

source. The stochastic Helmholtz equation is reformulated in such a way that the random source10

is represented by a collection of mutually independent random variables. The stochastic Galerkin11

method is employed to transform the model equation into a two-point boundary value problem for12

the gPC expansion coefficients. The explicit connection between the sine or cosine transform of13

the mean and variance of the random source and the analytical solutions for the gPC coefficients14

is established. The advantage of these analytical solutions is that the gPC coefficients are zero15

for basis polynomials of degree higher than one, which implies that the total number of the16

gPC basis functions increases proportionally to the dimension, and indicates that the stochastic17

Galerkin method has the potential to be used in practical applications involving random variables18

of higher dimensions. By taking the inverse sine or cosine transform of the data, the inverse19

problem can be solved, and the statistical information of the random source such as the mean and20

variance can be obtained straightforwardly as the gPC basis functions are orthogonal. Numerical21

experiments are conducted to demonstrate the efficiency of the proposed method.22

Keywords: Generalized polynomial chaos, the Helmholtz equation, inverse random source prob-23
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1 Introduction26

The inverse source problem for wave equations seeks to identify unknown sources that generate a27

given wave pattern. This has numerous applications in scientific fields such as medical imaging,28
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where the aim is to use measurements of the electric or magnetic field on the body’s surface to1

figure out the source currents inside [2]. Over the past few decades, there have been numerous2

mathematical and numerical studies of the inverse source problem for acoustic and electromagnetic3

wave equations [1, 3, 12]. It is known that nonradiating sources can exist, for which the resulting4

wave field is zero outside a finite region [9]. Consequently, the fixed frequency does not yield a5

unique solution to the inverse source problem. To address this issue, multi-frequency data can be6

used to gain uniqueness and increase stability [8, 13]. A comprehensive review of solving inverse7

scattering problems for wave equations with multi-frequencies can be found in [7].8

In practice, mathematical models often contain uncertainties arising from random surrounding9

environments [14]. To represent these uncertainties, random parameters are introduced. While the10

deterministic counterparts have been widely studied, the stochastic inverse source problems have11

been largely neglected. Early work [11] showed that the auto-correlation of the random source12

can be uniquely determined by the radiating field outside the source region. Subsequent research13

[5, 6, 20, 21] developed an effective computational model for the inverse random source problem of14

the one-dimensional Helmholtz equation driven by additive white noise, and extended it to higher15

dimensional problems in homogeneous and inhomogeneous media. More recently, the model of the16

microlocally isotropic Gaussian field was developed in [19, 22] to handle more general stochastic17

processes with correlated increments, and some uniqueness results were established to determine18

the micro-correlation strength of the principal symbol of the covariance operator for the random19

parameters. For further information, we refer to the monograph [17] on statistical and computational20

methods for inverse problems involving uncertainties and randomness.21

In this paper, we present a novel approach to solve the direct and inverse random source problems22

of the one-dimensional Helmholtz equation driven by an additive white noise, based on the gener-23

alized polynomial chaos (gPC) approximation. Wiener first introduced the concept of polynomial24

chaos (PC) in his work [27], where he studied the decomposition of Gaussian random processes with25

Hermite polynomials as an orthogonal basis. Ghanem and his collaborators then developed the orig-26

inal PC method, which uses Hermite polynomials to model uncertainties as Gaussian processes [15].27

Xiu and Karniadakis further proposed the gPC method [29], which uses different orthogonal poly-28

nomials as a basis depending on the probability distribution of the random inputs and is capable29

of representing more general random processes. This method is mathematically robust and can be30

implemented numerically with either stochastic Galerkin methods or stochastic collocation meth-31

ods [28]. Related work can be found in [4, 10, 16, 25, 26] for numerical solutions of the stochastic32

Helmholtz equation.33

This paper investigates numerical solutions to the direct and inverse random source problems for34

the one-dimensional Helmholtz equation in a homogeneous medium. The random source is gener-35

ated by Gaussian random processes and is assumed to be supported in a finite interval. The boundary36

condition of outgoing radiation is applied to the two endpoints of a finite interval. The direct problem37

is to identify the radiating wave field when a random source is present, while the inverse problem38

involves calculating the mean and variance of a random source from the boundary measurements39

of the wave field across a range of frequencies. Inspired by [6], which demonstrated that the direct40

problem can be transformed into an equivalent first order stochastic two-point boundary value prob-41

lem and that it has a unique pathwise solution for each realization of the random field, we explore42
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the stochastic Galerkin method for this model problem. The random source is characterized by a set1

of mutually independent random variables, which allows us to reformulate the stochastic Helmholtz2

equation. The stochastic Galerkin method is then employed, with the gPC basis functions being3

orthogonal polynomials based on the distribution of the random variables. This is followed by a4

Galerkin projection of the stochastic model equation. The model problem is now expressed as a set5

of deterministic equations regarding the coefficients of the gPC expansion. Analytical solutions to6

the gPC coefficients are deduced, with those of basis polynomials of degree higher than one being7

zero. This ensures that the total number of gPC basis functions increases in line with the dimension,8

and further indicates that the stochastic Galerkin method has a lot of potential for practical appli-9

cations involving higher-dimensional random variables. Additionally, the gPC coefficients for the10

random wave field are explicitly linked to the sine or cosine transform of the mean and variance of11

the random source. The orthogonality of the gPC basis functions makes it easy to obtain the mean12

and variance of the random source from the boundary measurements of the wave field across a range13

of frequencies. The numerical results of this paper show that the method is both precise and reliable14

for both direct and inverse random source problems. Furthermore, since it is a gPC approximation,15

the results are also applicable to inverse random source problems driven by more complex stochastic16

processes, and can be used as a guide when the gPC approach is used to solve other stochastic inverse17

problems.18

The paper is structured as follows. Section 2 presents the stochastic model problem and reviews19

the solutions for the corresponding deterministic problem. The stochastic Galerkin method of the20

gPC approximation is then proposed for the direct and inverse random source problems. Section 321

presents numerical experiments of the direct and inverse source problems. Finally, Section 4 offers22

general remarks and directions for future work.23

2 Direct and inverse source problems24

This section analyzes the direct and inverse source problems for the one-dimensional stochastic25

Helmholtz equation. To numerically solve these problems, we introduce the stochastic Galerkin26

method.27

2.1 Problem formulation28

The one-dimensional stochastic Helmholtz equation in a homogeneous medium can be expressed as29

u′′(x, ω) + ω2u(x, ω) = f (x), x ∈ (0, 1), (2.1)

where ω > 0 is the angular frequency, u is the radiating wave field, and the source f is a random field30

that represents the electric current density. For the sake of simplicity, the magnetic permeability and31

the electric permittivity of the medium are assumed to be equal to one. Moreover, we assume that32

the random source f is given by33

f (x) = g(x) + h(x)Ẇ(x), (2.2)

3



where g and h are deterministic real-valued functions compactly supported in [0, 1], and Ẇ(x) is the
white noise with W(x) being the Brownian motion [18]. It is evident from (2.2) that the mean and
variance of f are given by

E[ f (x)] = g(x), V[ f (x)] = h2(x).

The outgoing radiation condition requires that u satisfies1

u′(0, ω) + iωu(0, ω) = 0, u′(1, ω) − iωu(1, ω) = 0, (2.3)

which indicates the presence of a left-going wave at x = 0 and a right-going wave at x = 1, re-2

spectively. As demonstrated in [6], the two-point stochastic boundary value problem (2.1) and (2.3)3

admits a mild solution of the form4

u(x, ω) =
1

2iω

∫ 1

0
eiω|x−y|g(y)dy +

1
2iω

∫ 1

0
eiω|x−y|h(y)dW(y). (2.4)

The inverse problem involves reconstructing the mean g and variance h2 of the random source f5

from the measured wave field on x = 0 or x = 1 at a finite number of angular frequencies ω. This is6

in contrast to the direct problem, which is to determine the radiating wave field u given the mean and7

variance of the source. In this paper, we consider numerical solutions to both the direct and inverse8

source problems by employing the stochastic Galerkin method.9

2.2 Deterministic source problems10

We provide a brief overview of the solutions to the direct and inverse source problems for the deter-11

ministic Helmholtz equation.12

When h = 0, the stochastic Helmholtz equation (2.1) reduces to13

u′′(x, ω) + ω2u(x, ω) = g(x), (2.5)

where the radiating wave field u is also required to satisfy the outgoing wave boundary conditions

u′(0, ω) + iωu(0, ω) = 0, u′(1, ω) − iωu(1, ω) = 0. (2.6)

It is straightforward to verify that the one-dimensional Helmholtz problem (2.5)–(2.6) admits a14

unique solution, which is expressed as15

u(x, ω) =
1

2iω

∫ 1

0
eiω|x−y|g(y)dy. (2.7)

Following [6], we evaluate (2.7) on both sides at x = 0 and obtain16

2iωu(0, ω) =

∫ 1

0
eiωyg(y)dy. (2.8)

Let u(0, ω) = <u(0, ω) + i=u(0, ω). A simple calculation from (2.8) gives

2ω<u(0, ω) =

∫ 1

0
sin(ωy)g(y)dy, 2ω=u(0, ω) = −

∫ 1

0
cos(ωy)g(y)dy. (2.9)
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If the wave field u is measured at x = 0 and angular frequencies ωk = kπ, k ∈ Z+, then the source
function g can be recovered from either the inverse sine or cosine transform via

g(x) =

∞∑
k=1

4ωk<u(0, ωk) sin(ωkx), g(x) = −

∞∑
k=1

4ωk=u(0, ωk) cos(ωkx). (2.10)

It is important to note that (2.9) is only applicable for ω > 0, which is a positive frequency.1

The zero Fourier mode is not included, which results in the reconstruction not being unique; the2

reconstructed function, when shifted vertically, will still generate the same Fourier modes that are3

associated with the positive frequencies. In practice, the Fourier mode that is equal to zero is usually4

disregarded. In order to make the value of the reconstructed function vanish at the end points x = 05

or x = 1 for the inverse cosine transform in (2.10), an artificial shift in the vertical direction must6

be applied since g is assumed to be compact in the interval [0, 1]. For the inverse sine transform7

in (2.10), the zero Fourier mode, i.e., ω = 0, has no contribution to the reconstructed function.8

Therefore, for simplicity, the inverse sine transform is used for reconstruction in the rest of the paper.9

All the discussions hold true for the inverse cosine transform with a shift in the vertical direction. It10

is worth mentioning that the left boundary point x = 0 is used for the presentation in the paper. All11

the results remain valid if the wave field is measured at the right boundary point x = 1.12

2.3 Random source problems13

In this section, we analyze the direct and inverse random source problems by characterizing the14

stochastic process with a set of mutually independent random variables.15

Let us begin with a representation of the white noise Ẇ(x), which is an infinite-dimensional16

stochastic process. Since Ẇ(x) is a Gaussian random process, it has an orthogonal expansion (cf.17

[24])18

W(x) =

∞∑
k=1

Zk

∫ x

0
mk(y)dy, Ẇ(x) =

∞∑
k=1

Zkmk(x), x ∈ (0, 1), (2.11)

where {mk(x)}∞k=1 is a complete orthonormal basis in L2([0, 1]), and {Zk}
∞
k=1 are mutually independent19

standard Gaussian random variables. In practice, Ẇ(x) can be approximated by a truncated series20

Ẇ(x) ≈ Wn =

n∑
k=1

mk(x)Zk, (2.12)

where n is the number of random variables. Clearly, it leads to a different representation by using a21

different choice of orthonormal basis. Instead of engaging in depth discussion of this issue, we refer22

to [30] for the detailed study on error estimates and convergence analysis for the white noise.23

When discretizing a random process into a finite-dimensional approximation, the finer the dis-
cretization is, the more accurate the approximation is. However, a finer discretization leads to a
larger dimension in random space and can significantly increase the computational complexity. To
reduce the dimension while maintaining a satisfactory approximation accuracy, dimension reduction
techniques such as the Karhunen–Loève (KL) expansion [23] can be employed. The KL expansion
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of a random process W(x) can be represented by a set of mutually uncorrelated random variables.
Specifically, the KL expansion of X(x) is given by

W(x) =

∞∑
k=1

√
λkψk(x)Zk,

where ψk(x) and λk are the orthogonal eigenfunctions and the corresponding eigenvalues of the fol-
lowing eigenvalue problem:∫ 1

0
C(x, y)ψk(x)dx = λkψk(x), C(x, y) = cov(W(x),W(y)), (2.13)

and the sequence of random variables {Zk}
∞
k=1 have no correlation between them and each has a mean1

of zero and a variance of one, i.e.,2

E[Zk] = 0, E[ZkZ j] = δk j,

where δk j is the Kronecker delta function. The random variables Zk are given by

Zk =
1
√
λk

∫ 1

0
(W(x) − E[W(x)])ψk(x)dx.

It can be verified that the eigenfunctions and the corresponding eigenvalues of (2.13) for the
Brownian motion W(x) with cov(W(x),W(y)) = min(x, y) are given by

ψk(x) =
√

2 sin
(
(k −

1
2

)πx
)
, λk =

1
(k − 1

2 )2π2
.

Therefore, the KL expansion of the Brownian motion W(x) is expressed as

W(x) =
√

2
∞∑

k=1

sin((k − 1
2 )πx)

(k − 1
2 )π

Zk,

where {Zk} are now mutually independent standard Gaussian random variables since uncorrelation
and independence are equivalent to Gaussian distributions. White noise can be defined mathemati-
cally as

Ẇ(x) =

∞∑
k=1

√
2 cos

(
(k −

1
2

)πx
)
Zk,

which is equivalent to the representation of (2.11) when mk(x) =
√

2 cos
(
(k − 1

2 )πx
)
, and is used in3

our numerical experiments.4

Let Z = (Z1, . . . ,Zn) be an n-dimensional standard Gaussian random variable, i.e., Zk ∼ N(0, 1)5

for k = 1, . . . , n. Using the parametrization Wn of Ẇ(x) in (2.12), we can reformulate the stochastic6

Helmholtz equation (2.1) as7

u′′(x, ω,Z) + ω2u(x, ω,Z) = g(x) + h(x)Wn, x ∈ (0, 1), (2.14)

where u satisfies the same outgoing radiation boundary condition8

u′(0, ω,Z) + iωu(0, ω,Z) = 0, u′(1, ω,Z) − iωu(1, ω,Z) = 0. (2.15)
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2.4 The stochastic Galerkin method1

In this section, we present the stochastic Galerkin method for discretizing the stochastic model2

(2.14)–(2.15) in the random space, and investigate the direct and inverse source problems in the3

context of this model.4

Following the standard gPC method [29], we employ the Hermite orthogonal polynomials as the
gPC basis functions, which is also the classical Wiener polynomial chaos basis [15]. Let H j(Zk) be
the univariate Hermite orthonormal polynomial in Zk of degree j, which satisfies∫ ∞

−∞

H j(Zk)Hi(Zk)ρ(Zk)dZk = δ ji,

where ρ(Zk) = 1
√

2π
e−Z2

k /2 is the probability distribution function of the standard Gaussian random
variable. The polynomials are normalized here for simplicity. For example, the first few polynomials
are listed as follows:

H0(Zk) = 1, H1(Zk) = Zk, H2(Zk) =
1
2

(Z2
k − 1). (2.16)

The n-variate N-th degree Hermite polynomials are the tensor products of the univariate Hermite
orthonormal polynomials of total degree less than or equal to N, i.e.,

Hj(Z) = H j1(Z1)H j2(Z2) · · ·H jn(Zn), 0 ≤ |j| ≤ N,

where j = ( j1, . . . , jn) is a multi-index and |j| = j1 + j2 + · · · + jn. The truncated white noise Wn in
(2.12) can be expressed as

Wn(x,Z) =

n∑
k=1

mk(x)Zk =
∑
|j|=1

m̂j(x)Hj(Z), (2.17)

where m̂j(x) = E[Wn(x,Z)Hj(Z)].5

For any fixed (x, ω), the stochastic Galerkin method seeks an approximation to the solution
u(x, ω,Z) via a finite-term gPC expression

uN(x, ω,Z) =

N∑
|j|=0

ûj(x, ω)Hj(Z). (2.18)

Substituting (2.17)–(2.18) into (2.14) and conducting the Galerkin projection of the resulting equa-
tion onto the subspace spanned by the gPC basis polynomials, i.e., span{H0(Z), . . . ,HN(Z)}, we have

E


 N∑
|j|=0

û′′j (x, ω)Hj(Z)

 Hk(Z)

 + ω2E


 N∑
|j|=0

ûj(x, ω)Hj(Z)

 Hk(Z)


= E


g(x) + h(x)

∑
|j|=1

m̂j(x)Hj(Z)

 Hk(Z)

 ,
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where the multi-index k = (k1, . . . , kn) with |k| = 0, 1, . . . ,N. It follows from the orthonormal1

property of the gPC basis that2

û′′k (x, ω) + ω2ûk(x, ω) =


g(x), |k| = 0,
h(x)m̂k(x), |k| = 1,
0, 2 ≤ |k| ≤ N,

(2.19)

which is a deterministic system for the expansion coefficients. The boundary condition can be simi-3

larly obtained by the gPC projection of (2.15):4

û′k(0, ω) + iωûk(0, ω) = 0, û′k(1, ω) − iωûk(1, ω) = 0, |k| = 0, 1, . . . ,N. (2.20)

Proposition 1. The gPC expansion coefficients in (2.18) can be explicitly expressed as5

ûk(x, ω) =



1
2iω

∫ 1

0
eiω|x−y|g(y)dy, |k| = 0,

1
2iω

∫ 1

0
eiω|x−y|h(y)m̂k(y)dy, |k| = 1,

0, 2 ≤ |k| ≤ N.

(2.21)

Proof. For |k| = 0, it follows from (2.19) that

û′′k (x, ω) + ω2ûk(x, ω) = g(x),

which, combining with the boundary conditions (2.20), has the solution

ûk(x, ω) =
1

2iω

∫ 1

0
eiω|x−y|g(y)dy.

Similarly, for |k| = 1, the deterministic system for the gPC coefficients is

û′′k (x, ω) + ω2ûk(x, ω) = h(x)m̂k(x),

which, together with the boundary conditions (2.20), yields

ûk(x, ω) =
1

2iω

∫ 1

0
eiω|x−y|h(y)m̂k(y)dy.

For |k| ≥ 2, it is easy to verify that the homogeneous system

û′′k (x, ω) + ω2ûk(x, ω) = 0

and the boundary conditions (2.20) give ûk = 0, which completes the proof. �6
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By Proposition 1, the gPC coefficients are zero for the polynomial basis of degree higher than1

one. Based on the stochastic Galerkin method, the solution of (2.14)–(2.15) is2

uN(x, ω,Z) =
∑
|k|=0,1

ûk(x, ω)Hk(Z), (2.22)

which is an n-variate first degree polynomial approximation. It is known from the tensor product3

construction that the total number of the gPC basis functions for the N-degree of the gPC expansion4

with n random variables grows exponentially fast at the rate of Nn as the number of random param-5

eters n grows, which is called the curse of dimensionality. However, it follows from Proposition 16

that for the N-degree of the gPC expansion in (2.18) with n random variables, the number of basis7

functions is n + 1 and is independent of N. Therefore, the number of basis functions grows at the8

same rate as the dimension, which provides great potential to apply the stochastic Galerkin method9

in practical applications involving higher-dimensional random variables.10

For simplicity, we rewrite (2.22) with a single-index in the graded lexicographic order11

un(x, ω,Z) = û0(x, ω) +

n∑
k=1

ûk(x, ω)H1(Zk), (2.23)

which is more convenient to be implemented in practice. Hereafter, We use the notation un to denote12

uN without ambiguity. Similarly, the expansion coefficients in (2.21) can also be rewritten in the13

single-index form14

ûk(x, ω) =


1

2iω

∫ 1

0
eiω|x−y|g(y)dy, k = 0,

1
2iω

∫ 1

0
eiω|x−y|h(y)mk(y)dy, 1 ≤ k ≤ n.

(2.24)

For the direct random source problem, the numerical solution can be directly obtained from (2.23)
and (2.24). Moreover, the solution (2.23) is an analytical representation in terms of Z, and thus all the
statistical information can be retrieved either analytically or computationally with a minimal effort.
By the orthogonality of the gPC basis functions, the mean and variance of the gPC solution un in
(2.23) can be computed by

E[un] = û0, V[un] =

n∑
k=1

û2
k , (2.25)

respectively.15

For the inverse random source problem, the boundary measurements u(0, ω,Z) are assumed to be
available at a finite number of angular frequencies. The gPC basis functions are associated with the
probability distribution of Z. If we assume FZ is the probability distribution of the random vector
Z in a properly defined complete probability space ΩZ, the gPC basis functions are chosen to be
orthogonal polynomials satisfying ∫

ΩZ

Φj(Z)Φk(Z)dFZ(Z) = δjk,
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where δjk = δ j1k1 · · · δ jnkn . The polynomials used as a basis are normalized for convenience and are1

determined by the distribution of the random variable Z. For instance, the Legendre polynomials2

are linked to uniform distributions, and the Hermite polynomials are related to Gaussian distribu-3

tions. We refer to [28,29] for a more detailed discussion on numerical methods, particularly the gPC4

method, to solve stochastic differential equations.5

With {Φj(Z)} serving as the gPC basis, the procedure to obtain the two-point boundary value
problem for gPC coefficients is similar to that with Hj(Z), and the gPC coefficients can also be
explicitly expressed as in Proposition 1. To simplify the presentation, we assume that the random
vector Z in the boundary measurements u(0, ω,Z) is an n-dimensional Gaussian random vector and
the gPC basis functions are Hermite polynomials. Evaluating (2.23) and (2.24) on both sides at x = 0
yields

un(0, ω,Z) = û0(0, ω) +

n∑
k=1

ûk(0, ω)H1(Zk),

where the expansion coefficients are given by6

ûk(0, ω) =


1

2iω

∫ 1

0
eiωyg(y)dy, k = 0,

1
2iω

∫ 1

0
eiωyh(y)mk(y)dy, 1 ≤ k ≤ n.

(2.26)

Let ûk(0, ω) = <ûk(0, ω) + i=ûk(0, ω), k = 0, 1, . . . , n. Splitting (2.26) into the real and imaginary
parts, we get

2ω<û0(0, ω) =

∫ 1

0
sin(ωy)g(y)dy, 2ω=û0(0, ω) = −

∫ 1

0
cos(ωy)g(y)dy (2.27)

and

2ω<ûk(0, ω) =

∫ 1

0
sin(ωy)h(y)mk(y)dy, 2ω=ûk(0, ω) = −

∫ 1

0
cos(ωy)h(y)mk(y)dy. (2.28)

Given the measured wave field u(0, ω,Z) at a range of frequencies, i.e., u(0, ω j,Z), j = 1, . . . , nω,
the coefficients of its gPC expansion can be computed by

û0(0, ω j) = E[u(0, ω j,Z)H0(Zk)], ûk(0, ω j) = E[u(0, ω j,Z)H1(Zk)], (2.29)

for k = 1, . . . , n, where H0(Zk) and H1(Zk) are orthonormal Hermite polynomials defined in (2.16).7

The mean g(x) can be recovered from the inverse sine transform via

g(x) =

nω∑
j=1

4ω j<û0(0, ω j) sin(ω jx).

10



Similarly, the functions h(x)mk(x), for k = 1, . . . , n, can be recovered using the inverse sine transform
via

h(x)mk(x) =

nω∑
j=1

4ω j<ûk(0, ω j) sin(ω jx). (2.30)

Recalling that h is deterministic and compactly supported in (0,1), and that {mk(x)}∞k=1 forms a

complete orthonormal basis in L2([0, 1]), we can obtain the expansion h(x) =
∞∑

k=1
ĥkmk(x), where

ĥk =
∫ 1

0
h(x)mk(x) dx. It follows from (2.30) that

ĥk =

∫ 1

0

 nω∑
j=1

4ω j<ûk(0, ω j) sin(ω jx)

 dx =

nω∑
j=1

4<ûk(0, ω j)
(
1 − cos(ω j)

)
holds for k = 0, 1, . . . , n, where <ûk(0, ω j) are the real part of ûk(0, ω j) given in (2.29). Then h(x)
can be approximated by

h(x) ≈
n∑

k=0

ĥkmk(x) =

n∑
k=0

nω∑
j=1

4<ûk(0, ω j)
(
1 − cos(ω j)

)
mk(x),

and the variance h2(x) can be recovered accordingly.1

3 Numerical experiments2

In this section, we adopt the examples from [6] to demonstrate the performance of the stochastic3

Galerkin method for both the direct and inverse random source problems. It is worth emphasizing4

that, unlike the sampling method, the statistical information such as the mean and variance of the5

results obtained from the gPC approach can be computed in a straightforward manner using (2.25).6

3.1 Direct random source problem7

In the following numerical experiments, we examine errors in the mean and variance of the numeri-
cal solution for the direct problem. It follows from (2.21) and (2.25) that the mean of the solution is
exactly the first coefficient of the gPC expansion and is independent of the number of random vari-
ables n, which is also the dimension of the random space in our stochastic model (2.14). Therefore,
we only document the error in the variance of the gPC solution with respect to n. The variance of the
exact solution (2.4) can be obtained by the Itô isometry

V[<u(x, ω)] =
1

8ω2

∫ 1

0
(1 − cos(2ω|x − y|)) h2(y)dy, (3.1)

V[=u(x, ω)] =
1

8ω2

∫ 1

0
(1 + cos(2ω|x − y|)) h2(y)dy. (3.2)
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For all three examples, we test the numerical solutions obtained with the truncation of the white1

noise defined in (2.12) using both mk(x) =
√

2 cos((k − 1/2)πx) and mk(x) =
√

2 sin((k − 1/2)πx).2

We obtain equally good results for both cases, so we only show the results obtained by mk(x) =3 √
2 cos((k − 1/2)πx). We fix ω = 3π unless otherwise specified.4

Example 1. In this example, the mean g and standard deviation h of the random source f are
taken as

g(x) = ĝ(2πx), h(x) = ĥ(2πx), (3.3)

where

ĝ(x) = 0.3
[
(1 − cos(2x)) −

16
21

(1 − cos(3x)) +
5

28
(1 − cos(4x))

]
,

ĥ(x) = 0.6 − 0.3 cos(x) − 0.3 cos(2x).

In Figure 3.1, the numerical solution with n = 20 is plotted against the exact solution for the5

variance of the real and imaginary parts of the wave field. It is evident that the results obtained by6

the stochastic Galerkin method agree well with the results of the exact solution. In Figure 3.2, which7

is presented as a semi-log scale, the L1 and L∞ errors in the variance for the real and imaginary parts8

of the wave field are plotted with respect to the number of random variables n. Here, the case with9

ω = 3.5π is further investigated for a comparison of the solutions at different frequencies. It can be10

seen that exponential convergence is achieved with respect to the dimension of the random space for11

different frequencies ω.12

Figure 3.1: Example 1. The numerical solution (red dashed line) and the exact solution (blue solid
line) for the variance (bottom) of the real (left) and imaginary (right) parts of the wave field.

Example 2. In this example, the random source f is given by

g(x) = ĝ(2πx), h(x) = ĥ(2πx), (3.4)

where

ĝ(x) = 0.4
[
(1 − cos(3x)) −

1215
2783

(1 − cos(11x)) +
7

23
(1 − cos(12x))

]
,

ĥ(x) = 0.5e1 − 0.3ecos(2x) − 0.2ecos(3x),

12



(a) ω = 3π (b) ω = 3π

(c) ω = 3.5π (d) ω = 3.5π

Figure 3.2: Example 1. L1 (left) and L∞ (right) errors in the variance of real and imaginary parts
of the wave field with respect to the dimension of the random space at ω = 3π (top) and ω = 3.5π
(bottom).
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where g and h containing higher frequency models compared with Example 1.1

In Figure 3.3, we plot the L1 and L∞ errors in the variance of the real and imaginary parts of2

the wave field with respect to the dimension of the random space. As expected, we observe an3

exponential convergence with respect to the dimension of the random space.4

Figure 3.3: Example 2. L1 (left) and L∞ (right) errors in the variance of real and imaginary parts of
the wave field with respect to the dimension of the random space.

Example 3. In this example, we consider a discontinuous random source f which is given by5

g(x) =


0.5, 0.15 < x < 0.35,
0.5, 0.65 < x < 0.85,
0, otherwise ,

h(x) =

0.5, 0.3 < x < 0.7,
0, otherwise .

(3.5)

In Figure 3.4, we plot the L1 and L∞ errors in the variance of the real and imaginary parts of the6

wave field with respect to the dimension of the random space. We observe exponential convergence7

with respect to the dimension of the random space for this example with a discontinuous random8

source.9

3.2 Inverse random source problem10

In numerical experiments, the scattering data u(0, ω) is obtained numerically based on the analytical11

solution (2.4). To do this, we first evaluate both sides of (2.4) at x = 0, yielding12

u(0, ω) =
1

2iω

∫ 1

0
eiωyg(y)dy +

1
2iω

∫ 1

0
eiωyh(y)dW(y), (3.6)

where dW(y) can be truncated as

dW(y) ≈
n∑

k=0

mk(y)Zkdy,

14



Figure 3.4: Example 3. L1 (left) and L∞ (right) errors in the variance of real and imaginary parts of
the wave field with respect to the dimension of the random space.

similarly to (2.12), where Zk are mutually independent standard Gaussian random variables. The real1

part of u(0, ω) is given by2

<u(0, ω) =
1

2ω

∫ 1

0
sin(ωy)g(y)dy +

n∑
k=1

(∫ 1

0
sin(ωy)h(y)mk(y)dy

)
Zk, (3.7)

and its gPC coefficients can be approximated numerically by the trapezoidal rule as

<û0(0, ω) =
∆y
2ω

K−1∑
i=0

sin(ωyi)g(yi), (3.8)

<ûk(0, ω) =
∆y
2ω

K−1∑
i=0

sin(ωyi)h(yi)mk(yi), k = 1, 2, . . . , n, (3.9)

where ∆y = 1/K, yi = i∆y = i/K, i = 0, 1, . . . ,K − 1.3

Given the scattering data at a set of frequencies ω j, j = 1, . . . , nω, we reconstruct the functions4

g(x) and h(x) in the source function based on the strategy discussed in Section 2.4. We take mk(x) =5 √
2 cos((k − 1/2)πx) in the truncation of the white noise defined in (2.12). We set n = 20 unless6

otherwise specified, and take K = 256 points for numerical integration. The L1 error between the7

reconstructed solution and the exact solution, denoted as “err”, is measured over Nx = 200 meshes8

in the spatial domain (0, 1).9

Remark 1. The scattering data u(0, ω) is obtained by numerically approximating the solution (3.6)10

with the gPC expansion in this paper, while the scattering data u(0, ω) in [6] is obtained by numeri-11

cally approximating the integrals in (3.6) with the trapezoidal rule12

u(0, ω) ≈
1

2iω

∆y
K−1∑
k=0

eiωykg (yk) +

K−1∑
k=0

eiωykh (yk) dWk

 , (3.10)
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where ∆y = 1/K, yk = k∆y = k/K, and dWk = ξk/
√

K with the set of random samples, {ξk}, being1

produced from independent standard Gaussian random variables with a mean of zero and a variance2

of one. The mean and variance of the random source in [6] is recovered with 103 and 106 samples,3

while the mean and variance of the random source for the gPC approach discussed in this paper is4

recovered efficiently with 20 expansions. Thus, the study in [6] is more practical in applications,5

while our study has a potential for more efficient computation.6

Example 1. In this example, the exact mean and variance of the random source function f are7

given in (3.3). This example is simple since both g and h have a limited number of low-frequency8

Fourier components.9

We use the scattering data u(0, ωk) at discrete frequencies ωk = kπ, k = 1, 2, . . . , nω to reconstruct10

the mean g and the variance h2. Figure 3.5 plots the reconstructed mean and variance against the11

exact ones for different nω. We observe that the L1 error “err” decreases as the number of frequencies12

nω increases, since more scattering data are used in the reconstruction procedure of the stochastic13

Galerkin method.14

We fix the number of frequencies nω = 40 and plot the L1 error between the reconstructed vari-15

ance and the exact one with respect to the dimension of random variables n in Figure 3.6. We observe16

that the error decreases gradually as the dimension of the random variable n increases. This indicates17

that a better reconstruction is obtained when more random variables and thus more terms are used in18

the truncation of the random process in (2.12). We do not explore the error of the mean function g19

with respect to n since the mean of the stochastic solution is exactly the first coefficient of the gPC20

expansion and is independent of n.21

Example 2. In this example, the exact mean and variance of the random source function f are22

given in (3.4). This example is more difficult than Example 1, as both g and h have higher frequency23

components.24

We use the scattering data at discrete frequenciesωk = kπ, where k = 1, · · · , nω, to reconstruct the25

mean g and variance h2. In Figure 3.7, the reconstructed mean and variance are shown in comparison26

to the exact ones for different nω. We observe that the errors in the mean and variance decrease as27

the number of frequencies nω increases.28

Example 3. In this example, the exact mean and variance of the random source function f are29

given in (3.5). This is a challenging example, as the functions g and h are discontinuous.30

We use the scattering data u(0, ωk) at discrete frequencies ωk = kπ, k = 1, · · · , nω to reconstruct31

the mean g and variance h2. In Figure 3.8, the reconstructed mean and variance are plotted against32

the exact ones for different nω. It can be observed that the errors of the mean and variance decrease33

as the number of frequencies nω increases, and the oscillatory behavior near the discontinuities is34

better resolved as nω increases. Additionally, we observe the Gibbs phenomenon for this example35

with discontinuous functions.36

4 Conclusion37

In this paper, we have demonstrated the application of the stochastic Galerkin method to the direct38

and inverse random source problems of the one-dimensional Helmholtz equation. The two-point39

16



0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) nω = 6, err = 8.27 × 10−2

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) nω = 6, err = 5.56 × 10−2

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c) nω = 8, err = 8.30 × 10−3

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) nω = 8, err = 4.28 × 10−2

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
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Figure 3.5: Example 1. The mean g (left) and variance h2 (right) of the exact solutions (solid blue
line) and the reconstructed solutions (red circles) with different numbers of frequencies nω.
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Figure 3.6: Example 1. The variance h2 of the exact solutions (solid blue line) and the reconstructed
solutions (red circles) with respect to the random space dimension n.

stochastic boundary value problem was formulated and solved using the stochastic Galerkin method,1

yielding an explicit integral representation for the gPC coefficients. It was shown that the gPC co-2

efficients of the zeroth-degree polynomials are related to the sine or cosine transform of the mean3

of the random source, and the gPC coefficients of the first-degree polynomials are associated with4

the variance of the random source. The orthogonality of the gPC basis functions enabled the mean5

and variance of the source to be reconstructed by applying the inverse sine or cosine transform. Fur-6

thermore, the gPC coefficients of the second or higher degree polynomials were found to be zero,7

indicating that the proposed method has the potential to solve a variety of stochastic inverse problems8

involving high-dimensional random spaces.9

Although the random model considered in this work is a Gaussian random process, the method10

can be applied to inverse random source problems with general stochastic processes. The stochastic11

Galerkin method is a gPC approximation, where general orthogonal polynomials can be adopted to12

represent many other random processes. In the context of the gPC approach discussed within this13

paper, the efficient recovery of the mean and variance of the random source is achievable through14

a modest number of expansions. Nevertheless, it is important to acknowledge that the current in-15

vestigation into inverse problems necessitates access to boundary measurements u(0, ω,Z) at a fi-16

nite set of angular frequencies. For forthcoming research endeavors, we plan to investigate scenar-17

ios wherein boundary measurements are solely available for a limited number of realizations Z( j),18

namely, u(0, ω,Z( j)). The anticipated results are observed from Example 3: exponential convergence19

for the direct problem and the presence of the Gibbs phenomenon during the treatment of the inverse20

problem, aligning with the expectations of a spectral approach. As part of our ongoing projects,21

we intend to explore the incorporation of filters or the concept of domain decomposition for future22

investigations into inverse problems characterized by various discontinuities. In addition, it presents23

an interesting topic to study the inverse random source problem within higher dimensions and inho-24

mogeneous background media. We will provide updates on these aspects in the future through other25

means.26
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(d) nω = 22, err = 1.02 × 10−2
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Figure 3.7: Example 2. The mean g (left) and variance h2 (right) of the exact solutions (solid blue
line) and the reconstructed solutions (red circles) with different numbers of frequencies nω.
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(e) nω = 50, err = 2.25 × 10−2

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(f) nω = 50, err = 2.70 × 10−2

Figure 3.8: Example 3. The mean g(x) (left) and variance h2(x) (right) of the exact solutions (solid
blue line) and the reconstructed solutions (red circles) with different numbers of frequencies nω.
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