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OPERATORS WITH UNBOUNDED POTENTIALS

PEIJUN LI, XIAOHUA YAO, AND YUE ZHAO

Abstract. This paper addresses the meromorphic continuation of the outgoing resolvent
associated with Schrödinger-type operators in three dimensions. The first part focuses on the
classical Schrödinger-type operator involving unbounded potentials. The absence of nonzero
real poles for the outgoing resolvent is investigated. The second part examines the fractional
Schrödinger operator, including both bounded and unbounded potentials. The analysis relies
on a resolvent identity that establishes a connection between the resolvents of the fractional
Schrödinger operator and its classical counterpart.

1. Introduction and main results

This paper focuses on exploring the meromorphic continuation of outgoing resolvents for
Schrödinger-type operators in three dimensions. Extensive literature exists on this subject,
see e.g., [4,6,8–11,23,27,31,32,34–37] and references therein. This area closely relates to the
theory of scattering resonances, which are defined as poles in the meromorphic continuation.
For a comprehensive study on the mathematical theory of scattering resonances, we refer to
the monograph [12]. Scattering resonances phenomena have significant applications across
various scientific and engineering research fields. For example, as highlighted in [12], the
study of scattering resonances finds applications in determining the long-time behavior of
wave equations, leading to resonance expansions of waves. However, existing research on
the meromorphic continuation of resolvents primarily concentrates on bounded potentials.
This work aims to extend some of these results to accommodate unbounded potentials for
Schrödinger-type operators.

We introduce certain notations in this context. Throughout this discussion, V (x) represents
a nonnegative real-valued potential function with compact support, while Ω ⊂ R3 stands for
a bounded open set where suppV ⊂ Ω. Let ρ(x) be a smooth cutoff function with compact
support, and T = diam(suppρ) denotes the diameter of the support of ρ. For a ∈ R+, the
notation a+ refers to a constant greater than a. The notation a . b denotes a ≤ Cb, where
C > 0 serves as a generic constant that may vary throughout the proofs.

We begin by examining the Schrödinger equation

−∆u(x, λ) + V (x)u(x, λ)− λ2u(x, λ) = f(x), x ∈ R3,

where λ ∈ C, f(x) ∈ L2
comp(R3), and V ∈ Lpcomp(R3) represents an unbounded potential with

p > 3/2. The Schrödinger operator −∆ + V is self-adjoint; for further details regarding this
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property, we refer to Appendix B. Let RV (λ) = (−∆ + V − λ2)−1 be the outgoing resolvent
of the Schrödinger operator.

The free resolvent R0(λ) : L2(R3) → H2(R3) is holomorphic in =λ > 0 (cf. [12]). Thus,
for V ∈ Lp(R3) with p > 3/2 and V ≥ 0, according to Lemma 2.1, the operator I +
V 1/2R0(λ)V 1/2 : L2(R3) → L2(R3) is invertible for =λ � 1. This result, derived from the
resolvent identity (2.7), establishes that RV (λ) : L2(R3)→ L2(R3) is holomorphic for =λ� 1.
Moreover, due to the compactness of V 1/2R0(λ)V 1/2 : L2(R3) → L2(R3) as indicated by
Lemma 2.2, the operator RV (λ) : L2(R3)→ L2(R3) is meromorphic in =λ > 0, a consequence
of the analytic Fredholm theorem (cf. Theorem A.1). Further extension of this meromorphic
behavior to the lower-half complex plane is demonstrated by Theorem 1.1 when multiplied
by smooth cutoff functions.

Let us define the space C as follows:

C = {V : V ∈ Lpcomp(R3) with p > 3/2 such that the resolvent identity (1.3) holds}.

From the discussions in Appendix B, it is evident that C contains all V ∈ L2
comp(R3).

The following resolvent estimate extends the findings presented in [12, Theorem 3.8] and [12,
Theorem 3.10] by Dyatlov and Zworski, transitioning from considerations limited to bounded
potentials to including unbounded Lp potentials.

Theorem 1.1. Assume that V ∈ C. Choose a cutoff function ρ ∈ C∞0 (R3) such that ρ = 1
near suppV . Then the operator ρRV (λ)ρ : L2(R3)→ H1(R3) is meromorphic in the complex
plane C. Moreover, there exist positive constants C0 and M such that ρRV (λ)ρ : L2(R3) →
H1(R3) is holomorphic in the domain

ΩM = {λ ∈ C : =λ ≥ −M log |λ|, |λ| ≥ C0},
and the following estimate holds for λ ∈ ΩM :

‖ρRV (λ)ρf‖H1(R3) . 〈λ〉2eT (Imλ)−‖f‖L2(R3), (1.1)

where t− := max{−t, 0}, T = diam(suppρ), and 〈λ〉 := (1 + |λ|2)1/2.

Generally, the operator −∆ is defined in the Sobolev space H2(R3) and proves to be self-
adjoint on L2(R3). It follows from the Fourier transform that

−̂∆v(ξ) = |ξ|2v̂(ξ), v ∈ H2(R3),

which immediately deduces the spectrum of −∆:

σ(−∆) = {z = |ξ|2 : ξ ∈ R3} = [0,+∞).

Hence, the resolvent (−∆ − z)−1 of −∆ is holomorphic for z ∈ C\[0,+∞) in the uniform
operator topology of B(L2), where B(L2) denotes the set of all bounded operators acting on
L2(R3).

Let z = λ2, then the family of operators

R0(λ) := (−∆− λ2)−1 : L2(R3)→ L2(R3)

are holomorphic in the upper-half complex plane C+ := {z ∈ C : =z > 0}. Given that the

kernel eiλ|x−y|

|x−y| of the resolvent R0(λ) exhibits exponential growth in the lower-half complex

plane C− := {z ∈ C : =z < 0}, it is typically assumed that λ ∈ C+. Furthermore, by the
following resolvent identity which connects RV (λ) and R0(λ):

RV (λ) = R0(λ)(I + V R0(λ))−1, (1.2)
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it is also required that λ ∈ C+ for the investigation of the resolvent RV (λ) : L2(R3)→ L2(R3)
in the presence of a potential function. In scattering theory, a crucial aspect is the study
of the limiting absorption principle, which examines the mapping properties of RV (λ) as λ
approaches the positive real axis of C. In the seminal work by Agmon [1], the resolvent
estimate of RV (λ) was established in weighted L2 spaces for a class of short-range potentials.
This result was further extended by Goldberg and Schlag [14] to Lp potentials, specifically
V ∈ Lp(R3) ∩ L3/2(R3) with p > 3/2, in three dimensions.

In [12], Dyatlov and Zworski studied the resolvent of the form ρRV (λ)ρ, where ρ is a fixed
smooth function with compact support. Employing two cutoff functions, they facilitated the
consideration of the meromorphic continuation of the resolvent ρRV (λ)ρ : L2 → L2 from
the upper-half complex plane to the lower-half complex plane. Their findings revealed that
the free resolvent is holomorphic, characterized by the resolvent estimate ‖ρR0(λ)ρ‖L2→L2 =
O(eT (=λ)−/〈λ〉) for all λ ∈ C. Notably, the decaying factor of 1/|λ| appearing in the resolvent
estimate plays a crucial role in enabling the meromorphic continuation of the resolvent. This
estimate was derived through the application of the Huygens principle for wave propagation in
Rn, where n ≥ 3 is an odd number. Building upon the resolvent identity (1.2) and employing
perturbation arguments, it was demonstrated in [12, Theorem 3.8] that ρRV (λ)ρ : L2 → L2

exhibits meromorphic behavior across the entire complex plane C. It is worth mentioning
that R0(λ) in (1.2) contributes the crucial 1/|λ| decaying factor in the resolvent estimate,
facilitating the application of the analytic Fredholm theorem (cf. Theorem A.1). Moreover, a
resonance-free region was obtained in [12, Theorem 3.10]. However, this result assumed the
potential V to be in L∞comp. Consequently, it prompts a natural inquiry: can the outcomes
presented in [12] be extended from bounded potentials to include unbounded potentials?

The first part of this work presents an affirmative answer to the preceding query and extends
the findings outlined in [12] to include unbounded Lp potentials with p > 3/2. Our focus lies
specifically on exploring the meromorphic continuation of the resolvent into the lower-half
complex plane. This extension allows for the utilization of the contour integral method
to derive long-time asymptotics of the wave equation, consequently leading to resonance
expansions of waves, as elaborated upon in [12]. The assumption V ∈ L3/2 emerges as
optimal for the well-posedness of the Dirichlet problem with Lp-type potentials in bounded
domains. For instance, the work in [20] demonstrates instances where the Dirichlet problem

lacks well-posedness for certain V ∈ L3/2
weak. Additionally, this assumption remains optimal for

the unique continuation property, as outlined in [18]. However, restricting V solely to L
3/2
comp

results in a loss of the crucial decaying factor of 1/|λ|-type and a compact embedding result,
both of which are vital for the meromorphic continuation of the resolvent into the lower-half
complex plane. Detailed discussions concerning these aspects are provided in Lemmas 2.1
and 2.2. Therefore, the assumption p > 3/2 is both necessary and optimal for investigating
the meromorphic continuation of the resolvent into the lower-half complex plane.

The motivation behind the proof of Theorem 1.1 originates from [12]. However, the proof
presented in [12] for the L2-based resolvent estimate of ρR0(λ)ρ is limited to bounded poten-
tials and cannot be extended to unbounded Lp-type potentials. To address unbounded Lp

potentials, we utilize the resolvent identity (cf. Appendix B):

RV (λ) = R0(λ)−R0(λ)V 1/2(I + V 1/2R0(λ)V 1/2)−1V 1/2R0(λ), =λ > 0. (1.3)

Subsequently, employing Fourier analysis techniques helps us handle singular Lp potentials,
leading to an Lp-based resolvent estimate of ρR0(λ)ρ. We then show that the operator
V 1/2R0(λ)V 1/2 : L2 → L2 is compact. Crucially, we demonstrate that ‖V 1/2R0(λ)V 1/2‖L2→L2
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exhibits a decaying factor of 1/|λ|, requiring a slightly higher regularity assumption: V ∈
Lpcomp, p > 3/2. Finally, the proof concludes by applying the analytic Fredholm theorem and
the regularity theory of elliptic equations.

Another important result in the first part of the work concerns the absence of nonzero real
poles for the outgoing resolvent.

Theorem 1.2. Assume that V ∈ C. The outgoing resolvent RV (λ) : L2
comp(R3) → H1

loc(R3)
has no poles on R \ {0}.

The proof of the above theorem aligns with Goldberg–Schlag [14] and Ionescu–Jerison [17].
Utilizing the Tomas–Stein restriction theorem from [29, page 386] applicable to Lp potentials,
we establish a result concerning the absence of embedded non-zero eigenvalues for V ∈ Lp.
Importantly, it is noteworthy that the Tomas–Stein restriction theorem does not necessitate
the potential function to have compact support.

In the second part of the paper, we study the fractional Schrödinger equation

(−∆)αu(x)− λ2αu(x) + V (x)u(x) = f(x), x ∈ R3,

where 0 < α < 1 and f(x) ∈ L2
comp(R3). The fractional Laplacian is defined via the Fourier

transform
(−∆)αu = F−1{|ξ|2αû(ξ)}, u ∈ H2α(R3).

Alternatively, the fractional Laplacian can also be defined pointwisely through the principle
value integral

(−∆)αu = C(α)p.v.

∫
R3

u(x)− u(y)

|x− y|α+3
dy,

where C(α) is a normalizing constant [15]. Regarding the self-adjointness of the fractional
Schrödinger operator (−∆)α − λ2α + V , further details are provided in Appendix B.

Denote the outgoing resolvent of the fractional Schrödinger operator by

Rα,V (λ) = ((−∆)α − λ2α + V )−1.

Let R+ = [0,+∞). Given that the spectrum of the fractional Schrödinger operator satisfies
σ((−∆)α) = R+ for 0 < α < 1, the resolvent Rα,0(λ) = ((−∆)α−λ2α)−1 : L2(R3)→ H2α(R3)
is holomorphic in 0 < arg λ < π

α
. Furthermore, for V ∈ L∞comp(R3), Rα,V (λ) = ((−∆)α−λ2α+

V )−1 : L2(R3)→ H2α(R3) is also holomorphic in 0 < arg λ < π
α

(cf. [22]).
For any fixed θ0 ∈ (0, π

2
), we denote the sectorial domain

Sθ0 = {λ ∈ C : arg λ ∈ [−θ0, θ0] ∪ [π − θ0, π + θ0], λ 6= 0}.
The following theorem concerns the meromorphic continuation of the resolvent for the frac-
tional Schrödinger operator involving bounded potentials. Let R− = (−∞, 0]. We select the
branch C \ iR− such that z2α is analytic.

Theorem 1.3. Assuming V ∈ L∞comp(R3) with suppV ⊂ Ω, where Ω is a bounded open set

and 1/2 < α < 1. For any fixed ρ ∈ C∞0 (R3) such that ρ = 1 on suppV and suppρ ⊂ Ω, the
outgoing resolvent ρRα,V (λ)ρ is meromorphic in Sθ0. Moreover, ρRα,V (λ)ρ is holomorphic
and satisfies the following resolvent estimate for λ ∈ ΩM ∩ Sθ0:

‖ρRα,V (λ)ρ‖L2(Ω)→Hs(Ω) . 〈λ〉1+s−2αeT (=λ)− , (1.4)

where 0 ≤ s < 2α− 1 and

ΩM := {λ : =λ ≥ −M log(|λ|), |λ| > C0} \ iR.
Here, M < (2α− 1)/T , T = diam(suppρ), and C0 is a sufficiently large constant.
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Assuming 1/2 < α < 1 and 0 < β < 2α−1
3

, let us introduce the space

F = {V : V ∈ Lpcomp(R3) with p >
3

2β
such that the resolvent identity (3.6) holds}.

For further details regarding the assumption, we direct the reader to the discussions in Ap-
pendix B.

The following theorem addresses the meromorphic continuation of the resolvent for the
fractional Schrödinger operator with unbounded potentials.

From Theorem 3.1 and Lemma 3.5, we deduce that I+V 1/2Rα,0(λ)V 1/2 : L2(R3)→ L2(R3)
is invertible for |λ| � 1 in {λ : =λ > 0, λ /∈ iR+}. This result, combined with the resolvent
identity

Rα,V (λ) = Rα,0(λ)−Rα,0(λ)V 1/2(I + V 1/2Rα,0(λ)V 1/2)−1V 1/2Rα,0(λ),

implies that Rα,V (λ) : L2(R3)→ L2(R3) is holomorphic for |λ| � 1 in {λ : =λ > 0, λ /∈ iR+}.
Additionally, given that V 1/2R0,α(λ)V 1/2 : L2(R3) → L2(R3) is compact by Lemma 3.4, we
can assert that Rα,V (λ) : L2(R3) → L2(R3) is meromorphic in {λ : =λ > 0, λ ∈ Sθ0} by
utilizing the analytic Fredholm theorem (cf. Theorem A.1). When multiplied by the smooth
cutoff functions, the following theorem demonstrates its meromorphic extension to Sθ0 .

Theorem 1.4. Assuming V ∈ F , let ρ ∈ C∞0 (R3) be such that ρ = 1 on suppV and
suppρ ⊂ Ω. Then the outgoing resolvent ρRα,V (λ)ρ : L2(Ω) → Hβ(Ω) is meromorphic in
Sθ0. Moreover, ρRα,V (λ)ρ is holomorphic and satisfies the following resolvent estimate for
λ ∈ ΩM ∩ Sθ0:

‖ρRα,V (λ)ρ‖L2(Ω)→Hβ(Ω) . |λ|−(4α−4β−2)eT (=λ)− , (1.5)

where

ΩM := {λ : =λ ≥ −M log(|λ|), |λ| > C0} \ iR.
Here, T = diam(suppρ), M < (2α− 3β − 1)/T , and C0 is a sufficiently large constant.

The motivations behind the proofs of Theorems 1.3 and 1.4 stem from [12] and Theorem
1.1. However, due to our focus on nonlocal fractional operators, the strategies employed
in [12] and Theorem 1.1 for standard elliptic operators cannot be directly applied to fractional
operators. Notably, the standard elliptic interior regularity might not hold in the context
of fractional operators. Recently, [5] established an interior regularity for solutions of the
fractional Laplacian, showing that for a fractional Laplacian with 0 < α < 1, the solution
exhibits interior H2α−ε regularity, where ε is any small positive number. However, it remains
unknown whether this result represents an optimal characterization. Furthermore, the interior
estimate in [5] requires that the interior H2α−ε norm should be bounded by the global L2

σ(Rn)
norm of the solution. Here, L2

σ(Rn) denotes the standard weighted L2 space. Yet, it is
important to note that when λ ∈ C−, the solution exhibits exponential growth and does
not fall into the L2

σ(Rn) space. There exist several studies on the resolvents of fractional
Schrödinger operators, such as [16, 24, 25]. These works concern the family of resolvents in
the upper-half complex plane and explore their limiting absorption principles. However, as
of now, there is no known research addressing the meromorphic continuation of the resolvent
of the fractional Schrödinger operator from the upper-half complex plane to the lower-half
complex plane.

The analysis of the meromorphic continuation of the resolvent for the fractional Schrödinger
operator relies on the following resolvent formula of the free fractional resolvent (cf. [22,
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(5.28)]) for λ ∈ {λ : =λ > 0, λ /∈ iR+}:

((−∆)α − λ2α)−1 =
λ2−2α

α
(−∆− λ2)−1 +

sinαπ

π

∫ +∞

0

γα(γ −∆)−1

γ2α − 2γαλ2α cosαπ + λ4α
dγ, (1.6)

which establishes a connection between the free resolvent for the fractional Schrödinger op-
erator and the classical one. It is crucial to note that the requirement λ /∈ iR+ yielding
λ2 ∈ C \ R− is necessary for the integral term in (1.6) to be well-defined. For detailed in-
sights, refer to [22]. An important observation is the necessity of a 1/|γ|-type decay for the
resolvent estimate of ρ(γ−∆)−1ρ for the convergence of the integral in (1.6). According to [12],
this is viable due to the resolvent estimate ‖ρ(γ −∆)−1ρ‖L2→L2 = O(eT (=√γ)−/|γ|1/2) for the
classical free resolvent. Consequently, the meromorphic continuation of the free fractional
resolvent and the related resolvent estimates are derived using interpolation inequalities. The
meromorphic continuation of the fractional resolvent with a bounded potential follows from
a combination of (1.2) and the perturbation argument in [12]. For an unbounded potential,
a similar argument to the proof of Theorem 1.1 is employed, utilizing the resolvent identity
(1.3) and interpolation inequalities.

The paper’s structure is as follows. In Section 2, we investigate the meromorphic con-
tinuation of the resolvent of the classical Schrödinger operator featuring an unbounded Lp

potential. We obtain a region free of resonances and derive associated resolvent estimates.
Additionally, we provide the Lp-based resolvent estimate of ρR0(λ)ρ. Section 3 is dedicated to
exploring the meromorphic continuation of the resolvents for fractional Schrödinger operators,
including both bounded and unbounded potentials.

2. The Schrödinger operator

This section is to address the outgoing resolvent of the Schrödinger operator defined by
RV (λ) := (−∆ + V − λ2). We begin with the free outgoing resolvent R0(λ) := (−∆− λ2).

Building upon [7, Lemma 3.3], originally rooted in [21], the following lemma plays an
important role in achieving the meromorphic continuation of the resolvent. In contrast to the
assumption V ∈ L3/2 in [7], we impose slightly greater regularity on the potential function V
by requiring V ∈ Lp with p > 3/2. This choice arises from two reasons: Firstly, the resolvent
introduced in [7] primarily serves the construction of complex geometric solutions, divergent
from our objectives. Secondly, we are primarily concerned with the extension of the resolvent
into the lower-half complex plane and the establishment of a region free from resonances.
In contrast, the outcomes presented in [7] only hold outside an indeterminate countable set,
precluding the derivation of an explicit resonance-free region.

Lemma 2.1. Assuming V ∈ Lpcomp(R3) with p > 3/2, there exist constants D > 0 and F > 0
such that for λ ∈ ΩD where

ΩD := {λ ∈ C : =λ ≥ −D log |λ|, |λ| ≥ F},

the following inequality holds:

‖V 1/2R0(λ)V 1/2‖L2(R3)→L2(R3) ≤
1

2
. (2.1)

Proof. Given the kernel of the outgoing free resolvent R0(λ) as

R0(λ, x, y) :=
1

4π

eiλ|x−y|

|x− y|
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such that

R0(λ, x, y)f =

∫
R3

R0(λ, x, y)f(y)dy,

we find that R0(λ) defines a bounded operator R0(λ) : L2(R3) → L2(R3) for λ ∈ C with
=λ > 0. On the other hand, for λ ∈ C with =λ ≤ 0, the operator R0(λ) : L2(R3) → L2(R3)
is unbounded. However, considering R0(λ) as an operator mapping L2

comp(R3) onto L2
loc(R3),

where for any fixed ρ ∈ C∞0 (R3), the operator ρR0(λ)ρ : L2(R3)→ L2(R3) is bounded, allows
the extension of the operator R0(λ) into a holomorphic family of operators for all λ ∈ C. For
any fixed ρ ∈ C∞0 (R3), ρR0(λ)ρ : L2(R3)→ L2(R3) is a weak holomorphic family of operators
if the function I(λ) := 〈ρR0(λ)ρg1, g2〉L2(R3) is holomorphic in C for any given g1, g2 ∈ L2(R3).
Furthermore, the fact that ρR0(λ)ρ is weakly holomorphic implies strong holomorphicity, a
concept detailed in [33].

Let ρ ∈ C∞0 (R3) be a fixed cutoff function with ρ = 1 on suppV . Given

|ρ(x)R0(λ, x, y)ρ(y)| ≤ eT (=λ)−

|x− y|
, λ ∈ C,

where T = diam(suppρ), utilizing the Hardy–Littlewood–Sobolev inequality (cf. [28, Theorem
0.3.2]), for λ ∈ C, we obtain

‖ρR0(λ)ρ‖
L

6
5 (R3)→L6(R3)

. eT (=λ)− . (2.2)

Denote m = V 1/2 for simplicity. Considering mR0(λ)m = mρR0(λ)ρm, from (2.2) and the
Hölder inequality, we derive

‖mR0(λ)mg‖L2 ≤ ‖m‖L3‖ρR0(λ)ρmg‖L6 . eT (=λ)−‖m‖L3‖mg‖
L

6
5

. eT (=λ)−‖m‖L3‖m‖L3‖g‖L2 . (2.3)

Let τ = p − 3/2. We decompose m = m1 + m2 such that m1 = mχ{|m|≤θ} and m2 =

mχ{|m|≥θ}, where θ = MeT̃ (=λ)− with T̃ and M being two positive constants to be determined
later. Thus, m1 ∈ L∞(R3) satisfies

‖m1‖L∞ ≤MeT̃ (=λ)− , ‖m1‖L3 ≤ ‖m‖L3 .

Let ε > 0 be a positive constant such that ε < 1
2
. Through a straightforward calculation, we

can find a sufficiently large M > 0 such that

‖m2‖L3 =
(∫

χ{|m|≥θ}

|V |3/2dx
)1/3

≤
(∫

χ{|m|≥θ}

m2τ

θ2τ
|V |3/2dx

)1/3

≤ θ−
2τ
3

(∫
χ{|m|≥θ}

|V |3/2+τdx
)1/3

.
ε

3
e
−2τT̃

3
(=λ)− .

Now, we fix the constant M . For a given g ∈ L2, using the L2 estimate ‖ρR0(λ)ρ‖L2→L2 =
O( 1
|λ|) (cf. [12, Theorem 3.1]) and (2.3), we derive

‖mρR0(λ)ρmg‖L2 ≤ ‖m1ρR0(λ)ρm1g‖L2 + ‖m1ρR0(λ)ρm2g‖L2 + ‖m2ρR0(λ)ρmg‖L2

. ‖m1‖L∞‖ρR0(λ)ρ‖L2→L2‖m1‖L∞‖g‖L2

+ eT (=λ)−‖m1‖L3‖m2‖L3‖g‖L2 + eT (=λ)−‖m2‖L3‖m‖L3‖g‖L2

.
(e(T+2T̃ )(=λ)−

|λ|
+

2ε

3
e(T− 2τT̃

3
)(=λ)−

)
‖g‖L2 . (2.4)
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The implicit constants in (2.4) are independent of M .

First, select T̃ to be sufficiently large such that (T − 2τT̃
3

) < 0. Subsequently, given λ ∈ ΩD,
we have

e(T+2T̃ )(=λ)− ≤ |λ|D(T+2T̃ ).

Next, we can choose a small enough value for D so that D(T + 2T̃ ) < 1. Consequently, for
|λ| ≥ F , where F is sufficiently large, we get

e(T+2T̃ )(=λ)−

|λ|
≤ |λ|D(T+2T̃ )−1 <

ε

3
,

which shows that (2.4) is bounded by ε‖g‖L2 . We arrive at (2.1) due to the condition ε < 1
2
,

thus concluding the proof. �

The following lemma concerns the compactness of the operator V 1/2R0(λ)V 1/2 : L2(R3)→
L2(R3). The proof draws from the insights presented in [12, Theorem 2.1].

Lemma 2.2. Assume that V ∈ Lp(R3) with p > 3/2 and has compact support. Then the
operator V 1/2R0(λ)V 1/2 : L2(R3)→ L2(R3) is compact.

Proof. Select a cutoff function ρ ∈ C∞0 (R3) such that ρ = 1 on suppV . We have∫
R3

|ρ(x)ρ(y)R0(λ, x, y)|dx .
∫
R3

|ρ(x)ρ(y)| 1

|x− y|
eT (=λ)−dx . eT (=λ)−

and ∫
R3

|ρ(x)ρ(y)R0(λ, x, y)|dy .
∫
R3

|ρ(x)ρ(y)|e(=λ)−|x−y|dy . eT (=λ)− ,

whereR0(λ, x, y) is the Schwartz kernel of the free resolvent (−∆−λ2)−1 and T = diam(suppρ).
By applying Schur’s test (cf. Theorem A.2), it follows that for any 1 ≤ q ≤ ∞

‖ρR0(λ)ρ‖Lq(R3)→Lq(R3) . eT (=λ)− . (2.5)

We proceed to show

‖ρR0(λ)ρ‖Lq(R3)→W 2,q(R3) . 〈λ〉2eT (=λ)− . (2.6)

To establish this, we utilize the following elliptic regularity estimate: Given ρ̃ ∈ C∞0 (R3) such
that ρ̃ = 1 near the support of ρ, we derive from [29, (7.13)] that

‖ρu‖W 2,q(R3) ≤ C
(
‖ρ̃u‖Lq(R3) + ‖ρ̃∆u‖Lq(R3)

)
.

Consequently, we obtain

‖ρR0(λ)ρf‖W 2,q(R3) . ‖ρ̃R0(λ)ρf‖Lq(R3) + ‖ρ̃∆R0(λ)ρf‖Lq(R3).

By (2.5), we deduce ρ̃∆R0(λ)ρf = ρf + ρ̃λ2R0(λ)ρf , satisfying

‖ρ̃∆R0(λ)ρf‖Lq . 〈λ〉2eT (=λ)−‖f‖Lq .
Thus, we establish the estimate (2.6).

We continue to prove the compactness. Given V ∈ Lp where p > 3/2, employing Hölder’s

inequality yields V 1/2f ∈ L 6
5

+. Consequently, ρR0(λ)ρV 1/2f ∈ W 2, 6
5

+(Ω), which is compactly
embedded in L6(Ω) by Proposition A.4. Applying Hölder’s inequality once more, we ob-
tain that V 1/2R0(λ)V 1/2f = V 1/2ρR0(λ)ρV 1/2f is also compactly embedded in L2(Ω), which
finalizes the proof. �

We are prepared to present the proof of Theorem 1.1.
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Proof. By Appendix B, the outgoing resolvent formula for V ≥ 0 is given by

RV (λ) = R0(λ)−R0(λ)V 1/2(I + V 1/2R0(λ)V 1/2)−1V 1/2R0(λ), =λ > 0. (2.7)

Denote the domain
ΩM := {λ ∈ C : =λ ≥ −M log |λ|, |λ| ≥ C0}.

By Lemma 2.1 and the Neumann series argument, it follows that there exist M > 0 and
C0 > 0 such that for λ ∈ ΩM , the operator I+V 1/2R0(λ)V 1/2 : L2(R3)→ L2(R3) is invertible.
Furthermore, it satisfies

‖(I + V 1/2R0(λ)V 1/2)−1‖L2(R3)→L2(R3) ≤ 2, λ ∈ ΩM .

Next we prove that ρRV (λ)ρ has the mapping property ρRV (λ)ρ : L2(R3)→ H1(R3), where
‖ρRV (λ)ρ‖L2→H1 = O(〈λ〉eT (Imλ)−) with T = diam(suppρ).

Based on the resolvent estimate [12, Theorem 3.1], it follows from Proposition A.4 that
ρR0(λ)ρf ∈ H1(Ω) ⊂ L6(Ω), where

‖ρR0(λ)ρ‖L2(R3)→H1(R3) = O(eT (=λ)−).

Thus, for f ∈ L2(R3), Hölder’s inequality implies V 1/2ρR0(λ)ρf ∈ L2(R3), which gives

V 1/2(I + V 1/2R0(λ)V 1/2)−1V 1/2ρR0(λ)ρf ∈ L
6
5 (R3)

and
‖V 1/2(I + V 1/2R0(λ)V 1/2)−1V 1/2ρR0(λ)ρ‖L2(R3)→L6/5(R3) = O(eT (=λ)−).

Using (2.7) and the resolvent estimate in (2.2) yields

ρRV (λ)ρ : L2(R3)→ L6(R3)

and

‖ρRV (λ)ρ‖L2(R3)→L6(R3) = O(eT (=λ)−). (2.8)

Choose ρ̃ ∈ C∞0 (R3) such that ρ̃ = 1 near suppρ. It follows from the standard elliptic
regularity theory [29, (7.13)] that

‖ρRV (λ)ρf‖H1(R3) . ‖ρ̃∆RV (λ)ρf‖H−1(R3) + ‖ρ̃RV (λ)ρf‖L2(R3).

Since ρ̃∆RV (λ)ρf = −ρf + V RV (λ)ρf − ρ̃λ2RV (λ)ρf and V RV (λ)ρf ∈ L6/5 ⊂ H−1 by
Proposition A.4, we have

‖ρ̃∆RV (λ)ρf‖H−1(R3) . 〈λ〉2eT (=λ)−‖f‖L2(R3).

Moreover, as stated in (2.8), it holds that

‖ρ̃RV (λ)ρf‖L2(R3) . eT (=λ)−‖f‖L2(R3)

for λ ∈ ΩM . This concludes the proof of the estimate (1.1).
By Lemma 2.2, the operator V 1/2R0(λ)V 1/2 : L2(R3) → L2(R3) is compact. Using the

analytic Fredholm theory stated in Theorem A.1, we obtain that ρRV (λ)ρ : L2(R3)→ H1(R3)
is meromorphic in the complex plane C, which completes the proof. �

Remark 2.3. If V ∈ Ln/2 where n ≥ 3 is odd, by replacing the Hardy–Littlewood–Sobolev
inequality (2.2) with the usual uniform Sobolev inequality, as established in Bourgain–Shao–
Sogge–Yao [3] and Kenig–Ruiz–Sogge [19], where ‖R0(λ)‖

L
2n
n+2 (Rn)→L

2n
n−2 (Rn)

= O(1) for =λ ≥
0, it is observed that the operator

ρRV (λ)ρ : L2(R3)→ H1(R3)
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is holomorphic in Ω̃M := {λ : |λ| ≥ C̃0,=λ > 0} with ‖ρRV (λ)ρ‖L2→H1 = O(1) and is
continuous up to the real axis, where C̃0 is a sufficiently large constant. However, the domain
of holomorphy is limited to the upper-half complex plane and cannot be extended to the lower-
half complex plane. Consequently, the proof of Theorem 1.1 relies on the Hardy–Littlewood–
Sobolev inequality (2.2) in R3 for all λ ∈ C.

Next, we prove the absence of nonzero real poles for the outgoing resolvent RV (λ). Denote
by L2(S2, dµ) the L2 space on the unit sphere S2 with surface measure dµ. The following
proposition and theorem are crucial in our proof, which can be found [14, Proposition 2.4]
and [17] or [14, Theorem 1.2], respectively.

Proposition 2.4. Let 1 ≤ p < 4/3. For any δ < 1
2
− 2

p′
, where p′ = p

p−1
, and for any

f ∈ Lp(R3) satisfying f̂ = 0 on S2 in the L2(S2, dµ) sense, it holds that

sup
ε>0
‖(1 + |x|)δ−1/2R0(1± iε)f‖L2 . ‖f‖Lp .

Theorem 2.5. Consider V ∈ L3/2(R3), real-valued, and nonnegative. Assume that u ∈
H1

loc(R3) satisfies (−∆ + V )u = λ2u, where λ ∈ R \ {0} in the distributional sense. Further-
more, if ‖(1 + |x|)δ−1/2u‖L2 <∞ for some δ > 0, then u ≡ 0.

We proceed to prove Theorem 1.2, employing the argument presented in [14, Lemma 3.2].

Proof. It suffices to prove that

I + V 1/2R0(λ)V 1/2 : L2(R3)→ L2(R3)

is invertible for every λ ∈ R \ {0}. By Lemma 2.2, the operator V 1/2R0(λ)V 1/2 : L2(R3) →
L2(R3) is compact. By employing the Fredholm alternative principle, our objective is to
demonstrate that for each λ ∈ R\{0}, the kernel of the operator I+V 1/2R0(λ)V 1/2 is trivial.

Assume that there exists a function f ∈ L2(R3) such that for some λ ∈ R \ {0},
(I + V 1/2R0(λ)V 1/2)f = 0. (2.9)

Thus, letting w = V 1/2f , we have

w + V R0(λ)w = 0. (2.10)

Next, letting g = R0(λ)w and substituting it into (2.10) gives

(−∆ + V − λ2)g = 0. (2.11)

LetR0(λ) = (−∆−(λ+i0)2)−1. From (2.10), we deduce that (R0(λ)w,w) = −(R0(λ)w, V R0(λ)w) =
−(g, V g), implying =(R0(λ)w,w) = 0 since V is real-valued. According to the Stein-Tomas
theorem (cf. [29]):

=(R0(λ)w,w) = lim
ε→0
=(R0(λ+ iε)w,w) = cλ

∫
S2
|ŵ(λξ)|2ds(ξ),

where c is some nonzero constant, one has that ŵ(λξ) = 0 on |λ|S2. Given w ∈ L 6
5 (R3) and

6
5
< 4

3
, we derive from Proposition 2.4 that (1 + |x|)δ−1/2R0(λ)w ∈ L2(R3) for some δ > 0.

Consequently, we have (1 + |x|)δ−1/2g ∈ L2(R3). As w ∈ L
6
5 (R3), the Hardy–Littlewood–

Sobolev inequality infers g = R0(λ)w ∈ L6(R3), which, combined with Hölder’s inequality,

gives V g ∈ L 6
5 (R3). Then, it follows from (2.11) and the standard elliptic regularity theory

that we obtain g ∈ W 2, 6/5
loc (R3). By the Sobolev embedding theorem in Proposition A.4, we

have g ∈ H1
loc(R3). Thus, an application of Theorem 2.5 gives g = 0. Consequently, we



SCATTERING RESONANCES WITH UNBOUNDED POTENTIALS 11

arrive at f = 0 by (2.9), which shows that the kernel of the operator I + V 1/2R0(λ)V 1/2 is
trivial. Therefore, for each λ ∈ R \ {0}, the operator I + V 1/2R0(λ)V 1/2 is invertible, thereby
completing the proof. �

3. The fractional Schrödinger operator

In this section, we explore the meromorphic continuation of the resolvents for the fractional
Schrödinger operators involving bounded and unbounded potentials, respectively.

3.1. Bounded potentials. First, we consider the fractional Schrödinger equation without a
potential function

(−∆)αu(x)− λ2αu(x) = f(x), x ∈ R3.

Denote the free fractional resolvent by Rα,0(λ) = ((−∆)α − λ2α)−1. Let R− = (−∞, 0]. The
branch C \ iR− is chosen such that z2α is holomorphic, i.e., −π

2
< arg z < 3π

2
.

Theorem 3.1. For a fixed ρ ∈ C∞0 (R3), the resolvent ρR0,α(λ)ρ : L2(Ω) → Hs(Ω) is holo-
morphic in Sθ0 provided 1

2
< α < 1. Moreover, for λ ∈ Sθ0, it holds that

‖ρRα,0(λ)ρ‖L2(R3)→Hs(R3) . |λ|1+s−2αeT (=λ)− , (3.1)

where T = diam(suppρ) and 0 ≤ s < 2α− 1.

Proof. We adopt the resolvent formula (cf. [22, (5.28)]) given by

((−∆)α − λ2α)−1 =
λ2−2α

α
(−∆− λ2)−1 +

sinαπ

π

∫ +∞

0

γα(γ −∆)−1

γ2α − 2γαλ2α cosαπ + λ4α
dγ, (3.2)

which is well-defined and holomorphic for λ ∈ Sθ0 . Consequently,

ρRα,0(λ)ρ =
λ2−2α

α
ρ(−∆− λ2)−1ρ+

sinαπ

π

∫ +∞

0

γαρ(γ −∆)−1ρ

γ2α − 2γαλ2α cosαπ + λ4α
dγ.

For any fixed ρ ∈ C∞0 (R3), we define ρRα,0(λ)ρ : L2(R3)→ L2(R3) as a weak holomorphic
family of operators at λ if the function

I(λ) : = 〈ρRα,0(λ)ρ g1, g2〉L2(R3)

=
λ2−2α

α
〈ρ(−∆− λ2)−1ρg1, g2〉L2(R3)

+
sinαπ

π

∫ +∞

0

γα〈ρ(γ −∆)−1ρg1, g2〉L2(R3)

γ2α − 2γαλ2α cosαπ + λ4α
dγ

is holomorphic at λ for any given g1, g2 ∈ L2(R3). Furthermore, the weak holomorphicity of
ρRα,0(λ)ρ implies its strong holomorphicity. For further insights into the integral of operators,
we refer the reader to [33].

In the following discussion, we demonstrate the extension of ρR0,α(λ)ρ to the lower-half
complex plane through multiplication with two smooth cutoff functions. It is clear to note
that the resolvent ρ(γ −∆)−1ρ requires a 1/|γ|-type decaying factor for the integral in (3.2)
to converge. To achieve this, we recall the resolvent estimate (cf. [12, Theorem 3.1]):

‖ρ(−∆− λ2)−1ρ‖L2→Hj . 〈λ〉j−1eT (=λ)− , j = 0, 1, 2,

and apply the interpolation inequality

‖v‖Hs(Ω) ≤ C‖v‖1−s
L2(Ω)‖v‖

s
H1(Ω), 0 ≤ s < 1,
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which lead us to derive

‖ρ(−∆− λ2)−1ρ‖L2→Hs . 〈λ〉−(1−s)eT (=λ)− , 0 ≤ s ≤ 1. (3.3)

We analyze the denominator γ2α−2γαλ2α cosαπ+λ4α. If the branch C\ iR− is chosen such
that z2α is holomorphic, a direct calculation yields that for λ /∈ iR, the denominator cannot
be zero for γ ∈ [0,∞). To illustrate, consider

γ2α − 2γαλ2α cosαπ + λ4α = 0.

By letting γα = t, the above equation reduces to a quadratic form

t2 − 2tλ2α cosαπ + λ4α = 0.

Applying the quadratic root formula yields

λ2α = γαe±iαπ,

resulting in λ = ±i
√
γ. Therefore, for λ ∈ C \ iR in the complex plane, the denominator

cannot be zero for γ ≥ 0.
A straightforward calculation yields∥∥∥sinαπ

π

∫ +∞

0

γαρ(γ −∆)−1ρ

γ2α − 2γαλ2α cosαπ + λ4α
dγ
∥∥∥
L2→Hs

.
∫ +∞

0

|γ|α‖ρ(−∆− (i
√
γ)2)−1ρ‖L2→Hs

|γ2α − 2γαλ2α cosαπ + λ4α|
dγ

.
∫ +∞

0

|γ|α−(1−s)/2

|γ2α − 2γαλ2α cosαπ + λ4α|
dγ, λ ∈ C \ iR. (3.4)

Letting γ
|λ|2 = t and using a change of variables, we obtain

(3.4) .
∫ ∞

0

|λ|2α−(1−s)|t|α−(1−s)/2

||λ|4αt2α − 2|λ|2αλ2αtα cosαπ + λ4α|
|λ|2dt

. |λ|1+s−2α

∫ ∞
0

|t|α−(1−s)/2

|t2α − 2tα λ2α

|λ|2α cosαπ + λ4α

|λ|4α |
dt

. |λ|1+s−2α,

where the last integral is well-defined for α + (1 − s)/2 > 1, equivalent to 0 ≤ s < 2α − 1.
This also implies α > 1/2. From (3.3), we have

‖λ
2−2α

α
ρ(−∆− λ2)−1ρ‖L2→Hs . 〈λ〉1−2α+seT (=λ)− .

It remains to demonstrate that there exists a positive constant C independent of λ ∈ Sθ0
such that ∫ ∞

0

|t|α−(1−s)/2

|t2α − 2tα λ2α

|λ|2α cosαπ + λ4α

|λ|4α |
dt ≤ C.

First, we choose M to be sufficiently large and independent of λ such that for t ≥M ,

|t2α − 2tα
λ2α

|λ|2α
cosαπ +

λ4α

|λ|4α
| ≥ 1

2
t2α,
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which, given α + (1− s)/2 > 1, leads to∫ ∞
M

|t|α−(1−s)/2

|t2α − 2tα λ2α

|λ|2α cosαπ + λ4α

|λ|4α |
dt ≤

∫ ∞
M

|t|α−(1−s)/2

1
2
t2α

dt ≤ 2

∫ ∞
M

1

tα+(1−s)/2 ≤ C1

where C1 is a constant independent of λ.
Moving on to the integral ∫ M

0

|t|α−(1−s)/2

|t2α − 2tα λ2α

|λ|2α cosαπ + λ4α

|λ|4α |
dt,

we aim to demonstrate that for t ∈ [0,M ] and λ ∈ Sθ0 , there exists a constant c0 > 0
independent of λ such that

|t2α − 2tα
λ2α

|λ|2α
cosαπ +

λ4α

|λ|4α
| ≥ c0.

To establish this, let λ
|λ| = eiθ, where −π

2
< θ < 3π

2
. Define

S̃θ0 = {θ : θ ∈ [−θ0, θ0] ∪ [π − θ0, π + θ0]}

with θ ∈ S̃θ0 . The denominator then becomes

t2α − 2tαei2αθ cosαπ + ei4αθ = (ei2αθ − tαeiαπ)(ei2αθ − tαe−iαπ).

Since

ei2αθ − tαeiαπ = cos 2αθ − tα cosαπ + i(sin 2αθ − tα sinαπ),

we have

|ei2αθ − tαeiαπ|2 = 1 + t2α − 2tα cos(2αθ − απ).

Similarly,

|ei2αθ − tαe−iαπ|2 = 1 + t2α − 2tα cos(2αθ + απ).

This yields

|t2α − 2tαei2αθ cosαπ + ei4αθ|2

= (1 + t2α − 2tα cos(2αθ + απ))(1 + t2α − 2tα cos(2αθ − απ)) := F (t, θ).

According to the previous analysis, the denominator could only be zero when λ ∈ iR.

On the other hand, for θ ∈ S̃θ0 we have dist(S̃θ0 , {−π
2
, 3π

2
}) > 0. Consequently, given the

continuity of the function F (t, θ) for t ∈ [0,M ] and θ ∈ S̃θ0 , there exists c0 > 0 independent
of λ such that F (t, θ) ≥ c2

0. Therefore, there exists C2 > 0 independent of λ such that∫ M

0

|t|α−(1−s)/2

|t2α − 2tα λ2α

|λ|2α cosαπ + λ4α

|λ|4α |
dt ≤ C2.

Thus, the proof is completed. �

Remark 3.2. The necessity of u ∈ Hs(Ω) with 0 ≤ s < 2α− 1 becomes evident for ensuring
convergence of the integral of operators in (3.2).

The following theorem deals with the meromorphic continuation of the fractional Schrödinger
operator. The proof aligns with the argument presented in [12, Theorem 3.8].
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Lemma 3.3. Assume that V ∈ L∞comp(R3). For a fixed ρ ∈ C∞0 (R3) with ρ = 1 on suppV ,
the resolvent

ρRα,V (λ)ρ : L2(Ω)→ L2(Ω)

is a meromorphic family of operators with respect to λ ∈ Sθ0.

Proof. A direct calculation gives

I + V Rα,0(λ) = (I + V Rα,0(λ)(1− ρ))(I + V Rα,0(λ)ρ).

Fix ρ ∈ C∞0 (R3) such that ρ = 1 on suppV . For =λ� 1 and λ ∈ Sθ0 , utilizing the resolvent
estimate (3.1), we find

‖V Rα,0(λ)ρ‖L2(Ω)→L2(Ω) . |λ|1−2α‖V ‖L∞(R3) <
1

2
,

which implies that the operator I + V Rα,0(λ)ρ is invertible through a Neumann series ar-
gument. Moreover, since the operator V Rα,0(λ)ρ is compact on L2(R3) due to the resolvent
estimate (3.1) (as Hs(Ω) with 0 < s < 1 is compactly embedded in L2(Ω) [26, Theorem
7.1]), we have from Theorem A.1 that the operator (I + V Rα,0(λ)ρ)−1 : L2(Ω) → L2(Ω) is
meromorphic for λ ∈ Sθ0 . On the other hand, it is easy to verify that

(I + V Rα,0(λ)(1− ρ))−1 = I − V Rα,0(λ)(1− ρ).

Hence, the operator I + V Rα,0(λ) : L2(Ω)→ L2(Ω) is invertible for =λ� 1 and its inverse is
given by

(I + V Rα,0(λ))−1 = (I + V Rα,0(λ)ρ)−1(I − V Rα,0(λ)(1− ρ)).

Furthermore, (I + V Rα,0(λ))−1 is meromorphic for λ ∈ Sθ0 .
By the resolvent identity

Rα,V (λ) = Rα,0(λ)(I + V Rα,0(λ))−1,

it can be verified that

ρRα,V (λ)ρ = ρRα,0(λ)(I + V Rα,0(λ)ρ)−1(I − V Rα,0(λ)(1− ρ))ρ. (3.5)

Considering

(I − V Rα,0(λ)(1− ρ))ρ : L2(Ω)→ L2(Ω)

and

(I + V Rα,0(λ)ρ)−1 : L2(Ω)→ L2(Ω),

with η, η̃ ∈ C∞0 (R3) such that ηρ = ρ, η̃η = η, we have

(1− η̃)(I + V Rα,0(λ)ρ)−1η = 0, =λ� 1.

Therefore, by analytic continuation, the above identity also holds for all λ ∈ C at which
(I + V Rα,0(λ)ρ)−1 is analytic.

Finally, since ρRα,0(λ)ρ is analytic for λ ∈ Sθ0 , by (3.5), we conclude that ρRα,V (λ)ρ :
L2(Ω)→ L2(Ω) is meromorphic for λ ∈ Sθ0 , thereby completing the proof. �

Now, we present the proof of Theorem 1.3.
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Proof. The fact that ρRα,V (λ)ρ is meromorphic in Sθ0 follows directly from Lemma 3.3. Con-
sider ρ ∈ C∞0 (R3) such that ρ = 1 on suppV . For λ ∈ ΩM and |λ| large enough, we obtain

‖V Rα,0(λ)ρ‖L2(R3)→L2(R3) . ‖V ‖L∞(R3)|λ|1−2αeT (=λ)−

. eT (M log(|λ|))/|λ|2α−1

≤ 1

2
.

Combining (3.5) and the resolvent estimate (3.1) of Rα,0(λ) leads to (1.4). �

3.2. Unbounded potentials. In this section, we analyze the meromorphic continuation of
the fractional resolvent operator denoted as ρRα,V (λ)ρ : L2 → L2, specifically concerning
unbounded potentials. Referring to (1.3), we have the resolvent identity

Rα,V (λ) = Rα,0(λ)−Rα,0(λ)V 1/2(I + V 1/2Rα,0(λ)V 1/2)−1V 1/2Rα,0(λ). (3.6)

The following lemma provides an Lp-based mapping property of the free resolvent ρRα,0(λ)ρ,
complementing the one established in Theorem 3.1, which deals with L2.

Lemma 3.4. Fix a cutoff function ρ ∈ C∞0 (R3) such that ρ = 1 on suppV . Assume that
0 < β < 2α−1

3
and 0 < β1 < β. Then the operator

ρRα,0(λ)ρ : L
6

3+2β1 (Ω)→ W β,2+(Ω)

is holomorphic in Sθ0. Moreover, the following resolvent estimate holds for λ ∈ Sθ0:

‖ρRα,0(λ)ρ‖
L

6
3+2β1 (Ω)→Wβ,2+(Ω)

. |λ|−(2α−3β−1)eT (=λ)− . (3.7)

Consequently, the operator ρRα,0(λ)ρ : L
6

3+2β1 (Ω)→ L
6

3−2β (Ω) is compact.

Proof. Using the resolvent estimate (cf. [12, Theorem 3.1]) for the classical Laplacian operator
‖ρ(−∆−λ2)−1ρ‖L2→L2 = O(eT (=λ)−/|λ|) and the Hardy–Littlewood–Sobolev inequality (2.2),
and noting for 0 ≤ t ≤ 1

5

6
t+

1

2
(1− t) =

3 + 2t

6
,

1− t
2

+
t

6
=

3− 2t

6
,

we have from the Riesz–Thorin interpolation theorem (cf. Theorem A.3) that

‖ρ(−∆− λ2)−1ρ‖
L

6
3+2t→L

6
3−2t

. ‖ρ(−∆− λ2)−1ρ‖1−t
L2→L2‖ρ(−∆− λ2)−1ρ‖tL6/5→L6

. |λ|−(1−t)eT (=λ)− , 0 ≤ t ≤ 1.

Subsequently, by setting t = β1, it follows that

‖ρ(−∆− λ2)−1ρ‖
L

6
3+2β1→L

6
3+2β1

= O(eT (=λ)−/|λ|1−β1).

Reiterating the proof for (2.6) yields

‖ρ(−∆− λ2)−1ρ‖
L

6
3+2β1→W

2, 6
3+2β1

= O(|λ|1+β1eT (=λ)−),

which implies after using the interpolation that

‖ρ(−∆− λ2)−1ρ‖
L

6
3+2β1→W

1, 6
3+2β1

= O(|λ|β1eT (=λ)−).

Using the interpolation inequality

‖v‖W s, q ≤ C‖v‖1−s
Lq ‖v‖

s
W 1, q , 0 ≤ s ≤ 1
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and letting s = 2β, q = 6
3+2β1

, we obtain

‖ρ(−∆− λ2)−1ρ‖
L

6
3+2β1→W

2β, 6
3+2β1

= O(eT (=λ)−/|λ|1−2β−β1).

At this point, a decay factor of 1
|λ| emerges when 1− 2β − β1 > 0. This condition holds true

for β < 1
3
.

Given that β1 < β, we derive from the Sobolev embedding in Proposition A.4 that

W
2β, 6

3+2β1 (Ω) ⊂ W β, 2+(Ω), resulting in

‖ρ(−∆− λ2)−1ρ‖
L

6
3+2β1→Wβ, 2+

= O(eT (=λ)−/|λ|1−2β−β1), 0 < β <
1

3
.

Furthermore, by following the argument from the proof of Theorem 3.1, we obtain that the
integral in the resolvent formula (3.2) converges provided β < 2α−1

3
< 1/3, which further

gives (3.7). Additionally, the compactness follows from the fact that W β, 2+(Ω) is compactly

embedded in L
6

3−2β (Ω) according to Proposition A.4. �

The following result is a direct consequence of the above lemma.

Lemma 3.5. Assume that V ∈ Lpcomp(R3) where p > 3
2β

with 0 < β < 2α−1
3

. Then the

operator V 1/2Rα,0(λ)V 1/2 : L2 → L2 is compact for λ ∈ Sθ0 and satisfies

‖V 1/2Rα,0(λ)V 1/2‖L2→L2 . |λ|−(2α−3β−1)eT (=λ)− , λ ∈ Sθ0 . (3.8)

Proof. For a given f ∈ L2(R3), considering V 1/2 ∈ L
3
β

+
comp(R3), the application of the Hölder

inequality yields V 1/2f ∈ L
6

3+2β1 for β1 < β. Furthermore, with the selection of a cutoff
function ρ ∈ C∞0 (R3) satisfying ρ = 1 on suppV , Lemma 3.4 implies that the operator

ρRα,0(λ)ρ : L
6

3+2β1 (Ω) → L
6

3−2β (Ω) is compact. Its norm satisfies (3.7), leading to (3.8) and
establishing the compactness of the operator V 1/2Rα,0(λ)V 1/2 : L2 → L2 through Hölder’s
inequality. �

The following lemma addresses the meromorphic continuation of the fractional Schrödinger
operator.

Lemma 3.6. Assuming V ∈ Lpcomp(R3), where p > 3
2β

with 0 < β < 2α−1
3

, and considering a

fixed ρ ∈ C∞0 (R3) such that ρ = 1 on suppV , the resolvent opertor

ρRα,V (λ)ρ : L2(Ω)→ L2(Ω)

constitutes a meromorphic family of operators with respect to λ ∈ Sθ0.

Proof. Given f ∈ L2(Ω), we have from Theorem 3.1 that Rα,0(λ)f ∈ Hβ(Ω) ⊂ L
6

3−2β (Ω) by
Proposition A.4. Noting V 1/2 ∈ L3/β(Ω) and using Hölder’s inequality, we deduce V 1/2Rα,0(λ)f ∈
L2(Ω). Moreover, for sufficiently large |λ| with λ ∈ {λ : =λ > 0, λ ∈ Sθ0}, we obtain from
Lemma 3.5 that

‖V 1/2Rα,0(λ)V 1/2‖L2→L2 ≤ 1

2
,

which indicates that the operator I + V 1/2Rα,0(λ)V 1/2 : L2(Ω) → L2(Ω) is invertible via the
Neumann series argument. Considering the compactness of the operator V 1/2Rα,0(λ)V 1/2 :
L2(Ω) → L2(Ω) from Lemma 3.5, we have from the analytic Fredholm theorem that (I +
V 1/2Rα,0(λ)V 1/2)−1 : L2 → L2 is meromorphic. The proof is completed by noting the holo-
morphic nature of Rα,0(λ) in Sθ0 , V

1/2Rα,0(λ)f ∈ L2(Ω), and the resolvent identity (3.6). �
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Now, we present the proof of Theorem 1.4.

Proof. The fact that ρRα,V (λ)ρ is meromorphic in Sθ0 comes from Lemma 3.6. For λ ∈
ΩM ∩ Sθ0 and a sufficiently large constant C0, we have

‖V 1/2Rα,0(λ)V 1/2‖L2(R3)→L2(R3)‖V ‖L 3
2α
‖ρRα,0(λ)ρ‖

L
6

3+2α→L
6

3−2α
‖V ‖

L
3
2α

. |λ|−(2α−3β−1)eT (=λ)−

. eT (M log(|λ|))/|λ|2α−3β−1

≤ 1

2
,

which implies that I + V 1/2Rα,0(λ)V 1/2 is invertible by the Neumann series argument.
From (3.1), it follows that

‖ρRα,0(λ)ρ‖L2(Ω)→Hβ(Ω) . |λ|1+β−2αeT (=λ)− .

Using the resolvent identity (3.6) and the resolvent estimate (3.7) of ρRα,0(λ)ρ, we derive
(1.5). �

Appendix A. Useful Lemmas

The theorem presented below concerns the analytic Fredholm theory, detailed in [12, The-
orem C.8].

Theorem A.1. Assume that Ω ⊂ C is a connected open set and {A(z)}z∈Ω represents a
holomorphic family of Fredholm operators. If A(z0)−1 exists at a certain point z0 ∈ Ω, then
the family z → A(z)−1, z ∈ Ω, constitutes a meromorphic family of operators with poles of
finite rank.

The following theorem, known as the generalized Young’s inequality or Schur’s test, is
referenced in [2, Corollary 1.3].

Theorem A.2. Suppose that K(x, y) is measurable on Rn × Rn and

sup
x

(∫
|K(x, y)|rdy

) 1
r
, sup

y

(∫
|K(x, y)|rdx

) 1
r ≤ C

for some 1 ≤ r ≤ ∞. Define

Tf(x) =

∫
K(x, y)dy.

If 1 ≤ p ≤ q ≤ ∞ satisfy 1
r

= 1− (1
p
− 1

q
), then the following estimate holds:

‖Tf‖Lq ≤ C‖f‖Lp .
The following result is referred to as the Riesz–Thorin interpolation theorem, as documented

in [2, Theorem 1.1].

Theorem A.3. Let T be a linear map from from Lp0 ∩ Lp1 to Lq0 ∩ Lq1 such that

‖Tf‖Lqj ≤Mj‖f‖Lpj j = 0, 1

with 1 ≤ pj, qj ≤ ∞. If
1

pt
=

1− t
p0

+
t

p1

,
1

qt
=

1− t
q0

+
t

q1

for some t ∈ (0, 1), then
‖Tf‖Lqt ≤M1−t

0 M t
1‖f‖Lpt .
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The following proposition concerns results regarding compact embedding and Sobolev em-
bedding theorems, as detailed in [13, Chapter 7].

Proposition A.4. Let Ω be a bounded convex domain with a smooth boundary in Rn. The
following compact embedding holds

W k,p(Ω) ⊂⊂ Lq(Ω) for kp < n, q <
np

n− kp
,

W k,p(Ω) ⊂ Lq
∗
(Ω) for kp < n, q∗ =

np

n− kp
.

Appendix B. Self-adjointness and Resolvent identity

In this section, we prove the self-adjointness of the Schrödinger operators −∆ + V and
(−∆)α + V with the unbounded potentials, and the resolvent identities (1.3) and (3.6). We

show that C contains all V ∈ L2
comp(R3) and F contains all V ∈ L3/s

comp(R3), with 0 ≤ s < 2α−1
as specified in Theorem 3.1.

First, for V ∈ L1
loc(R3), V ≥ 0, we demonstrate the self-adjointness of the the Schrödinger

operator −∆ + V utilizing the quadratic form. The operator −∆ is self-adjoint on H2(R3)
associated with the quadratic form q−∆(f) =

∫
R3 |∇f |2dx. The multiplier operator V :

f → V (x)f is self-adjoint on the set {f ∈ L2(R3) : V f ∈ L2(R3)} associated with the
quadratic form qV (f) =

∫
R3 V |f |2dx. Since both q−∆ and qV are closed, thus by [30, Theorem

7.5.11], their sum q−∆ + qV is also closed. Consequently, following [30, Proposition 7.5.6],
the Schrödinger operator H := −∆ + V can be defined as a self-adjoint operator associated
with the quadratic form q−∆ + qV . For the domain of H obtained via the quadratic form, we
refer to [30, Proposition 7.5.6 ], and for further details, we direct attention to Example 7.5.12
in [30].

Secondly, we prove the resolvent identity (1.3) provided that I + V 1/2R0(λ)V 1/2,=λ > 0
is invertible. The invertibility of the operator I + V 1/2R0(λ)V 1/2 is validated by referencing
Lemma 2.1 and employing the Neumann series argument.

For two nonnegative self-adjoint operators A and B, let Q(A) and Q(B) be the form
domains and qA and qB be the associated quadratic forms. Denote the resolvent RP (z) =
(P − z)−1, where P is an operator. The following lemma (cf. [33, Lemma 6.30]) is useful in
the subsequent analysis.

Lemma B.1. Assuming A− γ ≥ 0, where γ is a constant and B is self-adjoint. If Q(A) ⊂
Q(B) and qA + qB is a closed semi-bounded form, then

RA+B(z) = RA(z)− (|B|1/2RA+B(z∗))∗sign(B)|B|1/2RA(z)

for z ∈ ρ(A) ∩ ρ(A + B). Here, A + B represents the self-adjoint operator associated with
qA + qB.

In our scenario, let z = λ2, A = −∆, and B = TV , where TV : f → V (x)f is the multiplier
operator. Thus, −∆ + V = A+B. We have Q(A) = H1(R3) and

Q(B) = {f ∈ L2(R3) : V 1/2f ∈ L2(R3)}.

For specific details, we refer to page 77 of [33]. We confirm that Q(A) ⊂ Q(B). To elaborate,
considering f ∈ H1(R3) ⊂ L6

loc(R3) implies that |f |2 ∈ L3
loc(R3). Since V ∈ Lpcomp(R3) with

p > 3/2, by Hölder’s inequality, we deduce that V 1/2|f | ∈ L2(R3) .
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Let RV (λ) = (−∆ + V − λ2)−1 and R0(λ) = (−∆− λ2)−1, where =λ > 0. Considering the
range of V 1/2R0(λ) contained in Q(B) for V ∈ L2

comp(R3), we employ Lemma B.1 to derive

RV (λ) = R0(λ)−RV (λ)V 1/2V 1/2R0(λ). (B.1)

Multiplying both sides of the above identity by V 1/2, we obtain

RV (λ)V 1/2 = R0(λ)V 1/2 −RV (λ)V 1/2V 1/2R0(λ)V 1/2.

As I + V 1/2R0(λ)V 1/2 is invertible, we get

RV (λ)V 1/2 = R0(λ)V 1/2(I + V 1/2R0(λ)V 1/2)−1. (B.2)

Substituting (B.2) into the second term on the right-hand side of (B.1) yields the desired
identity.

In a similar manner, we investigate the fractional Schrödinger operator. First, in this
case, we have A = (−∆)α and B = TV , where TV : f → V (x)f is the multiplier operator.
The self-adjointness of A is evident on Hα(R3), while V is self-adjoint on the set {f ∈
L2(R3) : V f ∈ L2(R3)}. The quadratic forms associated with A and B are denoted as
qA(f) =

∫
R3 |(−∆)α/2f |2dx and qB(f) =

∫
R3 V |f |2dx, respectively. Hence, the Schrödinger

operator (−∆)α + V is self-adjoint associated with qA + qB.
Second, we prove the resolvent identity (3.6) for the fractional Schrödinger operator under

the condition that the operator

I + V 1/2Rα,0(λ)V 1/2, =λ > 0,

is invertible. For the invertibility of the above operator, we refer to Lemma 3.5 and the
Neumann series argument. Notably, we have Q(A) = Hα(R3) and

Q(B) = {f ∈ L2(R3) : V 1/2f ∈ L2(R3)}.

Furthermore, Q(A) ⊂ Q(B) due to V 1/2|f | ∈ L2(R3) for f ∈ Hα(R3) and V ∈ Lploc(R3) with
p > 3

2β
and 0 < β < 2α−1

3
. Additionally, it is clear to note that the range of V 1/2Rα,0(λ)

is contained in Q(B) for V ∈ L
3/s
comp(R3), where 0 ≤ s < 2α − 1 is specified in Theorem

3.1. Subsequently, the remainder of the proof aligns with the preceding arguments by using
Lemma B.1.
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des Sciences Mathématiques, 136 (2012), 521–573.
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