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Abstract. In this paper, we study both the direct and inverse random source problems associated
with the multi-term time-fractional diffusion-wave equation driven by a fractional Brownian motion.
Regarding the direct problem, the well-posedness is established and the regularity of the solution is
characterized for the equation. In the context of the inverse problem, the uniqueness and instability
are investigated on the determination of the random source. Furthermore, a reconstruction formula
is provided for the phaseless Fourier modes of the diffusion coefficient in the random source, based
on the variance of the boundary data. To reconstruct the time-dependent source function from
its phaseless Fourier modes, the PhaseLift method, combined with a spectral cut-off regularization
technique, is employed to tackle the phase retrieval problem. The effectiveness of the proposed
method is demonstrated through a series of numerical experiments.

1. Introduction

Time-fractional differential equations (TFDEs) have a wide range of applications across diverse
fields, including mathematics, physics, engineering, biology, and finance. They offer valuable tools for
modeling complex phenomena characterized by memory effects, non-local behaviors, and anomalous
diffusion processes. The extensive body of research on TFDEs reflects their importance. For instance,
Schneider et al. [35] conducted an analysis of the Green function of TFDEs with a fractional derivative
order of α (0 < α < 1). This Green function exhibits a mean-squared displacement resembling Ctα,
a property considered essential for capturing sub-diffusion phenomena. In a separate study, Giona et
al. [14] highlighted the effectiveness of TFDEs in describing relaxation phenomena within complex
viscoelastic materials. A multitude of other instances of mathematical, numerical studies, and
applications of TFDEs can be found in references such as [18,28,33,36] and the associated citations.

In certain practical applications of TFDEs, it has been observed that the order of fractional
derivatives in some models can vary within the range of (0, 2), as demonstrated in studies such as [8].
Additionally, sub-diffusion processes exhibiting a logarithmic growth of mean-squared displacement,
such as C log(t), have been introduced in research examples, as evidenced by [7]. To address these
scenarios, researchers have introduced the concept of distributed order TFDEs. In these equations,
the distributed order derivative is obtained from a specified interval, such as [0, 1] or even [0, 2], and
is weighted using a positive weighting function. A special case of the distributed order TFDE is the
multi-term TFDE. Multi-term TFDEs provide a versatile framework to model systems exhibiting
multiple relaxation or memory time scales, which are common in various natural phenomena.
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In this paper, we consider the following stochastic multi-term time-fractional diffusion-wave equa-
tion driven by a fractional Brownian motion (fBm):



n∑
k=1

∂αk
t u(x, t)− ∂xxu(x, t) = f(t)ḂH(x), (x, t) ∈ D × R+,

u(x, 0) = 0, x ∈ D,

∂tu(x, 0) = 0, x ∈ D, if αn ∈ (1, 2],

∂xu(0, t) = 0, u(1, t) = 0, t ∈ R+,

(1.1)

where ∂αk
t denotes the Caputo fractional derivative with order αk ∈ (0, 2] satisfying the condition

α1 < α2 < · · · < αn and α1 < 2. The domain D := (0, 1). The diffusion coefficient f , also referred to
as the source function, is a deterministic function with the property f(0) = 0. In this context, BH

represents the spatial fBm with a Hurst index H ∈ (0, 1), and ḂH represents the formal derivative of
BH with respect to the spatial variable x. Further details about the fBm and the Caputo fractional
derivative will be provided in Section 2.

Two distinct problems are associated with (1.1): the direct source problem and the inverse source
problem. In the direct problem, given f(t), the objective is to solve the initial-boundary problem
(1.1) to determine the solution u. On the other hand, the inverse source problem seeks to determine
the source function f from the boundary data {u(0, t)}t∈R+. This paper is dedicated to addressing
both the direct and inverse source problems. To simplify our analysis without loss of generality,
we focus on random sources in the form of f(t)ḂH(x) rather than considering a more general

setting, which includes a deterministic function g(x, t), given as g(x, t) + f(t)ḂH(x). In the case of

random sources in this general form, g(x, t) + f(t)ḂH(x), taking the expectation of both sides of
the equation transforms the problem into a deterministic one involving an unknown source g(x, t).
Notably, productive results have already been achieved in solving such deterministic inverse source
problems. Additionally, we assume that the initial and boundary conditions are homogeneous, as is
commonly done, since nonhomogeneous conditions can be converted into homogeneous ones using
standard techniques in partial differential equations.

Extensive research has been undertaken on deterministic sources in the context of multi-term
TFDEs, including both direct and inverse source problems. For instance, in [9], multivariate Mittag–
Leffler functions were utilized to represent solutions of the initial-boundary value problem for multi-
term TFDEs with constant coefficients when 1 < αk < 2. In [19], innovative techniques were intro-
duced for deriving analytical solutions for multi-term TFDEs. The investigation of well-posedness
and long-term asymptotic behavior of the initial boundary value problem for multi-term TFDEs
was addressed in [25]. A strong maximum principle for multi-term TFDEs was established in [27],
demonstrating uniqueness in determining the temporal component of the source term. In [24], the
authors focused on the identification of time-dependent source terms in multi-term TFDEs using
boundary data. In [20], successful recovery of spatially dependent sources in multi-term TFDEs was
achieved using final data.

Due to the inherent uncertainties present in practical problems, researchers have directed con-
siderable attention to the investigation of stochastic models. In contrast to deterministic inverse
problems, stochastic inverse problems are confronted with additional challenges due to ill-posedness
and the presence of randomness and uncertainty. Notably, significant progress has been made in
the field of inverse random source scattering problems, particularly in the context of stochastic wave
equations driven by white noise. In this regard, effective computational models have been devel-
oped, as demonstrated by the contributions of [2–4, 22, 23]. These works primarily center on the
reconstruction of statistical characteristics related to random sources, including parameters such as
mean and variance.
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In recent years, there has been significant progress in the field of inverse random source prob-
lems for TFDEs. Research efforts have mainly focused on addressing two distinct categories of
noise: time-dependent and spatial-dependent. In the case of time-dependent noise, Niu et al. [30]

explored scenarios involving a random source expressed as f(x)h(t) + g(x)Ḃ(t) by utilizing statisti-
cal information derived from the final data. Expanding upon this line of research, Feng et al. [12]
broadened the scope of their investigation to contain situations featuring a random source in the
form of f(x)h(t) + g(x)ḂH(t). Additionally, in [13, 26], the specific case involving a random source

f(x)(g1(t) + g2(t)Ḃ(t)) was examined. Lassas et al. [21] studied the general case characterized by a

random source given by Iδt (f1(x)g1(t) + f2(x)g2(t)Ḃ(t)), where Iδt represents the Riemann–Liouville
fractional integral operator. In contrast, research on spatial-dependent noise in this context is rela-
tively limited. An exception to this is the work of Gong et al. [16], where they conducted a detailed

analysis of a TFDE with α ∈ (0, 1), characterized by a random source represented as f(t)Ḃ(x).
This paper is dedicated to solving the problem (1.1) involving the multi-term TFDE with the

random source f(t)ḂH(x). When the Hurst parameterH = 1
2 , the fractional Brownian motion (fBm)

BH(x) reduces to the classical Brownian motion B(x), and the random source becomes f(t)Ḃ(x).
Furthermore, the multi-term TFDE considered here can also be reduced to the single-term case,
i.e., the classical TFDE with the fractional derivative order 0 < α < 2, which includes sub-diffusion
(0 < α < 1), super-diffusion (1 < α < 2), and heat conduction (α = 1). In this context, our research
can be viewed as an extension of the prior work presented in [16]. The approach of transforming
problem (1.1) into a stochastic boundary value problem in the frequency domain, followed by the
application of the PhaseLift method to recover the time-dependent source function, is inspired by the
literature [16]. The central challenge of our study lies in dealing with the complexities introduced by
fBm. To date, there is limited research on the inverse random source problem with a source driven
by fBm. In [12], an inverse random source problem was examined for the TFDE with 0 < α < 1,

where the random source was given as f(x)h(t) + g(x)ḂH(t). To handle stochastic integration, the
moving average representation of fBm was employed to convert the variance of random integrals into
deterministic integrals. Nevertheless, the integrals transformed through this technique proved to be
particularly complex and involved addressing a significant number of singular integrals.

In this study, we adopt the harmonizable representation, as described in [11], to address our
problem. In contrast to the moving average representation of fBm, the harmonizable representation
enables us to express the variance of random integrals in a more concise manner. A fundamental
prerequisite for this approach is that the integrand function must satisfy specific properties. However,
it is worth noting that in our theoretical analysis, the integrand function is closely associated with
both the Green function (3.3) and the Hurst parameter H. The Green function (3.3) exhibits a
complex form and has somewhat limited desirable properties, presenting a challenge. Additionally,
the Hurst parameter, which falls within the range of 0 < H < 1, can lead to the emergence of
singular integrals in (2.1), especially when 0 < H < 1

2 . Through subsequent analysis, we derive
a crucial isometry formula, as presented in Lemma 3.4. Utilizing this formula, we establish the
well-posedness of the solution for the direct problem, and concurrently, we prove the uniqueness and
characterize the ill-posed nature of the inverse problem.

To validate our theoretical findings, we conduct numerical experiments for (1.1) with two time
fractional terms, addressing cases of both sub-diffusion and super-diffusion simultaneously. We
employ a finite difference scheme to solve the direct problem and obtain the boundary data. For
the inverse problem, given that the available data is the modulus in the frequency domain and the
problem is inherently ill-posed, it necessitates the resolution of a phase retrieval problem. To address
this challenge, we adopt the PhaseLift method, in conjunction with a spectral cut-off technique, to
reconstruct the source function. Our numerical results demonstrate the effectiveness of the proposed
method in handling both smooth and nonsmooth source functions.

The remaining sections of this paper are structured as follows. Section 2 provides some necessary
background information to facilitate the main results. The well-posedness of the direct problem is
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demonstrated in Section 3. Section 4 provides a proof of uniqueness and a characterization of the
ill-posed nature of the inverse problem. In Section 5, we introduce numerical methods for solving
the direct problem, along with detailed information regarding the PhaseLift method for solving
the inverse problem, supported by numerical examples to confirm the theoretical results. Finally,
in Section 6, we conclude with a summary of our study and offer suggestions for future research
directions.

2. Preliminaries

In this section, we provide a brief introduction to fractional Brownian motion and the Caputo
fractional derivative, both of which are employed in the context of this study.

2.1. Fractional Brownian motion. A centered Gaussian process BH = {BH(x) : x ∈ R}, defined
on a probability space that comprises a complete triple (Ω,F ,P), is referred to as a fractional
Brownian motion (fBm) characterized by a Hurst index H ∈ (0, 1) when it exhibits the covariance
function, as presented in [31, Chapter 5.1] or [34, Definition 7.2.2]:

RH(x, y) := E
[
BH(x)BH(y)

]
=

1

2

(
|x|2H + |y|2H − |x− y|2H

)
, x, y ∈ R.

It can be readily verified that BH exhibits self-similarity with an index of H, expressed as BH(ax)
d
=

aHBH(x) for any a > 0. Additionally, it possesses stationary increments, as indicated by BH(x +

h) − BH(x)
d
= BH(h) − BH(0) for any x, h ∈ R. Here, the notation X

d
= Y denotes that random

variables X and Y share the same probability distribution.
In order to streamline the formulation of moments for the stochastic integral, we introduce a

specific integral representation of BH in relation to a complex Gaussian measure defined over the
entire real line R.

Lemma 2.1 (cf. [34]). The fBm BH with H ∈ (0, 1) has the integral representation given by

BH(x) = CH

∫ ∞

−∞

eiλx − 1

iλ|λ|H− 1
2

dW̃ (λ), x ∈ R, (2.1)

where the constant CH is defined as

CH :=

(
HΓ(2H) sin(Hπ)

π

) 1
2

,

and W̃ := W1 + iW2 represents a complex Gaussian measure. Here, W1 and W2 are independent
Gaussian measures that are independently scattered over R+, and they satisfy the properties W1(A) =
W1(−A) and W2(A) = −W2(−A) for any Borel set A of finite Lebesgue measure.

The expression presented in (2.1) is commonly referred to as the harmonizable representation,
also known as the spectral representation (cf. [31]). This representation is derived from the moving
average representation of fBms using the Parseval identity. We refer to [34] and [31] for further
elaboration on these representations over the real line R and over finite intervals, respectively.

2.2. Caputo fractional derivative. The Caputo fractional derivative, which is one of the methods
for computing fractional derivatives, was introduced by M. Caputo in 1967. To begin, let us revisit
the definition of the νth order Caputo fractional derivative of a function v, denoted as

0D
ν
t v(t) =

1

Γ(n− ν)

∫ t

0
(t− ξ)n−ν−1v(n)(ξ)dξ,

where the Gamma function Γ(α) =
∫∞
0 e−ssα1ds, and n = ⌈ν⌉ with ⌈·⌉ denoting the smallest positive

integer that is larger than or equal to ν.
Next, we examine the Fourier transform of the Caputo fractional derivative.
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Lemma 2.2 (cf. [10]). Let ν ∈ R+, and consider a causal function v(t), where v(t) = 0 for t ≤ 0,

and
∑n−1

k=0 |v(k)(0)| = 0 with n = ⌈ν⌉. Additionally, assume that v(k)(t) has compact support for
all k = 0, . . . , n. Under these conditions, the fractional derivative 0D

ν
t v(t) of v(t) is well-defined in

L2(R), and its Fourier transform satisfies

F[0D
ν
t v(·)](ω) = (iω)νF[v(·)](ω),

where the Fourier transform of v is denoted as

v̂(ω) := F[v(·)](ω) =
∫
R
v(t)e−iωtdt.

3. The direct problem

The goal of this section is to establish the well-posedness of the direct source problem. To
achieve this, we convert it into an equivalent problem in the frequency domain. We then proceed to
demonstrate estimates for the corresponding Green function, including an analogue of Itô isometry
for its stochastic integral with respect to the fBm. Subsequently, we investigate the existence,
uniqueness, and regularity of the mild solution for this equivalent problem. Based on these findings,
we attain the well-posedness of the time-domain problem (1.1).

3.1. The problem in the frequency domain. For a function v ∈ L2(R+), we consider its zero
extension outside of R+, still denoted by v, such that its Fourier transform v̂ is well-defined. Taking
the Fourier transform of (1.1) and applying Lemma 2.2, we obtain the following stochastic differential
equation in the frequency domain, where x ∈ D and ω ∈ R: ûxx(x, ω)−

n∑
k=1

(iω)αk û(x, ω) = −f̂(ω)ḂH(x),

∂xû(0, ω) = 0, û(1, ω) = 0,
(3.1)

where û and f̂ are the Fourier transforms of u and f with respect to t, respectively.
Note that the complex number (iω)αk may be multi-valued when αk is a fractional number.

Throughout this paper, we always adopt its principal value and represent it as

s :=
n∑

k=1

(iω)αk =
n∑

k=1

|ω|αkei
παk
2

sgn(ω) =

n∑
k=1

|ω|αk

(
cos

(παk

2

)
+ sgn(ω)i sin

(παk

2

))
, (3.2)

where sgn(·) denotes the sign function. The parameter s has the following properties.

Lemma 3.1. For the parameter s as defined in (3.2), it holds that s = 0 if and only if ω = 0.
Furthermore,

|s| ⩾ sin
(παmax

2

)
|ω|αmax ,

where αmax := maxni=1{αi : αi ̸= 2}.

Proof. If ω = 0, it is evident that s = 0. It is adequate to demonstrate that ω = 0 when s = 0.
Assuming, by contradiction, that ω ̸= 0, it is important to note that παk

2 ∈ (0, π] and, therefore,

sin
(
παk
2

)
⩾ 0 for any αk ∈ (0, 2] and k = 1, · · · , n. If

s =
n∑

k=1

|ω|αk

(
cos

(παk

2

)
+ sgn(ω)i sin

(παk

2

))
= 0,

then its imaginary part ℑ[s] must also be zero, i.e.,

ℑ[s] = sgn(ω)i
n∑

k=1

|ω|αk sin
(παk

2

)
= 0,
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which implies that αk = 2 for all k = 1, · · · , n. Substituting αk = 2 into the expression for s, we
obtain

s =
n∑

k=1

|ω|2 cos (π) = −nω2 = 0,

which leads to a contradiction to the assumption ω ̸= 0. We then establish the equivalence between
s = 0 and ω = 0.

Next, we proceed to estimate the lower bound of |s|. Given that 0 < α1 < α2 < · · · < αn ⩽ 2, we
have

sin
(παk

2

)
> 0, k = 1, · · · , n− 1,

and sin
(
παn
2

)
⩾ 0. Consequently, we can deduce

|s| ⩾ |ℑ[s]| =
n∑

k=1

|ω|αk sin
(παk

2

)
⩾ sin

(παmax

2

)
|ω|αmax ,

which completes the proof. □

3.2. The Green function. In order to establish the well-posedness of (3.1) and derive an explicit
solution, we begin by introducing the Green function and its associated energy estimates.

Let Gω(x, y) be the Green function of (3.1) for any fixed ω ∈ R. It solves the following problem
(cf. [16]): {

∂xxGω(x, y)− sGω(x, y) = δ(x− y),

∂xGω(0, y) = 0, Gω(1, y) = 0,

where x, y ∈ D and the frequency s is given in (3.2). It is shown in [16] that the Green function
Gω(x, y) admits the following expression:

Gω(x, y) =


max{x, y} − 1, ω = 0,

e
√
s(x+y) + e

√
s|x−y| − e

√
s(2−x−y) − e

√
s(2−|x−y|)

2
√
s
(
1 + e2

√
s
) , ω ̸= 0,

(3.3)

where we choose the principal value for
√
s = |s|

1
2 ei

arg(s)
2 with arg(·) representing the argument with

a radiant principal value in (−π, π] to ensure that its real part ℜ[
√
s] > 0 for ω ∈ R \ {0}.

Lemma 3.2. For any x ∈ D, the Green function Gω provided in (3.3) satisfies

sup
ω∈R

∥Gω(x, ·)∥L2(D) ⩽ C, sup
ω∈R

∥Gω∥L2(D×D) ⩽ C.

Additionally, as |s| → ∞, the following inequalities hold:

∥Gω(x, ·)∥L2(D) ⩽ C|s|−
1
2 , ∥Gω∥L2(D×D) ⩽ C|s|−

1
2 ,

where C denotes positive constants that are independent of ω and x.

Proof. It is only necessary to demonstrate that the above results apply to ∥Gω(x, ·)∥L2(D), as the
results for ∥Gω∥L2(D×D) follow directly.

If ω = 0, it is evident that for any x ∈ D

∥G0(x, ·)∥2L2(D) =

∫ x

0
(x− 1)2dy +

∫ 1

x
(y − 1)2dy =

(x− 1)2(2x+ 1)

3
⩽

1

3
.

If ω ̸= 0, using (3.3) and noting the inequality for x, y ∈ (0, 1) (cf. [16, (3.4)]):

|Gω(x, y)|2 ≤
e2ℜ[

√
s](x+y) + e2ℜ[

√
s]|x−y| + e2ℜ[

√
s](2−x−y) + e2ℜ[

√
s](2−|x−y|)

|
√
s
(
1 + e2

√
s
)
|2

, (3.4)
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where ℜ[·] denotes the real part of a complex number, we deduce from a simple calculation that

∥Gω(x, ·)∥2L2(D) =

∫ 1

0
|Gω(x, y)|2 dy

⩽ |s|−1 1

|1 + e2
√
s|2

e4ℜ[
√
s] − 1

ℜ[
√
s]

= |s|−1 1

1 + e4ℜ[
√
s] + 2e2ℜ[

√
s] cos

(
2ℜ[

√
s] tan

(
arg(s)

2

)) e4ℜ[
√
s] − 1

ℜ[
√
s]

= : |s|−1h
(
ℜ[
√
s]
)
, (3.5)

where h is a positive function for any ℜ[
√
s] > 0. Note that

∣∣h (ℜ[√s]
)∣∣ =

∣∣∣∣∣∣ 1

ℜ[
√
s]

e4ℜ[
√
s] − 1

1 + e4ℜ[
√
s] + 2e2ℜ[

√
s] cos

(
2ℜ[

√
s] tan

(
arg(s)

2

))
∣∣∣∣∣∣

⩽

∣∣∣∣∣ 1

ℜ[
√
s]

e4ℜ[
√
s] − 1

1 + e4ℜ[
√
s] − 2e2ℜ[

√
s]

∣∣∣∣∣
=

∣∣∣∣∣ 1

ℜ[
√
s]

e2ℜ[
√
s] + 1

e2ℜ[
√
s] − 1

∣∣∣∣∣ ⩽ 2

ℜ[
√
s]

→ 0, ℜ[
√
s] → ∞

(3.6)

and

lim
ℜ[

√
s]→0

h
(
ℜ[
√
s]
)
= 1.

Following the same procedure as in [16, Lemma 3.1], we can obtain the uniform boundedness of the
function h over [0,∞). Hence,

∥Gω(x, ·)∥L2(D) ⩽ C|s|−
1
2 ∀ ω ∈ R. (3.7)

On the other hand, for any fixed x ̸= y, when considering Gω(x, y) as a function of s, it is analytic
with respect to s and is continuous at s = ω = 0, implying that

lim
ω→0

Gω(x, y) = G0(x, y).

As a consequence,

∥Gω(x, ·)∥L2(D) ⩽ C, |s| ≪ 1,

which, together with (3.7), finishes the proof. □

For the sake of convenience in notation, we introduce a function TGω defined in R×R as follows:

TGω(x, y) :=

{
∂yGω(x, y), x ∈ D, y ∈ [0, x) ∪ (x, 1],

0, otherwise.

Lemma 3.3. The function TGω ∈ L2(R×R) is uniformly bounded with respect to ω ∈ R, satisfying

sup
ω∈R

∥TGω∥L2(R×R) ⩽ C.

Moreover, for any fixed x ∈ D, it holds that

sup
ω∈R

∥TGω(x, ·)∥L2(R) ⩽ C.

In the above expressions, the positive constants denoted by C are independent of both ω and x.
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Proof. It suffices to consider x, y ∈ D. If ω = 0, then

TG0(x, y) =

{
0, y ∈ [0, x],

1, y ∈ (x, 1].

A simple calculation yields

∥TG0(x, ·)∥2L2(R) =

∫ 1

x
1dy = 1− x ⩽ 1

and

∥TG0∥2L2(R×R) = ∥TG0∥2L2(D×D) =

∫ 1

0

∫ 1

x
12dydx =

1

2
.

If ω ̸= 0, then for x ∈ D, y ∈ [0, x) ∪ (x, 1], it holds that

TGω(x, y) =
e
√
s(x+y) − sgn(x− y)e

√
s|x−y| + e

√
s(2−x−y) − sgn(x− y)e

√
s(2−|x−y|)

2
(
1 + e2

√
s
) .

Similarly, we may obtain from (3.4)–(3.5) that

∥TGω(x, ·)∥2L2(R) ⩽
1∣∣1 + e2

√
s
∣∣2 e4ℜ[

√
s] − 1

ℜ[
√
s]

=
1

1 + e4ℜ[
√
s] + 2e2ℜ[

√
s] cos

(
2ℜ[

√
s] tan

(
arg(s)

2

)) e4ℜ[
√
s] − 1

ℜ[
√
s]

= h
(
ℜ[
√
s]
)
,

(3.8)

and

∥TGω∥2L2(R×R) =

∫
D
∥TGω(x, ·)∥2L2(R)dx ⩽

∫
D

1∣∣1 + e2
√
s
∣∣2 e4ℜ[

√
s] − 1

ℜ[
√
s]

dx = h
(
ℜ[
√
s]
)
,

where h is defined in (3.5) and is uniformly bounded. Hence, there exists a constant C > 0 inde-
pendent of ω and x such that

∥TGω(x, ·)∥2L2(R) ⩽ h(ℜ[
√
s]) ⩽ C

and

∥TGω∥2L2(R×R) ⩽ h(ℜ[
√
s]) ⩽ C,

which completes the proof. □

For any fixed x ∈ D, we denote by G̃ω(x, ·) the zero extension of Gω(x, ·) outside of D. Similarly,

we denote ˆ̃Gω(x, ·) as the Fourier transform of G̃ω(x, ·) with respect to the second variable, and

apply the same notation to T̂Gω(x, ·). Recall the definition of the fractional Sobolev space Hγ(R)
with γ ∈ R (cf. [29]):

Hγ (R) :=
{
u ∈ L2 (R) :

∫
R

(
1 + |ζ|2

)γ |û(ζ)|2dζ < ∞
}
,

which is equipped with the norm

∥u∥Hγ(R) :=

(∫
R

(
1 + |ζ|2

)γ |û(ζ)|2dζ) 1
2

.

Based on the above notations, we establish the following Itô isometry type equality for the sto-
chastic integral of Gω with respect to the fBm. This result is derived using a procedure similar to
the one employed in [11, Chapter 2.2].
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Lemma 3.4. For any fixed x ∈ D and with H ∈ (0, 1), the stochastic integral
∫
D Gω(x, y)dB

H(y)
is well-defined and satisfies

E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 = C2
H

∫
R

| ˆ̃Gω(x, ζ)|2

|ζ|2H−1
dζ, (3.9)

where CH is defined in (2.1).

Proof. For the case where H = 1
2 and C2

H = 1
2π , the result in (3.9) follows from the classical Itô

isometry and Parseval’s theorem, which states that

E
∣∣∣∣∫

D
Gω(x, y)dB

1
2 (y)

∣∣∣∣2 = ∫
R
|G̃ω(x, y)|2dy =

1

2π

∫
R
| ˆ̃Gω(x, ζ)|2dζ.

For H ∈ (12 , 1), it is shown in [11, Section 2.2, Case 1] that (3.9) holds if G̃ω(x, ·) ∈ L1(R)∩L2(R)
for any x ∈ D. Given that G̃ω(x, ·) is supported in D and L2(D) ⊂ L1(D), it is sufficient to show
that Gω(x, ·) ∈ L2(D), which has already been demonstrated in Lemma 3.2.

For H ∈ (0, 12), we cannot directly apply the conclusion from [11, Section 2.2, Case 2] because

G̃ω(x, ·) /∈ H1(R). In the following, we demonstrate that (3.9) still holds even under a weaker

regularity condition for G̃ω(x, ·).
First, we assert that G̃ω(x, ·) ∈ H

1
2
−H(R) for any H ∈ (0, 12). In fact, for any fixed ϵ > 0, it

follows from Plancherel’s theorem that∥∥∥G̃ω(x, ·)
∥∥∥
H

1
2−H(R)

=

∫
R

(
1 + |ζ|2

) 1
2
−H | ˆ̃Gω(x, ζ)|2dζ

=

∫
(−ϵ,ϵ)

(
1 + |ζ|2

) 1
2
−H | ˆ̃Gω(x, ζ)|2dζ +

∫
R\(−ϵ,ϵ)

(
1 + |ζ|2

) 1
2
−H | ˆ̃Gω(x, ζ)|2dζ

⩽
(
1 + ϵ2

) 1
2
−H ∥ ˆ̃Gω(x, ·)∥2L2(R) +

∫
R\(−ϵ,ϵ)

(
1

|ζ|2
+ 1

) 1
2
−H

|ζ|1−2H | ˆ̃Gω(x, ζ)|2dζ

⩽ 2π
(
1 + ϵ2

) 1
2
−H ∥Gω(x, ·)∥2L2(D)

+

(
1

ϵ2
+ 1

) 1
2
−H ∫

R\(−ϵ,ϵ)
|ζ|−2H−1|ζ ˆ̃Gω(x, ζ)|2dζ,

where ∥Gω(x, ·)∥L2(D) < ∞, as shown in Lemma 3.2, and∫
R\(−ϵ,ϵ)

|ζ|−2H−1 |ζ ˆ̃Gω(x, ζ)|2dζ

=

∫
R\(−ϵ,ϵ)

|ζ|−2H−1

∣∣∣∣ζ ∫ x

0
Gω(x, y)e

−iζydy + ζ

∫ 1

x
Gω(x, y)e

−iζydy

∣∣∣∣2 dζ
=

∫
R\(−ϵ,ϵ)

|ζ|−2H−1

∣∣∣∣ (Gω(x, y)e
−iζy

) ∣∣∣x
y=0

−
∫ x

0
∂yGω(x, y)e

−iζydy

+
(
Gω(x, y)e

−iζy
) ∣∣∣1

y=x
−
∫ 1

x
∂yGω(x, y)e

−iζydy

∣∣∣∣2dζ
=

∫
R\(−ϵ,ϵ)

|ζ|−2H−1

∣∣∣∣Gω(x, 0) +

∫ x

0
e−iζy∂yGω(x, y)dy +

∫ 1

x
e−iζy∂yGω(x, y)dy

∣∣∣∣2 dζ
=

∫
R\(−ϵ,ϵ)

|ζ|−2H−1
∣∣∣Gω(x, 0) + T̂Gω(x, ζ)

∣∣∣2 dζ
⩽

2

H
ϵ−2H |Gω(x, 0)|2 + 2ϵ−2H−1∥TGω(x, ·)∥2L2(R) < ∞ (3.10)
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based on Lemma 3.3.
Note that C∞

0 (R) is dense in H
1
2
−H(R) (cf. [1, Theorem 7.38]). Therefore, for the previously

claimed G̃ω(x, ·) ∈ H
1
2
−H(R), there exists a sequence {ϕn := ϕx,ω

n }n∈N ⊂ C∞
0 (R) converging to

G̃ω(x, ·) in the norm ∥ · ∥H
1
2
−H(R). Moreover, according to [11, (2.8)], (3.9) holds for the sequence{∫

R ϕn(y)dB
H(y)

}
n∈N. Hence, we obtain

E
∣∣∣∣∫

R
ϕn(y)dB

H(y)−
∫
R
ϕm(y)dBH(y)

∣∣∣∣2 = C2
H

∫
R

∣∣∣ϕ̂n(ζ)− ϕ̂m(ζ)
∣∣∣2

|ζ|2H−1
dζ

⩽ C2
H

∫
R

∣∣∣ϕ̂n(ζ)− ϕ̂m(ζ)
∣∣∣2 (1 + |ζ|1−2H)dζ

= C2
H∥ϕn − ϕm∥2

H
1
2−H(R)

.

As a result, the sequence
{∫

R ϕn(y)dB
H(y)

}
n∈N converges in the mean square sense, and we define

the stochastic integral
∫
R G̃ω(x, y)dB

H(y) as the mean square limit of
∫
R ϕn(y)dB

H(y). Finally, we
obtain

E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 = E
∣∣∣∣∫

R
G̃ω(x, y)dB

H(y)

∣∣∣∣2 = lim
n→∞

E
∣∣∣∣∫

R
ϕn(y)dB

H(y)

∣∣∣∣2
= lim

n→∞
C2
H

∫
R

|ϕ̂n(ζ)|2

|ζ|2H−1
dζ = C2

H

∫
R

| ˆ̃Gω(x, ζ)|2

|ζ|2H−1
dζ,

where the last equality follows from∣∣∣∣∣
∫
R

|ϕ̂n(ζ)|2

|ζ|2H−1
dζ −

∫
R

| ˆ̃Gω(x, ζ)|2

|ζ|2H−1
dζ

∣∣∣∣∣
⩽
∫
R
|ϕ̂n(ζ)− ˆ̃Gω(x, ζ)|

(
|ϕ̂n(ζ)|+ | ˆ̃Gω(x, ζ)|

)
|ζ|1−2Hdζ

⩽ ∥ϕn − G̃ω(x, ·)∥
H

1
2−H(R)

(
∥ϕn∥

H
1
2−H(R)

+ ∥G̃ω(x, ·)∥
H

1
2−H(R)

)
→ 0

as n → ∞ due to the convergence of {ϕn}n∈N to G̃ω(x, ·) in H
1
2
−H(R). □

Corollary 3.5. For a given H ∈ (0, 1), the following inequality holds:

sup
ω∈R

∫
D
E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 dx ⩽ C,

where C is a positive constant depending only on H.

Proof. The result for H = 1
2 follows from Lemmas 3.2 and 3.4.

For H ∈ (12 , 1), utilizing Lemma 3.4, Plancherel’s theorem, and the observation

| ˆ̃Gω(x, ζ)| =
∣∣∣∣∫

R
G̃ω(x, y)e

−iyζ dy

∣∣∣∣ ⩽ ∫
D
|Gω(x, y)| dy ⩽ ∥Gω(x, ·)∥L2(D) ∀ ζ ∈ R,

we have

E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 = C2
H

∫
(−1,1)

| ˆ̃Gω(x, ζ)|2

|ζ|2H−1
dζ + C2

H

∫
R\(−1,1)

| ˆ̃Gω(x, ζ)|2

|ζ|2H−1
dζ

⩽ C2
H∥Gω(x, ·)∥2L2(D)

∫
(−1,1)

1

|ζ|2H−1
dζ + C2

H∥ ˆ̃Gω(x, ·)∥2L2(R)

=
C2
H

1−H
∥Gω(x, ·)∥2L2(D) + 2πC2

H∥Gω(x, ·)∥2L2(D),

(3.11)
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which, together with Lemma 3.2, implies that

sup
ω∈R

∫
D
E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 dx ⩽ C sup
ω∈R

∥Gω(x, y)∥2L2(D×D) ⩽ C.

For H ∈ (0, 12), it follows from Lemma 3.4 and (3.10) that

E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 = C2
H

∫
(−1,1)

|ζ|1−2H | ˆ̃Gω(x, ζ)|2dζ + C2
H

∫
R\(−1,1)

|ζ|−2H−1|ζ ˆ̃Gω(x, ζ)|2dζ

⩽ C2
H∥Gω(x, ·)∥2L2(D) +

2

H
|Gω(x, 0)|2 + 2∥TGω(x, ·)∥2L2(R).

(3.12)
Hence, Lemmas 3.2 and 3.3, in conjunction with the definition of Gω(·, 0), lead to

sup
ω∈R

∫
D
E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 dx ⩽ C sup
ω∈R

(
∥Gω∥2L2(D×D) + ∥Gω(·, 0)∥2L2(D) + ∥TGω∥2L2(D×D)

)
⩽ C,

which concludes the proof. □

3.3. The well-posedness. Utilizing the Green function Gω(x, y), the boundary value problem (3.1)
has a unique mild solution in the form

û(x, ω) = −f̂(ω)

∫
D
Gω(x, y)dB

H(y), ω ∈ R, (3.13)

which satisfies the following regularity estimate.

Lemma 3.6. Let p ⩾ 0 and f(t) ∈ Hp (R+). The solution (3.13) of the stochastic differential
equation (3.1) satisfies

E
[∫

R
∥(iω)pû(·, ω)∥2L2(D)dω

]
⩽ C∥f∥2Hp(R+),

where C > 0 is a constant depending only on H.

Proof. By Corollary 3.5, we have

E
[∫

R
∥(iω)pû(·, ω)∥2L2(D)dω

]
=

∫
R
|(iω)pf̂(ω)|2

∫
D
E
∣∣∣∣∫

D
Gω(x, y)dB

H(y)

∣∣∣∣2 dxdω
⩽ C

∫
R
|(iω)pf̂(ω)|2dω

⩽ C

∫
R
(1 + |ω|2)p|f̂(ω)|2dω = C∥f∥2Hp(R+),

which completes the proof. □

Now, we are in a position to show the well-posedness of the original problem (1.1) based on the
equivalent problem (3.1) obtained through the Fourier transform.

Theorem 3.7. Assuming that f ∈ H2(R+), the direct source problem (1.1) has a unique solution
u ∈ L2(Ω;H2(R+;L

2(D))), which satisfies

E ∥u∥2H2(R+;L2(D)) ⩽ C∥f∥2H2(R+), (3.14)

where C > 0 is a constant depending only on H.
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Proof. The proof draws inspiration from [16]. Let {f(t)}t∈R be the zero extension of {f(t)}t∈R+ , as
initially explained in Section 3.1. For any x ∈ D and t ∈ R, with û(x, ω) considered as the mild
solution of (3.1), we define the inverse Fourier transform of û(x, ω) as follows:

ŭ(x, t) := −
∫ t

−∞
f(τ)F−1

[∫
D
Gω(x, y)dB

H(y)

]
(t− τ)dτ.

By Plancherel’s theorem and Lemma 3.6, we obtain ∂tŭ, ∂
2
t ŭ ∈ L2(Ω;L2(D × R)) and

E∥ŭ∥2H2(R;L2(D)) = E
[∫

R
(1 + |ω|2)2∥û(·, ω)∥2L2(D)dω

]
⩽ E

[∫
R
∥û(·, ω)∥2L2(D)dω

]
+ 2E

[∫
R
∥(iω)û(·, ω)∥2L2(D)dω

]
+ E

[∫
R
∥(iω)2û(·, ω)∥2L2(D)dω

]
⩽ C∥f∥2H2(R+),

which also implies that the Caputo fractional derivative of ŭ with respect to the time t is properly
defined.

Let u(x, t) be the restriction of ŭ(x, t) to t belonging to the set of non-negative real numbers, i.e.,

u(x, t) := ŭ(x, t)|t∈R+ .

It can be readily verified that, in a mean square sense, the function u defined as described above is
the unique mild solution of (1.1). It is clear to note that

u(x, 0) = ŭ(x, 0) = 0, ∂tu(x, 0) = ∂tŭ(x, 0) = 0.

In addition, it also satisfies (3.14). □

4. The inverse problem

In this section, our primary focus is on addressing the uniqueness and instability in the recon-
struction of the phaseless Fourier mode |f̂(ω)| of the source function f from the measured data

{u(0, t)}t≥0. To subsequently recover |f(t)| from |f̂(ω)|, commonly referred to as the phase retrieval
problem, we introduce and employ the PhaseLift technique.

Evaluating (3.13) at x = 0 and then taking the expected value and variance on both sides, we
deduce

E[û(0, ω)] = 0, V[û(0, ω)] = R(ω)|f̂(ω)|2, (4.1)

where R(ω) is a critical constant depending on ω and is given by

R(ω) = E
∣∣∣∣∫

D
Gω(0, y)dB

H(y)

∣∣∣∣2 .
Here, for any y ∈ D, we have

Gω(0, y) =


y − 1, ω = 0,

e
√
sy − e

√
s(2−y)

√
s
(
1 + e2

√
s
) , ω ̸= 0.
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4.1. Uniqueness. It is clear to note from (4.1) that |f̂(ω)| can be uniquely determined by

|f̂(ω)| =
(
V[û(0, ω)]

R(ω)

) 1
2

, ω ∈ R (4.2)

if R(ω) > 0. In fact, as stated in the following lemma, the uniqueness mentioned here is established.

Lemma 4.1. For H ∈ (0, 1), it holds for any ω ∈ R that R(ω) > 0.

Proof. We have from Lemma 3.4 that

R(ω) = C2
H

∫
R

| ˆ̃Gω(0, ζ)|2

|ζ|2H−1
dζ ⩾ C2

H

∫ 1

0

| ˆ̃Gω(0, ζ)|2

ζ2H−1
dζ,

where ˆ̃Gω(0, ζ) with ζ ∈ (0, 1) can be calculated as follows.
If ω = 0, it holds∣∣∣ ˆ̃G0(0, ζ)

∣∣∣2 = ∣∣∣∣∫
D
G0(0, y)e

−iζydy

∣∣∣∣2 = ∣∣∣∣∫ 1

0
(y − 1)e−iζydy

∣∣∣∣2
=

∣∣∣∣e−iζ − 1 + iζ

ζ2

∣∣∣∣2 = (cos(ζ)− 1)2 + (sin(ζ)− ζ)2

ζ4
,

which, together with (cos(ζ)−1)2+(sin(ζ)−ζ)2

ζ2H+3 > 0 for any ζ ∈ (0, 1), implies that

R(0) ⩾ C2
H

∫ 1

0

(cos(ζ)− 1)2 + (sin(ζ)− ζ)2

ζ2H+3
dζ > 0.

If ω ̸= 0, it follows from a straightforward calculation that

ˆ̃Gω(0, ζ) =

∫
D
Gω(0, y)e

−iζydy

=
1

√
s
(
1 + e2

√
s
) [e√s−iζ − 1√

s− iζ
+

e
√
s−iζ − e2

√
s

√
s+ iζ

]

=
2
√
se

√
s−iζ −

√
s(e2

√
s + 1) + iζ(e2

√
s − 1)

√
s(1 + e2

√
s)(s+ ζ2)

.

For ω ̸= 0, i.e., s ̸= 0, we assert that | ˆ̃Gω(0, ζ)| ̸≡ 0 for ζ ∈ [0, 1]. In fact, if
√
s ̸= 2nπi with

n ∈ Z \ {0}, then

| ˆ̃Gω(0, 0)| =

∣∣∣∣∣2e
√
s − e2

√
s − 1

s
(
1 + e2

√
s
) ∣∣∣∣∣ =

∣∣∣∣∣ (e
√
s − 1)2

s
(
1 + e2

√
s
)∣∣∣∣∣ > 0.

If
√
s = 2nπi with n ∈ Z \ {0}, then e

√
s = 1 and

| ˆ̃Gω(0, 1)| =
∣∣∣∣ e−i − 1

1− 4n2π2

∣∣∣∣ > 0,

which finishes the assertion. As a result,

R(ω) ⩾ C2
H

∫ 1

0

| ˆ̃Gω(0, ζ)|2

ζ2H−1
dζ > 0

due to the continuity of ˆ̃Gω(0, ·) in [0, 1] for ω ̸= 0. □
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4.2. Instability. While the uniqueness of the reconstruction for |f̂(ω)| is confirmed by (4.2) and
Lemma 4.1, the recovery process is found to be unstable, as demonstrated in the following theorem.
In this subsection, we always assume that |ω| > 1.

Theorem 4.2. For H ∈ [12 , 1), there exists a constant C > 0 independent of ω such that

R(ω) ⩽ C|ω|−αmax

where αmax is defined in Lemma 3.1. For H ∈ (0, 12), assuming additionally that αn < 2, the
following holds:

lim
|ω|→∞

R(ω) = 0.

Proof. For H = 1
2 , we deduce from Lemma 3.2 that

R(ω) = ∥Gω(0, ·)∥2L2(D) ⩽ C|s|−1.

For H ∈ (12 , 1), by utilizing (3.11) and Lemma 3.2, we obtain

R(ω) ⩽
C2
H

1−H
∥Gω(0, ·)∥2L2(D) + 2πC2

H∥Gω(0, ·)∥2L2(D) ⩽ C|s|−1.

Then, the result for the case H ∈ [12 , 1) follows directly from the fact that |s| ⩾ sin
(
παmax

2

)
|ω|αmax ,

as given in Lemma 3.1.
For H ∈ (0, 12), the estimate (3.12) gives

R(ω) ⩽ C2
H∥Gω(0, ·)∥2L2(D) +

2

H
|Gω(0, 0)|2 + 2∥TGω(0, ·)∥2L2(R),

where ∥Gω(0, ·)∥2L2(D) ⩽ C|s|−1,

|Gω(0, 0)|2 =

∣∣∣∣∣ 1− e2
√
s

√
s(1 + e2

√
s)

∣∣∣∣∣
2

⩽ |s|−1,

and

∥TGω(0, ·)∥2L2(R) ⩽ h
(
ℜ[
√
s]
)
⩽ 2

∣∣ℜ[√s]
∣∣−1

, ℜ[
√
s] → ∞

according to (3.6) and (3.8). It then suffices to estimate |ℜ[
√
s]|−1

. Note that∣∣ℜ[√s]
∣∣−1

= |s|−
1
2

∣∣∣∣cos(arg(s)

2

)∣∣∣∣−1

and ∣∣∣∣cos(arg(s)

2

)∣∣∣∣ =
√

cos (arg(s)) + 1

2
,

where

cos(arg(s)) =
ℜ[s]
|s|

=

n∑
k=1

|ω|αk cos
(
παk
2

)
√

n∑
k=1

|ω|2αk + 2
∑

1⩽i<j⩽n
|ω|αi+αj cos

(
παi−παj

2

) → cos
παn

2
, |ω| → ∞.

We then get

R(ω) ⩽ C|s|−1 + C|s|−
1
2

(
cos (arg(s)) + 1

2

)− 1
2

→ 0, |ω| → ∞,

which completes the proof. □
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Theorem 4.2 implies that the reconstruction for |f̂(ω)| using (4.2) is unstable. More precisely, any
small perturbation in the data V[û(0, ω)] will be significantly amplified in the reconstruction when
|ω| is sufficiently large. The degree of ill-posedness follows a polynomial form of |ω|−γ , where

γ =


αmax, H ∈ [

1

2
, 1),

αmax

2
, H ∈ (0,

1

2
).

Furthermore, for H ∈ (0, 12), if αn = 2, which is not covered by Theorem 4.2, the limit behavior of
R(ω) remains uncertain due to the facts that

lim
|ω|→∞

cos(arg(s)) = −1

and thus

lim
|ω|→∞

cos

(
arg(s)

2

)
= 0,

which makes the limit behavior of∣∣ℜ[√s]
∣∣−1

= |s|−
1
2

∣∣∣∣cos(arg(s)

2

)∣∣∣∣−1

unclear as |ω| → ∞.

5. Numerical experiments

This section is dedicated to the numerical solutions of the direct and inverse problems for the
two-term time-fractional stochastic diffusion-wave equation

∂α1
t u(x, t) + ∂α2

t u(x, t)− ∂xxu(x, t) = f(t)ḂH(x), (x, t) ∈ D × (0, T ],
u(x, 0) = 0, x ∈ D,
∂tu(x, 0) = 0, x ∈ D, if α2 ∈ (1, 2),
∂xu(0, t) = 0, u(1, t) = 0, t ∈ [0, T ],

(5.1)

where D = (0, 1), T > 0, and αi ∈ (0, 2) for i = 1, 2 with α1 < α2. To simplify notation, we use the
vector α := [α1, α2].

5.1. The direct problem. To generate synthetic data, we employ the finite difference method
(FDM) presented in [37, Sections 2.3 and 3.1] to discretize the direct problem (5.1). Specifically, we
start by discretizing the temporal and spatial intervals into N and M subintervals with nodes as
follows:

tn = nτ, n = 0, 1, · · · , N, xm = mh, m = 0, 1, · · · ,M,

where τ = T/N and h = 1/M . We also define the increment and the variation of the fractional
Brownian motion BH as

δBH
m := BH(xm+1)−BH(xm), δḂH

m :=
δBH

m

h
.

For 0 < α1 < α2 < 1, the numerical scheme for solving (5.1) reads (cf. [37, Section 2.3]):
δα1
t unm + δα2

t unm − δ2xu
n
m = f(tn)δḂ

H
m ,

u0m = 0,

δxu
n
0 = 0, unM = 0,

where m = 1, . . . ,M − 1, n = 1, . . . , N , unm is an approximation of the exact solution u(xm, tn), and
the difference operators δx, δ

2
x, and δαt are defined as

δxu
n
m : =

unm+1 − unm−1

2h
,
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δ2xu
n
m : =

unm−1 − 2unm + unm+1

h2
,

δαt u
n
m : =

1

ταΓ(2− α)

[
a
(α)
0 unm −

n−1∑
k=1

(
a
(α)
n−k−1 − a

(α)
n−k

)
ukm

]
, 0 < α < 1

with a
(α)
l := (l + 1)1−α − l1−α for l ⩾ 0. To avoid confusion, we mention that δ2x = δ−x δ

+
x is

the combination of the forward and backward difference operators δ+x and δ−x , rather than the
combination δx ◦ δx.

For 0 < α1 < 1 < α2 < 2, the numerical scheme becomes an average on two adjacent levels
(cf. [37, Section 3.1]):

δα1
t unm + δα1

t un−1
m

2
+ δα2

t u
n− 1

2
m − δ2xu

n
m + δ2xu

n−1
m

2
= fn− 1

2
δḂH

m ,

u0m = 0,

δxu
n
0 = 0, unM = 0,

and, for 1 < α1 < α2 < 2, the numerical scheme is
δα1
t u

n− 1
2

m + δα2
t u

n− 1
2

m − δ2xu
n
m + δ2xu

n−1
m

2
= fn− 1

2
δḂH

m ,

u0m = 0,

δxu
n
0 = 0, unM = 0,

where m = 1, . . . ,M − 1, n = 1, . . . , N ,

fn− 1
2
: =

f(tn) + f(tn−1)

2
,

∂α
t u

n− 1
2

m : =
1

ταΓ(3− α)

[
b
(α)
0 (unm − un−1

m )−
n−1∑
k=1

(
b
(α)
n−k−1 − b

(α)
n−k

)
(ukm − uk−1

m )

]
, 1 < α < 2

with b
(α)
l := (l + 1)2−αi − l2−α for l ⩾ 0.

The corresponding compact matrix form of the FDM can be summarized as follows:

β −2 0 . . . 0 0
−1 β −1 . . . 0 0
0 −1 β . . . 0 0
...

. . .
. . .

. . .
...

...
0 · · · 0 −1 β −1
0 · · · 0 0 −1 β





un0
un1
un2
...
...

unM−1


=



wn
0

wn
1

wn
2
...
...

wn
M−1


, (5.2)

where n = 1, . . . , N , the diagonal entry β and wn
m vary depending on the specific cases of αj , with

j = 1, 2.
For 0 < α1 < α2 < 1, the values of β and wn

m are

β = 2 +
h2a

(α1)
0

τα1Γ(2− α1)
+

h2a
(α2)
0

τα2Γ(2− α2)
,

wn
m =

2∑
j=1

n−1∑
k=1

h2

ταjΓ(2− αj)

(
a
(αj)
n−k−1 − a

(αj)
n−k

)
ukm + hf(tn)δB

H
m .

For 0 < α1 < 1 < α2 < 2, the values of β and wn
m are given by

β = 2 +
h2a

(α1)
0

τα1Γ(2− α1)
+

2h2b
(α2)
0

τα2Γ(3− α2)
,
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wn
m =− h2a

(α1)
1

τα1Γ(2− α1)
un−1
m +

n−2∑
k=1

h2

τα1Γ(2− α1)

(
a
(α1)
n−k−2 − a

(α1)
n−k

)
ukm + un−1

m−1 − 2un−1
m + un−1

m+1

+
2h2

τα2Γ(3− α2)

[
b
(α2)
0 un−1

m +

n−1∑
k=1

(
b
(α2)
n−k−1 − b

(α2)
n−k

)(
ukm − uk−1

m

)]
+ 2hfn− 1

2
δBH

m .

For 1 < α1 < α2 < 2, the values are

β = 2 +
2h2b

(α1)
0

τα1Γ(3− α1)
+

2h2b
(α2)
0

τα2Γ(3− α2)
,

wn
m =

2∑
j=1

2h2

ταjΓ(3− αj)

[
b
(αj)
0 un−1

m +
n−1∑
k=1

(
b
(αj)
n−k−1 − b

(αj)
n−k

)(
ukm − uk−1

m

)]
+ un−1

m−1 − 2un−1
m + un−1

m+1 + 2hfn− 1
2
δBH

m .

Based on the schemes described above, we obtain the numerical solution denoted as un0 , which
serves as an approximation of the exact solution u(0, tn). The error estimate between the numerical
solution un0 and the exact solution u(0, tn) can be explored using a procedure analogous to the one
employed in the deterministic case as presented in [37]. However, this error analysis is outside the
scope of the current work and, therefore, is not included here.

To further generate synthetic data based on the numerical solution un0 , we consider the incorpo-
ration of noise. Recognizing that observed data in practical scenarios are often subject to contami-
nation from various sources, we introduce the following noisy data model:

un,ϵ0 = un0 (1 + ϵηn) , n = 0, . . . , N, (5.3)

where ϵ > 0 represents the noise level, and {ηn}n=0,...,N is a sequence of independent random variables
uniformly distributed between −1 and 1. The required data, denoted as

ûnω ,ϵ
0 , nω = 1, · · · , Nω

can be generated by performing a discrete Fourier transform on the noisy data {un,ϵ0 }n=0,··· ,N at spe-

cific discrete frequencies {ωnω}Nω
nω=1. The details of the frequency selection process will be presented

in the following section.

5.2. The inverse problem. In this section, we present the numerical reconstruction of {|f(tn)|}Nn=0

at discrete points {tn}Nn=0. To achieve this, two steps are required. First, the phaseless Fourier modes

|f̂ ϵ(ωnω)|
Nω

nω=1 is obtained from the noisy data {ûnω ,ϵ
0 }Nω

nω=1 using (4.2), combined with a regularization

technique. Second, the numerical approximation of |f(tn)|Nn=0 is reconstructed from {|f̂ ϵ(ωnω)|}Nω
nω=1

using the PhaseLift method.

5.2.1. Spectral cut-off regularization. For the inverse problem, it is shown in Section 4.1 that |f̂(ω)|
can be uniquely determined through (4.2). Nevertheless, the reconstruction is characterized as
unstable, as elaborated in Section 4.2. Consequently, in this context, a spectral cut-off regularization
is employed when computing {|f̂ ϵ(ωnω)|}Nω

nω=1 from the noisy data {ûnω ,ϵ
0 }Nω

nω=1 using the formula

|f̂ ϵ(ωnω)| =
(
V[ûnω ,ϵ

0 ]

R(ωnω)

) 1
2

, nω = 1, · · · , Nω. (5.4)

To address this ill-posed problem more effectively, we opt for ωnω = linspace(0,W, nω), where W is
designated as a regularization parameter. This choice removes high-frequency modes with ω > W
from the noisy data.

Note that the second moment of the stochastic integral R(ω) involved in (4.2) is independent of
the data and can be computed in advance. Figure 5.2.1 presents its values concerning ω for different
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values of H = 0.3, 0.5, 0.7. The graph illustrates that for a fixed H (resp. α), the value of R(ω)
decreases more rapidly when αi (resp. H) is larger. It is evident that the choice of the regularization
parameter W plays an essential role in the reconstruction, and its selection will be detailed in the
subsequent numerical examples.
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Figure 5.2.1. The values ofR(ω) for (top)H = 0.3, (middle)H = 0.5, and (bottom)
H = 0.7 with different α.

5.2.2. PhaseLift algorithm. Based on the phaseless Fourier modes {|f̂ ϵ(ωnω)|}Nω
nω=1 obtained earlier,

our next objective is to obtain the approximation {|f ϵ(tn)|}Nn=0 of {|f(tn)|}Nn=0 from {|f̂ ϵ(ωnω)|}Nω
nω=1.

This problem, which involves reconstructing the signal at discrete points from the magnitude of its
discrete Fourier transform, is known as the discrete phase retrieval problem [17,32].

The phase retrieval problem is evidently ill-posed and notoriously challenging to solve. In recent
years, many researchers have demonstrated that it can be reformulated as an optimization problem.
Consequently, several algorithms have been proposed to address this problem, including PhaseLift [5],
PhaseCut [38], and PhaseMax [15].

The PhaseLift algorithm is employed to address our discrete phase retrieval problem, which com-
prises two primary components: multiple structured illumination and lifting. Multiple structured
illumination is designed to obtain additional measurements by utilizing masks, optical gratings, or
oblique illuminations artificially. Lifting is intended to reformulate the problem as a semidefinite
programming problem.

We employ masks {Mi}i=1,··· ,Nm to implement the multiple structured illumination. Each mask,

denoted as Mi ∈ RN×N for i = 1, · · · , Nm, is a diagonal matrix. Specifically, the first mask, M1 = I,
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is chosen as the identity matrix. The entries of the other masks are randomly set to 0 or 1 to create
random diffraction patterns. By substituting the discrete source function

f := (f(t0), · · · , f(tN ))⊤

with sources using the masks, i.e.,

if := Mif , i = 1, · · · , Nm

in the numerical scheme (5.2), we obtain additional discrete solutions {iun0}
i=1,··· ,Nm

n=0,··· ,N and thus more

noisy data {iûnω ,ϵ
0 }i=1,··· ,Nm

nω=1,··· ,Nω
in the frequency domain. These can be utilized to derive more phaseless

Fourier modes {|if̂ ϵ(ωnω)|}
i=1,··· ,Nm

nω=1,··· ,Nω
. This procedure can be summarized as follows:

if
(5.2)−−−−−−→
FDM

iun0
(5.3)−−−−−−−−→

noisy solution

iun,ϵ0
discrete Fourier−−−−−−−−−−−−→

transform

iûnω ,ϵ
0

(5.4)−−−−−−−−−→
Spectral cutoff

|if̂ ϵ(ωnω)| .

We refer to [5,16] for further details on the implementation of the PhaseLift method. Additionally,
we suggest consulting [6] for access to the specific code used in the PhaseLift algorithm.

5.2.3. Numerical examples. In this subsection, we present three illustrative examples to demonstrate
the effectiveness of the numerical approach. In all these numerical examples, the values for the final
time T , as well as the numbers of subintervals in time N and space M , are set as follows:

T = 4π, N = 100, M = 128.

Furthermore, to approximate the variance of the solution in (5.4), we take a total of P sample paths.
The specific choice for the parameter P will be detailed in each individual numerical example.

Example 1. Consider a smooth function f(t) = sin(t) exp(−t/6).

In Example 1, multiple tests are conducted to illustrate the impact of various parameters on the
numerical implementation. These parameters include the regularization parameter W , the quantity
of masks Nm, the number of sample paths P , the Hurst parameter H, the order α of the fractional
derivative, and the noise level ϵ.
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Figure 5.2.2. Example 1: Reconstruction of |f(t)| with varying values of W = 0.5π,
π, 2π, 3π, 5π, 10π, while keeping other parameters fixed (H = 0.5, α = [0.3, 1.5], P =
1000, Nm = 60, ϵ = 5%).
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Figure 5.2.2 presents the numerical results for the reconstruction of |f(t)| in Example 1, utilizing
different spectral cut-off regularization parameters, specifically W = 0.5π, π, 2π, 3π, 5π, 10π. The
remaining parameters are held constant: H = 0.5, α = [0.3, 1.5], P = 1000, Nm = 60, and ϵ = 5. The
results demonstrate that the reconstruction quality is not satisfactory when W is excessively small,
indicating insufficient information acquisition in the frequency domain, or when it is excessively
large, leading to instability in the inverse problem. Consequently, it is crucial to select appropriate
regularization parameters, tailored to the specific case at hand. To guide this selection, we refer to
the values of R(ω) in relation to ω, as illustrated in Figure 5.2.1. In forthcoming numerical tests,
we adopt W = 10π for cases with α = [0.2, 0.3] and select W = 3π for those with α = [0.3, 1.5] or
[1.1, 1.5].
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Figure 5.2.3. Example 1: Reconstruction of |f(t)| with varying values of Nm = 10 :
10 : 60, while keeping other parameters fixed (H = 0.5, α = [0.3, 1.5], P = 1000,
W = 3π, ϵ = 5%).

In Figure 5.2.3, we investigate the impact of varying the number of masks, denoted as Nm, in
Example 1, while maintaining constant values for W = 3π, H = 0.5, α = [0.3, 1.5], P = 1000,
and ϵ = 5. The findings illustrate the necessity of employing a sufficient number of masks to
ensure the acquisition of an adequate quantity of diffraction patterns, thereby enabling an accurate
reconstruction. Based on the numerical results depicted in Figure 5.2.3, for subsequent numerical
tests, we always choose Nm = 60.

Figure 5.2.4 displays the numerical results of the reconstruction of |f(t)| in Example 1 under
different sample path quantities, denoted as P = 10, 100, 1000, while maintaining fixed values for
H = 0.5, α = [0.3, 1.5], W = 3π, Nm = 3π, and ϵ = 5. The observations indicate that the quality of
reconstruction improves as more sample paths are employed to approximate the solution’s variance,
aligning with the principles of the law of large numbers. Notably, the numerical results suggest that
a satisfactory level of reconstruction is already achieved with the choice of P = 1000. Consequently,
we use P = 1000 as the fixed sample path quantity in subsequent experiments.

Figures 5.2.5–5.2.7 depict the influence of parameters H = 0.3, 0.5, 0.7, α = [0.2, 0.3], [0.3, 1.5],
[1.1, 1.5], and ϵ = 1%, 5%, 10%, while keeping W , Nm, and P fixed, as previously specified. Upon
examination of the subfigures within each row, it becomes evident that, for fixed values of H and
α, the results exhibit relatively higher quality when the noise level, ϵ, is reduced. Likewise, within
each column of these figures, when both H and ϵ are held constant, decreasing the value of α leads
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Figure 5.2.4. Example 1: Reconstruction of |f(t)| with varying values of P =
10, 100, 1000, while keeping other parameters fixed (H = 0.5, α = [0.3, 1.5], W = 3π,
Nm = 3π, ϵ = 5%).
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Figure 5.2.5. Example 1: Reconstruction of |f(t)| with different levels of noise:
(left) ϵ = 1%, (middle) ϵ = 5%, and (right) ϵ = 10%, while varying the values of α
under the constant Hurst parameter H = 0.3.

to improved results. These trends align with the prior theoretical analysis. Furthermore, through a
comparative assessment of the results at corresponding positions in Figures 5.2.5–5.2.7, it appears
that the outcomes are less sensitive to variations in the Hurst index H when compared to alterations
in other parameters.

Example 2. Consider a highly oscillatory function f(t) = sin(t) cos(2t).

In this example, we will not provide a detailed investigation of the impact of various parameters
on the reconstruction, as the findings are similar to those in Example 1. Instead, we present the
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Figure 5.2.6. Example 1: Reconstruction of |f(t)| with different levels of noise:
(left) ϵ = 1%, (middle) ϵ = 5%, and (right) ϵ = 10%, while varying the values α
under the constant Hurst parameter H = 0.5.

results using carefully chosen representative parameter values. Figure 5.2.8 shows the numerical
results for Example 2 across varying selections of H and α while maintaining a constant noise level
of ϵ = 5%. The remaining parameters, namelyW , Nm, and P , remain fixed as detailed in Example 1.
The results demonstrate the effectiveness of the proposed algorithm in handling a highly oscillating
source function.

Example 3. Consider a discontinuous function

f(t) =



0, t ∈ [0, 4π/5),

2, t ∈ [4π/5, 8π/5),

0.5, t ∈ [8π/5, 12π/5),

1.5, t ∈ [12π/5, 16π/5),

0, t ∈ [16π/5, 4π).

This example was also examined in the study conducted by [16], and it is challenging to reconstruct
due to the presence of infinitely many Fourier modes, with the corresponding Fourier coefficients
decaying slowly. Once again, we will not provide an exhaustive investigation into the influence of var-
ious parameters on the reconstruction. In Figure 5.2.9, numerical results showing the reconstruction
of |f(t)| in Example 3 are presented. The parameters used for this representation include H = 0.7,
α = [1.1, 1.5], W = 3π, Nm = 60, P = 1000, and varying noise levels ϵ = 1%, 5%, 10%. Despite the
emergence of the Gibbs phenomenon, a common occurrence when recovering discontinuous functions
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Figure 5.2.7. Example 1: Reconstruction of |f(t)| with different levels of noise:
(left) ϵ = 1%, (middle) ϵ = 5%, and (right) ϵ = 10%, while varying the values α
under the constant Hurst parameter H = 0.7.
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Figure 5.2.8. Example 2: Reconstruction of |f(t)| with different combinations:
(left) H = 0.3 and α = [0.2, 0.3], (middle) H = 0.5 and α = [0.3, 0.5], and (right)
H = 0.7 and α = [1.1, 1.5], while maintaining a consistent noise level of ϵ = 5%.

through Fourier transform based methods, the proposed algorithm demonstrates strong performance
in handling the discontinuous case.

6. Conclusion

This paper addresses both the direct and inverse source problems associated with the stochastic
multi-term time-fractional diffusion-wave equation. Regarding the direct random source problem, the
well-posedness is obtained by demonstrating the well-posedness of its counterpart in the frequency
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Figure 5.2.9. Example 3: Reconstruction of |f(t)| with different combinations:
(left) ϵ = 1%, (middle) ϵ = 5%, and (right) ϵ = 10%, under the constant Hurst
parameter H = 0.7 and α = [1.1, 1.5].

domain. Furthermore, an analysis is conducted concerning the uniqueness and instability of the
inverse random source problem in the frequency domain. To reconstruct the source function in the
time domain, the PhaseLift method, combined with the spectral cut-off regularization technique,
is utilized for numerical implementation. The numerical results validate the effectiveness of the
proposed method.

This work expands upon existing results related to inverse random source problems for stochastic
time-fractional differential equations, addressing more general cases. Specifically, it contains (1) both
sub-diffusion cases with αi ∈ (0, 1) and super-diffusion cases with αi ∈ (1, 2), and (2) spatial random
noise, which can be represented by fractional Brownian motion noise with H ∈ (0, 1) as opposed to
the traditional Gaussian white noise with H = 1

2 . Several challenges remain unresolved, including
inverse random source problems in higher dimensions and inverse random potential problems for
time-dependent stochastic partial differential equations, among others. We anticipate providing
updates on our progress in addressing these challenges in future publications.
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