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Abstract. This paper presents a robust numerical solution to the electromagnetic scattering prob-
lem involving multiple multi-layered cavities in both transverse magnetic and electric polarizations.
A transparent boundary condition is introduced at the open aperture of the cavity to transform
the problem from an unbounded domain into that of bounded cavities. By employing Fourier series
expansion of the solution, we reduce the original boundary value problem to a two-point boundary
value problem, represented as an ordinary differential equation for the Fourier coefficients. The an-
alytical derivation of the connection formula for the solution enables us to construct a small-scale
system that includes solely the Fourier coefficients on the aperture, streamlining the solving pro-
cess. Furthermore, we propose accurate numerical quadrature formulas designed to efficiently handle
the weakly singular integrals that arise in the transparent boundary conditions. To demonstrate the
effectiveness and versatility of our proposed method, a series of numerical experiments are conducted.

1. Introduction

Electromagnetic cavity scattering problems find significant applications in various fields. For in-
stance, in radar and remote sensing, a comprehensive understanding of cavity scattering is crucial
for radar systems utilized in target detection, identification, and tracking [4]. In wireless commu-
nication systems, cavities can arise from surrounding structures or obstacles, and analyzing cavity
scattering aids in predicting signal propagation, interference, and overall system performance [17].
Furthermore, cavity scattering plays a significant role in the behavior of metamaterials and photonic
devices, influencing their unique electromagnetic properties and guiding applications in areas like su-
perlensing, cloaking, and wave manipulation [14,26]. Rigorous analysis and accurate computation of
cavity scattering are vital for technological progress and effectively addressing real-world challenges.

The crucial industrial and military applications of cavity scattering problems have made them
a focal point of interest for both engineering and mathematical communities. In the engineering
community, researchers have initiated the investigation of electromagnetic scattering by cavities
filled with penetrable materials [15, 24]. The well-posedness of cavity scattering problems has been
rigorously analyzed using integral equation methods or variational approaches, with detailed studies
available in [1, 2, 21, 27]. For rectangular shaped cavity scattering, a refined stability estimate with
an explicit wavenumber dependence has been derived [6,7]. Lately, the exploration of subwavelength
enhancement has emerged as an important theme in mathematical research [22,23]. In [3,8,14], the
field enhancement is explored for both single and double rectangle cavities under various boundary
conditions. These studies aim to provide a more profound mathematical understanding of the
subwavelength enhancement phenomenon. We refer to [20] for a survey of recent developments in
mathematical modeling and analysis of cavity scattering problems.

Numerical methods have been extensively studied for the solution of electromagnetic cavity scat-
tering problems. Since the problem is formulated in an unbounded domain, it is essential to employ
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an appropriate artificial boundary condition to reformulate it into a bounded domain. Several ap-
proaches for introducing artificial boundary conditions include using the Green’s function method
on the aperture [13, 19], employing a perfectly matched layer in the exterior of the cavity [11], ap-
plying the Fourier transform on the ground [2], constructing transparent boundary conditions by
utilizing the Fourier series expansion on the semi-circle over the cavity [31], or adopting the method
of boundary integral equations [18]. In [5, 28,29], numerical quadrature formulas were developed to
discretize the hypersingular integrals in the method of Green’s function. The wave field inside the
cavity was approximated using a second-order finite difference scheme. The approach was further
extended to a fourth-order scheme in [32]. In [11] and [31], an adaptive finite element method was
developed, combining perfectly matched layer and transparent boundary conditions to handle the
possible singularity of the solution, respectively. For problems involving scattering by multiple cav-
ities, the Gauss–Seidel technique or a preconditioned iterative method was employed to accelerate
computation [12, 21, 30, 33]. Notably, in the methods mentioned above, the model equation is dis-
cretized within the entire cavity. When the cavity possesses a rectangular shape, the field inside
can be approximated using its Fourier series expansion, which reduces the scattering problem to
one-dimensional ordinary differential equations for the Fourier coefficients. In [9], these ordinary
differential equations are discretized using a second-order finite difference scheme. The Fourier co-
efficients inside the cavity are expressed in terms of the Fourier coefficients on the aperture through
Gaussian elimination. Finally, a linear system on the aperture is obtained by applying a finite dif-
ference scheme, which provides an effective approach to solve the scattering problem for rectangular
cavities.

This paper presents a highly efficient and accurate numerical method for solving the electromag-
netic scattering problem involving multiple multi-layered rectangular cavities. We assume that these
cavities are embedded in the ground, with their apertures aligned with the ground, and their interiors
filled possibly with multiple layered media. To tackle this problem, we follow the approach presented
in [9], where the field inside the cavity is expanded using its Fourier series, and the Helmholtz equa-
tion is reduced to ordinary differential equations. By studying the equations and the transmission
conditions across each layered medium, we establish a connection formula that links the Fourier
coefficients of the solution in each layer to the Fourier coefficients of the solution on the aperture.
This connection formula, along with the transparent boundary condition on the aperture, leads to
a small N -by-N linear system, where N represents the Fourier truncation number. To efficiently
generate the linear system, we design an alternative transparent boundary condition, which only
involves weakly singular integrals. However, due to the singularity of the Hankel function, direct
application of high-order quadrature formulas is not feasible. To address this issue, we utilize the
power series of Bessel functions to deduce a recursive formula, enhancing the regularity of the in-
tegrand function. This enables us to adopt high-order Gaussian quadratures. Once the system is
solved, the field inside the cavity can be obtained immediately using the connection formula.

The proposed method offers the advantage of significantly reducing memory and computational
costs. As we only need to solve the system on the aperture and store the connection formula of
the Fourier coefficients, the required computational resources are dramatically reduced. A series of
numerical experiments is conducted to demonstrate the efficiency and versatility of our proposed
method. It proves to be efficient and accurate in handling the cavity scattering problem in both
transverse magnetic (TM) and transverse electric (TE) polarizations.

The structure of this paper is as follows. Section 2 focuses on the model formulation, wherein the
two fundamental polarizations are introduced. In Sections 3 and 4, we derive the connection formula
for scattering in TM and TE polarization, respectively. This includes scenarios with a single empty
cavity, a single multi-layered cavity, and multiple cavities filled with multi-layered media. Section
5 is dedicated to deriving an alternative artificial boundary condition and proposing quadrature
formulas for the involved weakly singular integrals. In Section 6, we provide numerical examples to
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demonstrate the features of the proposed method. The paper concludes with overall reflections and
avenues for future research in Section 7.

2. Problem formulation

We examine the electromagnetic scattering by rectangular cavities situated within an unbounded
ground plane. Given the time dependence of the electromagnetic field as e−iωt, with ω > 0 denoting
the angular frequency, the wave propagation obeys the time-harmonic Maxwell’s equations:

∇×E = iωµH, ∇×H = −iωϵE + σE, (2.1)

where E and H represent the electric field and the magnetic field, respectively, µ is the magnetic
permeability, ϵ denotes the electric permittivity, and σ stands for the electrical conductivity. We
assume that the medium is non-magnetic, implying a constant magnetic permeability µ throughout.
However, the electric permittivity ϵ and electrical conductivity σ are allowed to vary as spatial
functions.

In this work, we focus on the electromagnetic scattering problem in TM and TE polarizations. Let
Ω ⊂ R2 represent the cross-section of the z-invariant cavity. Its boundary is denoted by ∂Ω = Γc∪Γg,
where Γc represents the boundary of the cavity, including the vertical walls and the horizontal
bottom, while Γg denotes the infinite ground plane. The aperture of the cavity, aligned with Γg,
is denoted by Γ. The cavity may be filled vertically with a layered inhomogeneous medium. The
problem geometry is illustrated in Figure 1.

Γg

Γ Γ Γ

Γc

Γc

Figure 1. Geometry of multiple multi-layered rectangular cavities.

In TM polarization, the incident and total electric fields are perpendicular to the magnetic field
and take the form Ei = (0, 0, ui),E = (0, 0, u). It can be verified from (2.1) that u satisfies the
two-dimensional Helmholtz equation

∆u+ κ2u = 0 in R2
+ ∪ Ω, (2.2)

where the wavenumber κ = (ω2ϵµ + iωµσ)1/2 with ℑκ ≥ 0. For TE polarization, the magnetic
field can be represented as H = (0, 0, u). Similarly, we can show from (2.1) that u satisfies the
two-dimensional generalized Helmholtz equation

∇ · (κ−2∇u) + u = 0 in R2
+ ∪ Ω. (2.3)

By considering that both the ground plane and the cavity boundary exhibit perfect electric con-
ductivity (PEC), we have

ν ×E = 0 on Γg ∪ Γc, (2.4)

where ν denotes the unit normal vector to the surfaces Γg and Γc. Under TM polarization, the
boundary condition (2.4) simplifies to

u = 0 on Γg ∪ Γc. (2.5)
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In TE polarization, the boundary condition (2.4) is equivalent to

∂νu = 0 on Γg ∪ Γc. (2.6)

When the medium in the upper half space is homogeneous and isotropic, it can be characterized by
a constant wavenumber denoted as κ0. Let the cavity be illuminated from above by a time-harmonic
plane wave

ui(x, y) = ei(αx−βy), α = κ0 sin θ, β = κ0 cos θ,

where θ ∈ (−π/2, π/2) is the incident angle. The scattered field us in TM polarization can be
described as us = u − ui + ur, and in TE polarization, it is given by us = u − ui − ur, where
ur = ei(αx+βy) is referred to as the reflection field. In both cases, the scattered field satisfies the
Sommerfeld radiation condition:

lim
r→∞

√
r (∂ru

s − iκ0u
s) = 0, r =

√
x2 + y2. (2.7)

Based on (2.7), the transparent boundary conditions (TBC) can be formulated on the aperture
[32]. In TM polarization, the TBC can be expressed as

∂yu = ITM(u) + f, f = −2iβeiαx, (2.8)

where ITM represents the Dirichlet-to-Neumann (DtN) operator, while the associated hypersingular
integral is defined in the sense of the Hadamard finite-part, and its expression is given by

ITM(u)(x) =
iκ0
2

∫
Γ

1

|x− x′|
H

(1)
1 (κ0|x− x′|)u(x′, 0)dx′. (2.9)

Here, H
(1)
1 represents the Hankel function of the first kind with order one. In TE polarization, the

TBC is described by
u = ITE(u) + g, g = 2eiαx, (2.10)

where the Neumann-to-Dirichlet (NtD) operator ITE involves a weakly singular integral and is defined
by

ITE(u)(x) = − i

2

∫
Γ
H

(1)
0

(
κ0|x− x′|

)
∂y′u(x

′, 0)dx′. (2.11)

Here, H
(1)
0 is the Hankel function of the first kind with order zero.

It is important to note that the quantities u and ∂yu appearing in (2.8) and (2.10) are to be
interpreted as being evaluated from the upper side of Γ, indicated more precisely as u(x, 0+) and
∂yu(x, 0

+), respectively.

3. TM polarization

In this section, we focus on the boundary value problem (2.2), (2.5), (2.8) in TM polarization.
To present our findings clearly, we start by considering the scattering phenomena from a single
empty cavity. Subsequently, we extend our investigation to the case of a single multi-layered cavity.
Finally, we explore the general scenario of multiple cavities, with each cavity being filled possibly
with a multi-layered medium.

3.1. A single empty cavity. Assuming that the empty cavity is filled with a homogeneous medium
characterized by the wavenumber κ = κ0. Let Γ = [a, b] × {0} denote the aperture of the cavity,
where a and b are the coordinates along the x-axis, and the width and depth of the cavity are
represented by w = b− a and h, respectively.

Because of the boundary condition (2.5), the total field inside the cavity can be approximated
using sine functions, i.e., it admits the Fourier series expansion

u(x, y) =

N∑
n=1

u(n)(y) sin
nπ(x− a)

w
, (3.1)
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where N is a positive integer that controls the accuracy of the numerical solution. Substituting (3.1)
into (2.2), we obtain the second order ordinary differential equations for the Fourier coefficients

u(n)
′′
(y) + β2

nu
(n)(y) = 0, y ∈ (−h, 0),

where βn =
(
κ2 −

(
nπ
w

)2 )1/2
,ℑβn ≥ 0 for n = 1, . . . , N.

Let u(n), n = 1, . . . , N , be the Fourier coefficients of the solution on Γ. Since u vanishes on the
bottom of the cavity, we have from (3.1) that u(n)(−h) = 0, n = 1, . . . , N . Therefore, the n-th order
Fourier coefficient satisfies a two-point boundary value problem{

u(n)
′′
(y) + β2

nu
(n)(y) = 0, −h < y < 0,

u(n)(0) = u(n), u(n)(−h) = 0.
(3.2)

A straightforward calculation shows that the solution to (3.2) is given by

u(n)(y) =


1

1− e2iβnh

(
e−iβny − e2iβnheiβny

)
u(n) if βn ̸= 0,(

1 +
1

h
y
)
u(n) if βn = 0.

(3.3)

Let n0 denote the term that could lead to βn = 0. Combining (3.1) and (3.3) yields that the
expression for u(x, y) is given as follows:

u(x, y) =
N∑

n=1,n̸=n0

1

1− e2iβnh

(
e−iβny − e2iβnheiβny

)
sin

nπ(x− a)

w
u(n)

+
(
1 +

1

h
y
)
sin

n0π(x− a)

w
u(n0). (3.4)

Taking the normal derivative of (3.4) from the lower side of Γ, we obtain

∂yu(x, 0
−) =

N∑
n=1

s(n)u(n) sin
nπ(x− a)

w
, (3.5)

where s(n0) = 1/h and s(n) = −iβn(1 + e2iβnh)/(1 − e2iβnh) for n ̸= n0. Using the transmission
conditions on Γ: u(x, 0+) = u(x, 0−), ∂yu(x, 0

+) = ∂yu(x, 0
−), and substituting (3.5) into the TBC

(2.8) leads to

N∑
n=1

s(n)u(n) sin
nπ(x− a)

w
=

N∑
n=1

u(n)ITM

(
sin

nπ(x− a)

w

)
+ f. (3.6)

Multiplying both sides of (3.6) by sin mπ(x−a)
w , where m = 1, ..., N , and integrating over Γ, we

obtain
DTMU = MTMU + F, (3.7)

where U = [u(1), u(2), . . . , u(N)]⊤, the m-th entry of the vector F is defined by

F (m) = −2iβ

∫ w

0
eiα(x+a) sin

mπx

w
dx,

DTM is a diagonal matrix with its diagonal entries DTM(m,m) = ws(m)/2, and the elements of the
matrix MTM, with dimensions N ×N , are expressed as

MTM(m,n) =

∫
Γ
sin

mπ(x− a)

w
ITM

(
sin

nπ(x′ − a)

w

)
dx. (3.8)

Once the linear system (3.7) is solved, the solution inside the cavity can be explicitly computed
using the expansion (3.4). However, the matrix entries (3.8) contain hypersingular integrals, which
make it challenging to devise a high-order quadrature. In Section 5, we will reformulate (2.8) to
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an alternative form that incorporates weakly singular integrals. Additionally, we will introduce
high-order quadrature formulas to effectively tackle this concern.

3.2. A single multi-layered cavity. Consider a cavity situated at [a, b] and filled with an L-
layered inhomogeneous medium, where L ≥ 2 is an integer. Let w = b− a and h be the width and
depth of the cavity, respetively. Denote the sequence of values −h = yL < yL−1 < · · · < y1 < y0 = 0.
Consider the interfaces between different media represented by Γl = [a, b]×{yl}, where l = 1, ..., L−1.
The aperture and bottom of the cavity are denoted by Γ0 and ΓL, respectively. For each l = 1, ..., L,
let Ωl be the region between Γl−1 and Γl. It is assumed that the medium in each layer is homogeneous
and characterized by a constant wavenumber κl.

Let ul(x, y) denote the total field within the l-th layer, which satisfies

∆ul(x, y) + κ2l ul(x, y) = 0 in Ωl, (3.9)

along with the transmission conditions on the interface Γl:

ul(x, yl) = ul+1(x, yl), ∂yul(x, yl) = ∂yul+1(x, yl). (3.10)

The solution of (3.9) can be approximated by

ul(x, y) =

N∑
n=1

u
(n)
l (y) sin

nπ(x− a)

w
. (3.11)

Consider u
(n)
l , n = 1, . . . , N , for l = 0, 1, . . . , L, as the Fourier coefficients of the solution on Γl.

Note from (2.5) that u
(n)
L = 0, n = 1, . . . , N . For l = 1, . . . , L, substituting (3.11) into (3.9) reveals

that the Fourier coefficients satisfyu
(n)′′

l (y) +
(
β
(n)
l

)2
u
(n)
l (y) = 0, yl < y < yl−1,

u
(n)
l (yl) = u

(n)
l , u

(n)
l (yl−1) = u

(n)
l−1,

(3.12)

where β
(n)
l =

(
κ2l −

(
nπ
w

)2 )1/2
with ℑβ(n)

l ≥ 0.
A straightforward computation shows that the solution of (3.12) is given by

u
(n)
l (y) =



1

ζl

[(
eiβ

(n)
l (y−yl−1) − e−iβ

(n)
l (y−yl−1)

)
u
(n)
l

−
(
eiβ

(n)
l (y−yl) − e−iβ

(n)
l (y−yl)

)
u
(n)
l−1

]
if β

(n)
l ̸= 0,

1

hl

[(
u
(n)
l − u

(n)
l−1

)
y + u

(n)
l−1yl − u

(n)
l yl−1

]
if β

(n)
l = 0,

(3.13)

where hl = yl − yl−1, ζl = eiβ
(n)
l hl − e−iβ

(n)
l hl .

Taking the derivatives of (3.13) from the upper and lower sides of Γl, and using (3.10)–(3.11),
we deduce a symmetric tri-diagonal linear system for cases where L ≥ 3, which is referred to as the
connection formula and is presented as

D
(n)
TMu(n) = b

(n)
TM, (3.14)

where u(n) = [u
(n)
1 , u

(n)
2 , . . . , u

(n)
L−1]

⊤, b
(n)
TM = [−a

(n)
1 u

(n)
0 , 0, · · · , 0]⊤, and the diagonal and sub-diagonal

entries of the matrix D
(n)
TM are given by

D
(n)
TM(l, l) = b

(n)
l + b

(n)
l+1, D

(n)
TM(l, l + 1) = a

(n)
l+1.
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Here

a
(n)
l =


− 1

hl
if β

(n)
l = 0,

− 2
iβ

(n)
l

ζl
if β

(n)
l ̸= 0,

(3.15)

b
(n)
l =


1

hl
if β

(n)
l = 0,

iβ
(n)
l

ζl

(
eiβ

(n)
l hl + e−iβ

(n)
l hl

)
if β

(n)
l ̸= 0.

(3.16)

When L = 2, the connection formula (3.14) is simply reduced to(
b
(n)
1 + b

(n)
2

)
u
(n)
1 = −a

(n)
1 u

(n)
0 . (3.17)

By solving (3.14) or (3.17), we can retrieve the Fourier coefficients of the solution on the interfaces

u(n) in terms of the Fourier coefficients of the solution on the aperture u
(n)
0 . Since u

(n)
0 is unknown,

in practice, we can first solve (3.14) or (3.17) with the right-hand side b̂
(n)

= [1, 0, .., 0]⊤, and denote

the corresponding solution as û(n) = [û
(n)
1 , û

(n)
2 , . . . , û

(n)
L−1]

⊤. Then, the solution u(n) can be obtained

by multiplying the factor −a
(n)
1 u

(n)
0 to û(n).

Next, we discuss the approach to determining u
(n)
0 , n = 1, . . . , N . For the case when l = 1, we

take the normal derivative of (3.11) on Γ from below, leading to

∂yu1(x, 0
−) =

N∑
n=1

ŝ(n)u
(n)
0 sin

nπ(x− a)

w
, (3.18)

where ŝ(n) = −b
(n)
1 + (a

(n)
1 )2û

(n)
1 . We mention that the normal derivative can also be described in

the form of (3.18) with ŝ(n) = −b
(n)
1 for the case where L = 1.

Utilizing the transmission conditions on Γ: u(x, 0+) = u1(x, 0
−), ∂yu(x, 0

+) = ∂yu1(x, 0
−), and

replacing (3.5) with (3.18) and following the same discussion as that in Subsection 3.1, we arrive at
an analogous formulation of the system depicted in (3.7): DTMU = MTMU + F , except that the

diagonal matrix DTM is now defined as DTM(m,m) = wŝ(m)/2,m = 1, . . . , N.. After the system is
solved, the solution in each layer can be computed explicitly by (3.11).

3.3. Multiple multi-layered cavities. Assume that the ground contains a total of K cavities, and
we denote the aperture of the k-th cavity as Γk = [ak, bk]×{0}, with a width of wk = bk−ak. Inside
the k-th cavity, it is filled with an inhomogeneous medium consisting of Lk layers. The interfaces
between different layers are denoted by Γk,l = [ak, bk]×

{
ykl
}
, where l = 1, .., Lk − 1. The aperture

and the bottom of the k-th cavity are denoted by Γk,0 and Γk,Lk
, respectively. In the l-th layer

of the k-th cavity, we assume that the medium is homogeneous and characterized by a constant
wavenumber κk,l.

Denote by u(x, y; k) the total field restricted in the k-th cavity. The DtN operator (2.9) can be
written as

ITM(u)(x) =
iκ0
2

K∑
k=1

∫
Γk

1

|x− x′|
H

(1)
1 (κ0|x− x′|)u(x′, 0; k)dx′.

The solution in the l-th layer of the k-th cavity can be approximated by

ul(x, y; k) =

N∑
n=1

u
(n)
l (y; k) sin

nπ(x− ak)

wk
, y ∈ (ykl , y

k
l−1). (3.19)
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It can be verified that the Fourier coefficients of (3.19) satisfy the same system as (3.12), and the
solution is given by

u
(n)
l (y; k) =



1

ζkl

[(
eiβ

(n)
l,k (y−ykl−1) − e−iβ

(n)
l,k (y−ykl−1)

)
u
(n)
l,k

−
(
eiβ

(n)
l,k (y−ykl ) − e−iβ

(n)
l,k (y−ykl )

)
u
(n)
l−1,k

]
if β

(n)
l,k ̸= 0,

1

hkl

[(
u
(n)
l,k − u

(n)
l−1,k

)
y + ykl u

(n)
l−1,k − ykl−1u

(n)
l,k

]
if β

(n)
l,k = 0,

(3.20)

where u
(n)
l,k , n = 1, . . . , N, l = 0, 1, . . . , L, k = 1, . . . ,K are the Fourier coefficients of the solution on

Γk,l, h
k
l = ykl − ykl−1, ζ

k
l = eiβ

(n)
l,k hk

l − e−iβ
(n)
l,k hk

l , and β
(n)
l,k =

(
κ2k,l −

(
nπ
wk

)2)1/2
,ℑβ(n)

l,k ≥ 0.

Continuing in a manner analogous to the discourse presented in Subsection 3.2, we can deduce
an equivalent connection formula, similar to the one provided in (3.14), with the inclusion of an
additional subscript k. For l = 1, the normal derivative of (3.19) on the aperture of the k-th cavity
is given by

∂yu1(x, 0
−; k) =

N∑
n=1

s
(n)
k u

(n)
0,k sin

nπ(x− ak)

wk
, (3.21)

where s
(n)
k = −b

(n)
1,k + (a

(n)
1,k)

2û
(n)
1,k , with the coefficients a

(n)
l,k and b

(n)
l,k defined in (3.15)–(3.16), with an

additional subscript k. When Lk = 1, the coefficient is s
(n)
k = −b

(n)
1,k .

Likewise, using the transmission conditions: u(x, 0+) = u1(x, 0
−; k), ∂yu(x, 0

+) = ∂yu1(x, 0
−; k), x ∈

(ak, bk), upon substituting (3.5) with (3.21), and proceeding with a comparable discussion as pre-
sented in Subsection 3.1, we can deduce the linear system governing the Fourier coefficients of the
solution on the apertures:

DTMU = MTMU+ F, (3.22)

where

U =


U1

U2
...

UK

 , F =


F1

F2
...

FK

 , DTM =


D

(1)
TM 0 · · · 0

0 D
(2)
TM · · · 0

...
...

. . .
...

0 0 · · · D
(K)
TM


with Uk = [u

(1)
0,k, u

(2)
0,k, . . . , u

(N)
0,k ]⊤, D

(k)
TM = wk

2 diag(s
(1)
k , . . . , s

(N)
k ), the elements of the k-th block of

the vector F being given by

Fk(m) = −2iβ

∫ wk

0
eiα(x+ak) sin

mπx

wk
dx,

and the elements within the block matrix MTM consist of hypersingular integrals, which will be
transformed into forms involving weakly singular integrals. An examination of this transformation
process will be presented in Section 5.

Once the system (3.22) is solved, the Fourier coefficients on the inner interfaces of the k-th cavity
can be obtained through the connection formula. The total field in the l-th layer of the k-th cavity
can be computed using (3.19)–(3.20).

4. TE polarization

In this section, we provide a concise overview of the numerical solution for the boundary value
problem (2.3), (2.6), (2.10) in TE polarization, as its fundamental concept aligns closely with that
of the TM polarization.
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4.1. A single empty cavity. Consider the scattering by a single empty cavity. Due to the boundary
condition (2.6), the total field can be approximated by the Fourier series of cosine functions:

u(x, y) =

N∑
n=0

u(n)(y) cos
nπ(x− a)

w
. (4.1)

Denote by u(n), n = 0, 1, . . . , N, the Fourier coefficients of the solution on Γ. Substituting (4.1)
into (2.3) and (2.6) yields that the Fourier coefficients satisfy{

u(n)
′′
(y) + β2

nu
(n)(y) = 0, −h < y < 0,

u(n)(0) = u(n), u(n)
′
(−h) = 0,

which has a unique solution given by

u(n)(y) =


1

1 + e2iβnh

(
e−iβny + e2iβnheiβny

)
u(n) if βn ̸= 0,

u(n) if βn = 0.

(4.2)

Taking the normal derivative of (4.1) on Γ from below and using (4.2) gives

∂yu(x, 0
−) =

N∑
n=0

t(n)u(n) cos
nπ(x− a)

w
, (4.3)

where t(n0) = 0 and t(n) = iβn(e
2iβnh − 1)/(1 + e2iβnh) for n ̸= n0.

As the cavity is assumed to be empty, and the wavenumber within the cavity remains consis-
tent with that in free space, the following transmission conditions are imposed on Γ: u(x, 0+) =
u(x, 0−), ∂yu(x, 0

+) = ∂yu(x, 0
−). Substituting (4.3) into (2.10) leads to

N∑
n=0

u(n)(0) cos
nπ(x− a)

w
(4.4)

= − i

2

∫
Γ
H

(1)
0

(
κ|x− x′|

) [ N∑
n=0

t(n)u(n)(0) cos
nπ(x′ − a)

w

]
dx′ + g(x).

Multiplying both sides of (4.4) with cos mπ(x−a)
w ,m = 0, 1, . . . , N , and integrating on the aperture,

we obtain

DTEU = M̃TEU +G, M̃TE(m,n) = t(n)MTE(m,n), (4.5)

where U = [u(0), u(1), . . . , u(N)]⊤, DTE is a diagonal matrix whose diagonal entry is w
2 unless for

DTE(0, 0) = w, and the m-th component of vector G is

G(m) = 2

∫
Γ
eiαx cos

mπ(x− a)

w
dx = 2eiαa

∫ w

0
eiαx cos

mπx

w
dx, (4.6)

and the elements of the matrix MTE, by a change of variables, are expressed by

MTE(m,n) = − i

2

( w

2π

)2 ∫ 2π

0

∫ 2π

0
H

(1)
0

(κ0w
2π

|x− x′|
)
cos

nx′

2
cos

mx

2
dx′dx. (4.7)

The entries of MTE contain weakly singular integrals, and an efficient quadrature formula for
evaluating them is proposed in Section 5. After solving (4.5), the total field in the cavity can be
computed explicitly by using (4.1)–(4.2).
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4.2. A single multi-layered cavity. Denote by ul the total field in the l-th layer, which can be
approximated by

ul(x, y) =
N∑

n=0

u
(n)
l (y) cos

nπ(x− a)

w
. (4.8)

A straightforward calculation shows that the Fourier coefficients satisfy exactly the same system
(3.12) in the l-th layer. Moreover, the transmission conditions across the interface Γl are

ul(x, yl) = ul+1(x, yl),
1

κ2l
∂yul(x, yl) =

1

κ2l+1

∂yul+1(x, yl), l = 1, . . . , L− 1,

which give, after using the orthogonality properties of the cosine functions, that

1

κ2l

(
a
(n)
l u

(n)
l−1 + b

(n)
l u

(n)
l

)
= − 1

κ2l+1

(
b
(n)
l+1u

(n)
l + a

(n)
l+1u

(n)
l+1

)
, l = 1, . . . , L− 1,

where a
(n)
l , b

(n)
l for l = 1, . . . , L are defined in (3.15)–(3.16). On the bottom of the cavity, we deduce

from the boundary condition (2.6) that

a
(n)
L u

(n)
L−1 + b

(n)
L u

(n)
L = 0. (4.9)

Hence we can obtain a similar tri-diagonal system for the connection formula

D
(n)
TEu

(n) = b
(n)
TE, (4.10)

where u(n) = [u
(n)
1 , u

(n)
2 , . . . , u

(n)
L ]⊤, b

(n)
TE = [− 1

κ2
1
a
(n)
1 u

(n)
0 , 0, . . . , 0]⊤, and the entries of the symmetric

tri-diagonal matrix D
(n)
TE are specified by

D
(n)
TE(l, l) =

b
(n)
l

κ2l
+

b
(n)
l+1

κ2l+1

, D(n)(l, l + 1) =
a
(n)
l+1

κ2l+1

(4.11)

with b
(n)
L+1/κ

2
L+1 = 0. In the case of L = 1, the connection formula (4.11) is reduced to (4.9).

Denote by û(n) = [û
(n)
1 , û

(n)
2 , . . . , û

(n)
L ]⊤ the solution of (4.10) with the right-hand side given by

b̂
(n)

= [1, 0, ..., 0]⊤, then we have u(n) = − 1
κ2
1
a
(n)
1 u

(n)
0 û(n). Taking the derivative of (4.8) on the

aperture from below for l = 1, and using the transmission conditions u(x, 0+) = u1(x, 0
−) and

1
κ2
0
∂yu(x, 0

+) = 1
κ2
1
∂yu1(x, 0

−), we obtain

∂yu(x, 0
+) =

(
κ0
κ1

)2

∂yu1(x, 0
−) =

N∑
n=0

t̂(n)u
(n)
0 cos

πn(x− a)

w
, (4.12)

where t̂(n) =
(
κ0
κ1

)2[ 1
κ2
1
(a

(n)
1 )2û

(n)
1 − b

(n)
1

]
. Substituting (4.12) into (2.10), multiplying both sides by

cos mπ(x−a)
w , and integrating it on the aperture, we obtain

D̂TEU = M̂TEU +G, (4.13)

where U = [u(0), u(1), . . . , u(N)]⊤, the entries of G are given in (4.6), the diagonal matrix D̂TE and

the matrix M̂TE are given by

D̂TE(m,m) =

{
w if m = 0,
w

2
if m ̸= 0,

M̂TE(m,n) = t̂(n)MTE(m,n)

with the elements of MTE being given in (4.7). After the system (4.13) is solved, the solution in
each layer can be computed explicitly by (4.8).
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4.3. Multiple multi-layered cavities. Let u(x, y; k) denote the total field of the k-th cavity. The
NtD operator (2.10) on the k-th aperture can be reformulated as

ITE(u)(x) = − i

2

K∑
k=1

∫
Γk

H
(1)
0 (κ0|x− x′|)∂y′u(x′, 0; k)dx′. (4.14)

The solution u(x, y; k) in the l-th layer can be approximated by

ul(x, y; k) =
N∑

n=0

u
(n)
l (y; k) cos

nπ(x− ak)

wk
, y ∈ (ykl , y

k
l−1). (4.15)

Following the same discussion in Section 4.2, we find the following expression within the k-th cavity:

∂yu(x, 0
+; k) =

(
κ0
κk,1

)2

∂yu1(x, 0
−; k) =

N∑
n=0

t
(n)
k u

(n)
0,k cos

nπ(x− ak)

wk
.

where t
(n)
k =

(
κ0
κk,1

)2(− b
(n)
1,k + 1

κ2
k,1

(a
(n)
1,k)

2û1,k
)
.

By substituting the above equation into (2.10) and (4.14), we deduce

DTEU = MTEU+G, (4.16)

where

U =


U1

U2
...

UK

 , G =


G1

G2
...

GK

 , DTE =


D

(1)
TE 0 · · · 0

0 D
(2)
TE · · · 0

...
...

. . .
...

0 0 · · · D
(K)
TE


with Uk = [u

(0)
0,k, u

(1)
0,k, . . . , u

(N)
0,k ]⊤, D

(k)
TE = wk for k = 1 and wk/2 otherwise, the elements of the k-th

block of the vector G being defined as

Gk(m) = 2

∫ wk

0
eiα(x+ak) cos

mπx

wk
dx,

and the block form of the matrix MTE is

MTE =


M1,1 M1,2 · · · M1,K

M2,1 M2,2 · · · M2,K
...

...
. . .

...
MK,1 MK,2 · · · MK,K


with the entries being given by

Mk,j(m,n) = −
it
(n)
j

2

∫ wk

0

∫ wj

0
H

(1)
0 (κ0|x+ ak − x′ − aj |) cos

nπx′

wj
cos

mπx

wk
dx′dx.

Once the system (4.16) is solved, the Fourier coefficients on the inner interfaces of the k-th cavity
can be obtained using the connection formula. Subsequently, the total field in the l-th layer of the
k-th cavity can be expressed by (4.15), where the coefficients are defined according to (3.13).

5. Numerical quadratures

Since the first-order Hankel function H
(1)
1 (t) is singular at t = 0, the DtN operator (2.9) for

the TM polarization is defined in the sense of the Hadamard finite-part. Developing a high-order
numerical integral quadrature formula is challenging for hypersingular integrals. In this section, we
present an alternative transparent boundary condition (TBC) containing weakly singular integrals
and propose a high-order numerical quadrature rule for these specific cases.
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5.1. An alternative transparent boundary condition. We investigate the transparent bound-
ary condition (2.8) in TM polarization and explore the application of numerical quadrature tech-
niques to handle the weakly singular integrals involved in the transparent boundary conditions.

Lemma 5.1. The transparent boundary condition (2.8) can be reformulated as follows:

∂x2u(x1, 0) =
iκ20
2

∫
Γ
u(y1, 0)H

(1)
0 (κ0|x1 − y1|)dy1

+
i

2
∂x1

[∫
Γ
∂y1u(y1, 0)H

(1)
0 (κ0|x1 − y1|)dy1

]
− 2iβeiαx1 . (5.1)

Proof. Let GTM(x,y) represent the Dirichlet Green’s function in the upper half-plane for TM po-
larization. Specifically, it is given by

GTM(x;y) =
i

4
H

(1)
0 (κ0|x− y|)− i

4
H

(1)
0 (κ0|x− y′|),

where x = (x1, x2), y = (y1, y2), and y′ = (y1,−y2). It follows from the Sommerfeld radiation
condition (2.7) and Green’s integral formula that for any (x1, x2) ∈ R2

+, the scattered field us(x1, x2)
can be expressed as

us(x1, x2) = −
∫
Γg∪Γ

∂y2u
s(y1, 0)GTM(x1, x2; y1, 0)dy1

+

∫
Γg∪Γ

us(y1, 0)∂y2GTM(x1, x2; y1, 0)dy1.

Based on the homogeneous Dirichlet boundary condition (2.5), the total field satisfies

u(x1, x2)− ub(x1, x2) = −
∫
Γg∪Γ

[
∂y2(u(y1, 0)− ub(y1, 0))GTM(x1, x2; y1, 0)

− (u(y1, 0)− ub(y1, 0))∂y2GTM(x1, x2; y1, 0)
]
dy1

=

∫
Γ
u(y1, 0)∂y2GTM(x1, x2; y1, 0)dy1. (5.2)

where ub = ui − ur = ei(αx1−βx2) − ei(αx1+βx2) is referred to the background field.
Define an auxiliary function as the Dirichlet Green’s function in the upper half-plane for TE

polarization:

GTE(x,y) =
i

4
H

(1)
0 (κ0|x− y|) + i

4
H

(1)
0 (κ0|x− y′|).

Noting ∂y2GTM(x1, x2; y1, y2) = −∂x2GTE(x1, x2; y1, y2), we have from (5.2) that

u(x1, x2)− ub(x1, x2) = −
∫
Γ
u(y1, 0)∂x2GTE(x1, x2; y1, 0)dy1. (5.3)
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Taking the partial derivative of (5.3) with respect to x2, we obtain

∂x2u(x1, x2)− ∂x2u
b(x1, x2) = −

∫
Γ
u(y1, 0)∂

2
x2
GTE(x1, x2; y1, 0)dy1

= κ20

∫
Γ
u(y1, 0)GTE(x1, x2; y1, 0)dy1

− i

4

∫
Γ
u(y1, 0)

[
∂2
x1y1H

(1)
0 (κ0|x− y|) + ∂2

x1y1H
(1)
0 (κ0|x− y′|)

]
dy1

= κ20

∫
Γ
u(y1, 0)GTE(x1, x2; y1, 0)dy1

+
i

4

∫
Γ
∂y1u(y1, 0)

[
∂x1H

(1)
0 (κ0|x− y|) + ∂x1H

(1)
0 (κ0|x− y′|)

]
dy1, (5.4)

where we have employed integration by parts and utilized the following facts:

∂2
x2
GTE(x;y) = −∂2

x1
GTE(x;y)− κ20GTE(x;y),

∂2
x1
GTE(x;y) =

i

4

[
∂2
x1
H

(1)
0 (κ0|x− y|) + ∂2

x1
H

(1)
0 (κ0|x− y′|)

]
= − i

4

[
∂2
x1y1H

(1)
0 (κ0|x− y|) + ∂2

x1y1H
(1)
0 (κ0|x− y′|)

]
.

Taking x2 → 0+ in (5.4), and using the continuity of the total field and the single layer potential
across the aperture Γ, we deduce

∂x2u(x1, 0)− ∂x2u
b(x1, 0)

= κ20

∫
Γ
u(y1, 0)GTE(x1, 0; y1, 0)dy1 +

i

2

∫
Γ
∂y1u(y1, 0)∂x1H

(1)
0 (κ0|x1 − y1|)dy1

=
iκ20
2

∫
Γ
u(y1, 0)H

(1)
0 (κ0|x1 − y1|)dy1 +

i

2
∂x1

[ ∫
Γ
∂y1u(y1, 0)H

(1)
0 (κ0|x1 − y1|)dy1

]
,

which completes the proof by noting ∂x2u
b(x1, 0) = −2iβeiαx1 . □

Substituting the expansion (3.1) into (5.1), we get

∂x2u(x1, 0) =
iκ20
2

∫ w

0

( N∑
n=1

u(n) sin
nπy1
w

H
(1)
0 (κ0|x1 − y1 − a|)

)
dy1

+
i

2
∂x1

[ ∫ w

0

N∑
n=1

u(n)
nπ

w
cos

nπy1
w

H
(1)
0 (κ0|x1 − y1 − a|)dy1

]
− 2iβeiαx1 . (5.5)

By multiplying both sides of (5.5) by sin mπ(x1−a)
w and integrating over Γ, we obtain the equivalent

entries of the matrix MTM in (3.8):

MTM(m,n) =
iκ20
2

∫ w

0

[∫ w

0
sin

nπy

w
H

(1)
0 (κ0|x− y|) dy

]
sin

mπx

w
dx

− imnπ2

2w2

∫ w

0

[∫ w

0
cos

nπy

w
H

(1)
0 (κ0|x− y|)dy

]
cos

mπx

w
dx. (5.6)
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For multiple multi-layered cavities, following the same discussion, we can derive the TBC on the
k-th cavity as

∂x2u(x1, 0; k) =
iκ20
2

K∑
j=1

∫
Γj

u(y1, 0; j)H
(1)
0 (κ0|x1 − y1|)dy1

+
i

2

K∑
j=1

∂x1

[∫
Γj

∂y1u(y1, 0; j)H
(1)
0 (κ0|x1 − y1|)dy1

]
− 2iβeiαx1 . (5.7)

Substituting (3.19) into (5.7) and using a change of variables, we deduce

∂x2u(x1, 0; k) =
iκ20
2

K∑
j=1

∫ wj

0

(
N∑

n=1

u
(n)
0,j sin

nπy1
wj

H
(1)
0 (κ0|x1 − y1 − aj |)

)
dy1

+
i

2

K∑
j=1

∂x1

[∫ wj

0

N∑
n=1

u
(n)
0,j

nπ

wj
cos

nπy1
wj

H
(1)
0 (κ0|x1 − y1 − aj |)dy1

]
− 2iβeiαx1 . (5.8)

By multiplying both sides of (5.8) by sin πm(x1−ak)
wk

and integrating over Γk, we can obtain a new

form of the matrix MTM in (3.22), which only contains weakly singular integrals and has entries
respresented as follows:

Mk,j(m,n) =
iκ20
2

∫ wk

0

∫ wj

0
sin

nπy

wj
H

(1)
0 (κ0|x+ ak − y − aj |) sin

mπx

wk
dydx

− imnπ2

2wjwk

∫ wk

0

∫ wj

0
cos

nπy

wj
H

(1)
0 (κ0|x+ ak − y − aj |) cos

mπx

wk
dydx,

where k, j = 1, . . . ,K, and m,n = 1, . . . , N .

5.2. Numerical quadratures. The matrices MTM and MTE contain weakly singular integrals in
the following forms subsequent to the use of a change of variables:∫ 2π

0

∫ 2π

0
sin

ns

2
H

(1)
0

(κ0w
2π

|s− t|
)
sin

mt

2
dsdt,∫ 2π

0

∫ 2π

0
cos

ns

2
H

(1)
0

(κ0w
2π

|s− t|
)
cos

mt

2
dsdt.

(5.9)

In this section, we develop an efficient approach to accurately evaluate (5.9).

Lemma 5.2. If m+ n is odd, then∫ 2π

0

(∫ 2π

0
H

(1)
0

(κ0w
2π

|s− t|
)
sin

ns

2
ds

)
sin

mt

2
dt = 0, (5.10)∫ 2π

0

(∫ 2π

0
H

(1)
0

(κ0w
2π

|s− t|
)
cos

ns

2
ds

)
cos

mt

2
dt = 0. (5.11)

Proof. We only show the proof of (5.10) since the proof is similar to (5.11). For any t ∈ [0, 2π],
define

F (t) =

∫ 2π

0
H

(1)
0

(κ0w
2π

|s− t|
)
sin

ns

2
ds.
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Let ξ = 2π − s, we have from a simple calculation that

F (2π − t) =

∫ 2π

0
H

(1)
0

(κ0w
2π

|s− 2π + t|
)
sin

ns

2
ds

=

∫ 2π

0
H

(1)
0

(κ0w
2π

|2π − ξ − 2π + t|
)
sin

n

2
(2π − ξ)dξ = (−1)(n+1)F (t).

A straightforward calculation shows that∫ 2π

0

(∫ 2π

0
H

(1)
0

(κ0w
2π

|s− t|
)
sin

ns

2
ds

)
sin

mt

2
dt

=

∫ π

0
F (t) sin

mt

2
dt+

∫ 2π

π
F (t) sin

mt

2
dt

=

∫ π

0
F (t) sin

mt

2
dt+ (−1)(m+n)

∫ π

0
F (t) sin

mt

2
dt = 0,

if m+ n is odd, which completes the proof. □

Next, we address numerical quadrature in scenarios where the sum of m and n results in an
even number. The established technique outlined in [10, Section 3.5] for computing weakly singular
integrals associated with the zeroth-order Hankel function necessitates the integrand function to be
2π-periodic. Regrettably, this condition cannot be met in our current context.

It is clear to note from (5.9) that∫ 2π

0

∫ 2π

0
sin

ns

2
H

(1)
0

(κ0w
2π

|s− t|
)
sin

mt

2
dsdt

=

∫ 2π

0

∫ 2π

0
sin

ns

2

[
H

(1)
0

(κ0w
2π

|s− t|
)
− 2i

π
J0

(κ0w
2π

|s− t|
)
ln |s− t|

]
sin

mt

2
dsdt

+
2i

π

∫ 2π

0

∫ 2π

0
J0

(κ0w
2π

|s− t|
)
ln |s− t| sin ns

2
sin

mt

2
dsdt. (5.12)

Recalling the power series of the Bessel function (cf. [25])

H
(1)
0 (z) = J0(z) + iY0(z)

= J0(z) +
2i

π

(
ln

z

2
+ γ
)
J0(z) +

2i

π

∞∑
k=1

(−1)k+1

( k∑
j=1

1

j

)(1
4z

2
)k

(k!)2
,

we know that the first term of (5.12) is analytic. Moreover, we have

lim
t→s

H
(1)
0

(κ0w
2π

|s− t|
)
− 2i

π
J0

(κ0w
2π

|s− t|
)
ln |s− t| = 1 +

2i

π
γ +

2i

π
ln

κ0w

4π
.

The integrand function of the second term is weakly singular, and directly applying a high order
quadrature rule is not feasible. Our idea is to repeatedly apply integration by parts to increase the
regularity of the integrand function.

Specifically, it follows from the expansion of Bessel function (cf. [25]) that

J0

(κ0w
2π

|s− t|
)
=

∞∑
k=0

(−1)k
1

(k!)2

[κ0w
4π

(s− t)
]2k

=

K∑
k=0

(−1)k
1

(k!)2

[κ0w
4π

(s− t)
]2k

+

[
J0

(κ0w
2π

|s− t|
)
−

K∑
k=0

(−1)k
1

(k!)2

(κ0w
4π

(s− t)
)2k]

. (5.13)
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Since the second term has higher regularity of C2K+2, substituting (5.13) into (5.12), we only need
to handle the integral

Sk(n,m) =

∫ 2π

0

∫ 2π

0
(t− s)k−1 ln |t− s| sin mt

2
sin

ns

2
dsdt.

Through straightforward calculations and integration by parts, we deduce

Sk(n,m) = − 1

k(k + 1)

(m
2

)2
Sk+2(n,m) +

1

k(k + 1)2

(m
2

)2
T
(1)
k (n,m)

+
m

2k2
T
(2)
k (n,m)− m

2k(k + 1)2

[
(−1)m+n − (−1)k

]
T
(3)
k (n)

+
m

2k(k + 1)

[
(−1)m+n − (−1)k

]
Wk(n), (5.14)

where

T
(1)
k (n,m) =

∫ 2π

0

∫ 2π

0
sin

ns

2
(t− s)k+1 sin

mt

2
dsdt,

T
(2)
k (n,m) =

∫ 2π

0

∫ 2π

0
sin

ns

2
(t− s)k cos

mt

2
dsdt,

T
(3)
k (n) =

∫ 2π

0
sin

ns

2
sk+1ds, Wk(n) =

∫ 2π

0
sin

ns

2
sk+1 ln sds.

The regularity of Wk can be increased by applying the same idea. Explicitly, we have

Wk(n) = Ak(n)−
(n
2

)2 1

(k + 2)(k + 3)
Wk+2(n),

where

Ak(n) =
n

2

1

k + 2

(
1

k + 2
+

1

k + 3

)∫ 2π

0
sk+2 cos

ns

2

− (−1)nn

2(k + 2)(k + 3)
(2π)k+3 ln(2π).

The corresponding parts of the integrals involving cosine functions can be evaluated similarly as
follows:

Pk(n,m) =

∫ 2π

0

∫ 2π

0
(t− s)k−1 ln |t− s| cos mt

2
cos

ns

2
dsdt

= −
(m
2

)2 1

k(k + 1)
Pk+2(n,m) +

(m
2

)2 1

k(k + 1)2
U

(1)
k (n,m)− m

2k2
U

(2)
k (n,m)

−
[
(−1)(m+n) − (−1)k

] 1

k2
U

(3)
k (n) +

[
(−1)(m+n) − (−1)k

] 1
k
Xk(n), (5.15)

where

U
(1)
k (n,m) =

∫ 2π

0

∫ 2π

0
cos

ns

2
(t− s)k+1 cos

mt

2
dsdt,

U
(2)
k (n,m) =

∫ 2π

0

∫ 2π

0
cos

ns

2
(t− s)k sin

mt

2
dsdt,

U
(3)
k (n) =

∫ 2π

0
cos

ns

2
skds, Xk(n) =

∫ 2π

0
cos

ns

2
sk ln sds.

Moreover, the function Xk satisfies the recurrence relation

Xk(n) = Yk(n)−
(n
2

)2 1

(k + 1)(k + 2)
Xk+2(n),
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where

Yk(n) = −n

2

1

k + 1

(
1

k + 1
+

1

k + 2

)∫ 2π

0
sk+1 sin

ns

2
ds

+
(−1)n(2π)k+1

(k + 1)2
[(k + 1) ln(2π)− 1] .

By using the recurrence relations (5.14) and (5.15), we can iteratively enhance the regularity of
the integrand functions in (5.12) until they meet the requirements of integral quadrature formulas,
such as the Gaussian quadrature formula.

6. Numerical Experiments

In this section, we present a series of numerical examples to provide compelling evidence regarding
the efficacy of the method in precisely analyzing electromagnetic scattering phenomena linked to
rectangular cavities.

6.1. Order of accuracy. First, we assess the accuracy of the proposed method, demonstrating its
precision and reliability in handling the cavity scattering problems in both TM and TE polarizations.
In this experiment, we aim to evaluate the convergent order of the proposed method in the L2-norm.
Due to the unavailability of an analytic solution, we conduct a comparison of the results obtained
on a finer mesh.

The cavity is situated in the interval [−0.5, 0.5] with a depth of h = 1.5. It is subjected to
illumination by a plane wave with a wavenumber of κ0 = 1.5 and an incidence angle of θ = π/9. For
the numerical evaluation of (5.9), we opt for the composite 4-point Gaussian quadrature formula as
a representative numerical integration technique. We set the truncation number to N = 30. It is
worth mentioning that by employing higher-order numerical quadrature formulas, even higher orders
of convergence can be achieved. Figure 2 displays the results for both TM and TE polarizations. The
x-axis represents the mesh size, while the y-axis corresponds to the error measured in the L2-norm.
The red dashed line depicts the convergent order of the proposed method. For comparison purposes,
we also include the solid blue curve, which represents the theoretical eighth-order convergence. The
results clearly demonstrate that the proposed method exhibits an accuracy with an order of O(h8),
thereby affirming its effectiveness and reliability in numerical simulations.
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Figure 2. Example 6.1: (Left) Order of convergence in TM polarization; (Right)
Ordr of convergence in TE polarization.
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6.2. Radar cross-section. Next, we explore the application of our proposed method in radar cross-
section (RCS) computations, which highlights its capability to accurately predict the scattering
behavior of practical radar systems.

In two dimensions, the RCS is defined by (cf. [16])

σ(φ) := lim
r=→∞

2πr
|us(x, y;φ)|2

|ui(x, y; θ)|2
,

where ui is the incident field, us denotes the scattered field, and θ and φ represent the incident and
observation angles, respectively. When θ and φ are equal, σ is referred to as the backscatter RCS,
and it is defined as

Backscatter RCS(σ)(φ) = 10 log10 σ(φ)dB.

In TM polarization, with measurements taken on the aperture of the cavity, the RCS can be expressed
as follows (cf. [31]):

σ(φ) = κ0

∣∣∣ sinφ∫
Γ
us(x, 0)eiκ0 cosφxdx

∣∣∣2.
In this experiment, we replicate a benchmark example documented in [16]. Specifically, we consider

the backscatter RCS of a single rectangular cavity in TM polarization. The cavity has a width w = λ
and a depth h = λ/4, where λ = 2π/κ0 represents the wavelength in free space. For our analysis,
we set κ0 = 32π and N = 150, along with an incident angle of θ = π/3. The obtained numerical
backscatter RCS results are shown in Figure 3. To provide a basis for comparison, we also present
the results obtained using the adaptive finite element TBC method [31]. The adaptive TBC method
is terminated when the total number of nodal points reaches 15000. In the left part of Figure 3, we
plot the results for the empty cavity. The solid red line represents the backscatter RCS computed by
our proposed method, while the blue circle points represent the results obtained from the adaptive
TBC method. In the right part of Figure 3, we consider the cavity filled with a lossy medium
characterized by an electric permittivity of ϵ = 4 + i and a magnetic permeability of µ = 1. Similar
to the empty cavity case, we depict the results of the proposed method using a solid red line and
the adaptive TBC method using blue circle points. The results clearly demonstrate the consistency
between the proposed method and the adaptive TBC method. However, it is worth noting that
the proposed method only requires solving a small scale system with 151 unknowns, making it
significantly more efficient in accurately computing the backscatter RCS of the cavity compared to
the adaptive TBC method. This highlights the efficiency and accuracy of the proposed method in
tackling the backscatter RCS computation for the considered cavity configuration.
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Figure 3. Example 6.2: (Left) The backscatter RCS of an empty cavity; (Right)
The backscatter RCS of a lossy cavity.
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6.3. Subwavelength enhancement. In this experiment, we explore the efficacy of our proposed
method in analyzing field enhancement phenomena in subwavelength structures. By focusing on
TE polarization, we can demonstrate potential applications of the method in nanophotonics and
metamaterial research.

First, we consider the case of a single cavity with the following dimensions: cavity width w = 50µm
and cavity depth h = 1 cm. The cavity is illuminated from above at an incident angle of θ = π/6.
To study the behavior of the electric field enhancement, we vary the wavelength in a range from
0.2 cm to 62 cm. Figure 4 presents the plot of the electric field enhancement factor QE against the
wavenumber κ, where QE is defined as the ratio of the L2-norm of the electric field u to the L2-norm
of the incident electric field ui, both integrated over the cavity domain D, i.e.,

QE =
∥u∥L2(D)

∥ui∥L2(D)
.

As depicted in the left part of Figure 4, it can be observed that the enhancement factors exhibit
peaks at resonant frequencies located near κ = π/2 + nπ, where n is an integer. These numerical
findings are consistent with the theoretical results reported in [14], highlighting the capability of
our proposed method in capturing the electric field enhancement phenomena in the subwavelength
cavity structure.

In the case of two cavities, we position them in the ground with a width of w = 0.2µm, a depth
of h = 1.5µm, and a distance of d = 0.5µm between them. The two cavities are illuminated from
above by a plane wave with an incident angle of θ = −π/9. For our analysis, we vary the wavelength
in the range from 500 cm to 2500 cm. As shown in the right part of Figure 4, the blue dashed curve
represents the enhancement factor for a single cavity with the same width and depth, exhibiting
a resonance frequency around κ0 = 9000. On the other hand, the red dashed line and black solid
line in the plot represent the enhancement factors for the left and right cavity, respectively. It is
evident from the results that the type of enhancement for the two cavities is different. The left
cavity exhibits a single peak near κ0, while the right cavity shows two resonance frequencies around
κ0. The enhancement first peaks to the left of κ0 and then decreases dramatically. After that, the
enhancement achieves a second peak to the right of κ0. These results demonstrate that the enhance-
ment caused by the two cavities exhibits both an antisymmetric mode and a symmetrical mode.
The numerical findings are in line with the theoretical results reported in [3] and the experimental
observations conducted in [26].
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Figure 4. Example 6.3: (Left) The electric field enhancement factor by a single
cavity; (Right) The electric field enhancement factor by two cavities.
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6.4. Multiple multi-layered cavities. Finally, we present a challenging scenario involving the
scattering by multiple cavities, which demonstrates the suitability of our proposed method in effec-
tively handling complex configurations of multiple multi-layered cavities.

In this experiment, we consider both TM and TE polarizataions for a configuration comprising
three cavities, situated at the following locations: [−0.6,−0.1] × [0,−0.1] ∪ [0, 0.2] × [0,−0.5] ∪
[0.3, 0.6] × [0,−0.3]. The first cavity is assumed to be empty, while the second cavity is filled with
a three-layered medium. This medium is characterized by wavenumbers κ = π, 2π, and 10π, and
it is separated at the inner interfaces

{
y = −1

6

}
and

{
y = −1

3

}
. The third cavity is filled with a

two-layered medium, characterized by wavenumbers κ = 1 + 0.5i and κ = 0.5, and it is separated
at the middle of the cavity. In order to evaluate the accuracy of our proposed method, we once
again conduct a comparison with the results attained through the adaptive finite element TBC
method [31]. The comparison is presented in Figures 5 and 6. In both figures, the red solid lines and
blue circle points depict the magnitudes of the total electric field on the diagonal of the left, middle,
and right cavities, respectively, obtained using our proposed method and the adaptive TBC method.
The comparison evidently demonstrates that the proposed method produces accurate outcomes, as
they closely align with the results obtained from the adaptive TBC method. Nevertheless, it is
important to note that the proposed method necessitates solving a substantially smaller system.
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Figure 5. Example 6.4: The total field on the diagonal of left, middle, and right
cavity in TM polarization.
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Figure 6. Example 6.4: The total field on the diagonal of left, middle, and right
cavity in TE polarization.

7. Conclusion

This paper introduces a highly efficient and accurate numerical method for addressing electromag-
netic scattering problems involving rectangular cavities. By using the Fourier series expansion, the
original boundary value problem is transformed into one-dimensional ordinary differential equations
for the Fourier coefficients. A connection formula is established to link the Fourier coefficients in
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each layer to those on the aperture of the cavity. This approach enables us to solve the system solely
on the aperture and store the connection formula of the Fourier coefficients, significantly reducing
computational resources.

Furthermore, we propose an alternative TBC on the aperture, which involves only weakly sin-
gular integrals. To handle the singularity of the Hankel function, we utilize the power series of
Bessel functions to deduce a recursive formula, enhancing the smoothness of the integrand function.
Consequently, high-order Gaussian quadratures can be employed, enhancing the efficiency of the
method.

The numerical results demonstrate the effectiveness of our approach in accurately solving scat-
tering problems with rectangular cavities. This method proves to be a valuable tool with diverse
practical applications in radar systems, wireless communications, metamaterials, photonic devices,
and more. Future research could explore extending this method to the three-dimensional Maxwell’s
equations and other geometries and optimizing its efficiency for even more complex scattering sce-
narios.
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