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THE LABYRINTH OF THE CONTINUUM

The “labyrinth of the continuum” is how Leibniz referred to the
philosophical problems associated with real numbers, which we shall
discuss in this chapter, So the emphasis here will be on philosophy
and mathematics, rather than on physics as in the last chapter.

What is a real number? Well, in geometry it’s the length of a line,
measured exactly, with infinite precision, for example 1.274959] . .
which doesn't sound too problematical, at least at first. And in ana-
Iy‘tic geometry you need two real numbers to locate a point (in two
dimensions), its distance from the x axis, and its distance from the
¥ axis. One real will locate a point on a line, and the line that we will
normally consider will be the so-called “unit interval” consisting of
fill the real numbers from zero to one. Mathematicians write this
interval as [0, 1), to indicate that 0 is included but 1 is not, so that all
the real numbers corresponding to these points have no integer part,
on?y a decimal fraction, Actually, [0, 1] works too, as long as you
wr{te on.e as 0.99999 ... instead of as 1.00000 ... But not to wOrry,
we're going to ignore all these subtle details, You get the general idea,
and that's enough for reading this chapter.

[By the way, why is it called “real™? To distinguish it from so-called “imaginary”
numbers like /1. Imaginary numbers are neither more nor less imaginary than real
numbers, but there was initially, several centuries ago, including at the time of Leibniz
much resistance to placing them on an equal footing with real numbers, In a letter t(;
Huygens, Leibniz points out that calculations that temporarily traverse this imaginary
world can in fact start and end with real numbers. The usefulness of such a procedure
was, he argued, an argument in favor of such numbers, By the time of Euler, imaginar-
fes were extremely useful. For example, Euler’s famous result that

94

THE LABYRINTH OF THE CONTINUUM

e =cosx +isinx

totally tamed trigonometry. And the statement (Gauss) that an algebraic equation of
degree n has exactly » roots only works with the aid of imaginaries. Furthermore, the
theory of functions of a complex variable (Cauchy) shows that the calculus and in par-
ticular so-called power series
ay + ax + axt+ oaxt+ .

make much more sense with imaginaries than without. The final argument in their
favor, if any was needed, was provided by Schrodinger’s equation in quantum mechan-
ics, in which imaginaries are absolutely essential, since quantum probabilities (so-
called “probability amplitudes”) have to have direction as well as magnitude.]

As is discussed in Burbage and Chouchan, Leibniz et l'infini, PUF,
1993, Leibniz referred to what we call the infinitesimal calculus as
“the calculus of transcendentals.” And he called curves “transcen-
dental” if they cannot be obtained via an algebraic equation, the way
that the circles, ellipses, parabolas and hyperbolas of analytic geome-
try most certainly can.

Leibniz was extremely proud of his quadrature of the circle, a
problem that had eluded the ancient Greeks, but that he could solve
with transcendental methods:

™ 1 + 1 1 + [ N |

_=1-—_ —_ —_ —_

4 305 7 9 1 13 "7

What is the quadrature of the circle? The problem is to geometrically
construct a square having the same area as a given circle, that is, to
determine the area of the circle. Well, that’s nr?, r being the radius of
the circle, which converts the problem into determining =, precisely
what Leibniz accomplished so elegantly with the infinite series dis-
played above.

Leibniz could not have failed to be aware that in using this term he
was evoking the notion of God’s transcendence of all things human, of
human limitations, of human finiteness.

As often happens, history has thrown away the philosophical ideas
that inspired the creators and kept only a dry technical husk of what
they thought that they had achieved. What remains of Leibniz’s idea
of transcendental methods is merely the distinction between algebraic
numbers and transcendental numbers. A real number x is algebraic if
it is the solution of an equation of the form
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ax"+bx"'+ 4+ px+g=0

where the constants a, 5, ... are all integers, Otherwise x is said to be
transcendental. The history of proofs of the existence of transcen-
dental numbers is rich in intellectual drama, and is one of the themes
of this chapter.

Similarly, it was Cantor’s obsession with God’s infiniteness and
transcendence that led him to create his spectacularly successful but
extremely controversial theory of infinite sets and infinite numbers,
What began, at least in Cantor’s mind, as a kind of madness, as a kind
of mathematical theology full—necessarily full—of paradoxes, such
as the one discovered by Bertrand Russell, since any attempt by a
finite mind to apprehend God is inherently paradoxical, has now been
condensed and desiccated into an extremely technical and untheo-
logical field of math, modern axiomatic set theory.

Nevertheless, the intellectual history of the proofs of the existence
of transcendental numbers is quite fascinating. New ideas totally
transformed our way of viewing the problem, not once, but in fact five
times! Here is an outline of these developments:

* Liouville, Hermite and Lindemann, with great effort, were the first
to exhibit individual real numbers that could be proved to be tran-
scendental. Summary: individual transcendentals,

Then Cantor’s theory of infinite sets revealed that the transcen-

dental reals had the same cardinality as the set of all reals. while

the algebraic reals were merely as numerous as the integers, a

smaller infinity. Summary: most reals are transcendental.

* Next Turing pointed out that all algebraic reals are computable,
but again, the uncomputable reals are as numerous as the set of
all reals, while the computable reals are only as numerous as
the integers. The existence of transcendentals is an immediate
corollary. Summary: most reals are uncomputable and rherefore
transcendental,

* The next great leap forward involves probabilistic ideas: the set
of random reals was defined, and it turns out that with probabil-
ity one, a real number is random and therefore necessarily un-
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computable and transcendental. Non-random, computable and
algebraic reals all have probability zero. So now you can get a tran-
scendental real merely by picking a real number at random with an
infinitely sharp pin, or, alternatively, by using independent tosses
of a fair coin to get its binary expansion. Summary: reals are tran-
scendental/uncomputable/random with probability one. And in the
next chapter we'll exhibit a natural construction that picks out an
individual random real, namely the halting probability Q, without
the need for an infinitely sharp pin.

+ Finally, and perhaps even more devastatingly, it turns out that the
set of all reals that can be individually named or specified or even
defined or referred to—constructively or not—within a formal
language or within an individual FAS, has probability zero. Sum-
mary: reals are un-nameable with probability one.

So the set of real numbers, while natural—indeed, immediately
given-—geometrically, nevertheless remains quite elusive:

Why should I believe in a real number if I can’t calculate it, if I can’t
prove what its bits are, and if I can’t even refer to it? And each of these
things happens with probability one! The real line from 0 to 1 looks
more and more like a Swiss cheese, more and more like a stunningly
black high-mountain sky studded with pin-pricks of light.

Let’s now set to work to explore these ideas in more detail.

THE “UNUTTERABLE" AND THE PYTHAGOREAN SCHOOL

This intellectual journey actually begins, as is often the case, with the
ancient Greeks. Pythagoras is credited with naming both mathematics
and philosophy. And the Pythagoreans believed that number—whole
numbers—rule the universe, and that God is a mathematician, a point
of view largely vindicated by modern science, especially quantum
mechanics, in which the hydrogen atom is modeled as a musical instru-
ment that produces a discrete scale of notes. Although, as we saw in
Chapter Three, perhaps God is actually a computer programmer!
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Be that as it may, these early efforts to understand the universe suf-
fered a serious setback when the Pythagoreans discovered geometrical
lengths that cannot be expressed as the ratio of two whole numbers,
Such lengths are called irrational or incommensurable. In other
words, they discovered real numbers that cannot be expressed as a
ratio of two whole numbers,

How did this happen?

The Pythagoreans considered the unit square, a square one unit in
length on each side, and they discovered that the size of both of the
two diagonals, |2, isn't a rational number n/m. That is to say, it cannot
be expressed as the ratio of two integers. In other words, there are no
integers n and m such that

n

2
(_) =2 or n=2m
m

An elementary proof of this from first principles is given in Hardy’s
well-known 4 Mathematician’s Apology. He presents it there because
he believes that it's a mathematical argument whose beauty anyone
should be able to appreciate. However, the proof that Hardy gives,
which is actually from Euclid’s Elements, does not give as much
insight as a more advanced proof using unique factorization into
primes. [ did not prove unique factorization in Chapter Two. Neverthe-
less, I'll use it here. It is relevant because the two sides of the equation

n* = 2m?

would give us two different factorizations of the same number. How?
Well, factor n into primes, and factor m into primes. By doubling
the exponent of each prime in the factorizations of # and m,

2&3[35“1'“ — 22(!32[552\{“"

we get factorizations of n* and m2. This gives us a factorization of n?
in which the exponent of 2 is even, and a factorization of 2m? in
which the exponent of 2 is odd. So we have two different factoriza-
tions of the same number into primes, which is impossible.
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According to Dantzig, Number, The Language of Science, the dis-
covery of irrational or incommensurable numbers like 2

caused great consternation in the ranks of the Pythagoreans. The very
name given to these entities testifies to that. Algon, the unutterable,
these incommensurables were called . . . How can number dominate
the universe when it fails to account even for the most immediate
aspect of the universe, namely geometry? So ended the first attempt to
exhaust nature by number,

This intellectual history also left its traces in the English language: In
English such irrationals are referred to as “surds,” which comes from
the French sourd-muet, meaning deaf-mute, one who cannot hear or
speak. So the English word “surd” comes from the French word for
“deaf-mute,” and algon = mute. In Spanish it’s sordomudo, deaf-mute.

In this chapter we’ll retrace this history, and we’ll see that real num-
bers not only confound the philosophy of Pythagoras, they confound
as well Hilbert’s belief in the notion of a FAS, and they provide us
with many additional reasons for doubting their existence, and for
remaining quite skeptical. To put it bluntly, our purpose here is to
review and discuss the mathematical arguments against real numbers.

THE 1800S: INDIVIDUAL TRANSCENDENTALS
(LIOUVILLE, HERMITE, LINDEMANN)

Although Leibniz was extremely proud of the fact that he had been
able to square the circle using transcendental methods, the 1800s
wanted to be sure that they were really required. In other words, they
demanded proofs that n and other individual numbers defined via the
sums of infinite series were not the solution of any algebraic equation.

Finding a natural specific example of a transcendental real turned
out to be much harder than expected. It took great ingenuity and
cleverness to exhibit provably transcendental numbers!

The first such number was found by Liouville:
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Liouville number = - + 1 + + 1

T TR T

He shf)wed that algebraic numbers cannot be approximated th

by rational numbers. In other words, he showed that his ny b .
not be algebraic, because there are rational approximations]:; b
Foo’ well for it: they can get too close, too fast. But Liouvilies e
1sr_1t a natural example, because no one had ever been intermimb'er
this particular number before Liouville. It was constructed pii;:ellg

so that Liouville could i
prove its transcendence.
Euler’s number ¢? " dbout x and

Euler’s number

= 1 !
e I+TT+ +3~!+,__+i+”_

L
2! n!

was; finally proved transcendental by Hermite. Here at last was 4 nat

ural example! This was an | -
e an important number that people really cared
‘ I:ut what about the number that Leibniz was so proud of conquer-
ing? He had squared the circle by transcendental methods:

™

4

_ 1 1
== - 4
1

1 !
3 5
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A IRTIE
Bu_t can yor.z prove that transcendental methods are really necessary?
This qu'estlon attracted a great deal of attention after Hermit:” .
result, since 7 seemed to be the obvious next candidate for a transcenS
denFe proof. This feat was finally accomplished by Lindemann ro-
voklng the famous remark by Kronecker that “Of what use is’ po :
beautiful proof, since 7 does not exist!” Kronecker was a followgr 2;
Pythagoras; Kronecker’s best known statement is, “God created th
mtegers; all the rest is the work of man!” , )
These were the first steps on the long road to understanding tran-
scendence, but they were difficult complicated proofs that were spe-

.cxauy ta.ilored for each of these specific numbers, and gave no general
msight into what was going on,

+
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CANTOR: THE NUMBER OF TRANSCENDENTALS IS A HIGHER
ORDER INFINITY THAN THE NUMBER OF ALGEBRAIC REALS

As D've said, a real number is one that can be determined with arbi-
trary precision, such as ® = 3.1415926 ... Nevertheless, in the late
1800s two mathematicians, Cantor and Dedekind, were moved to
come up with much more careful definitions of a real number.
Dedekind did it via “cuts,” thinking of an irrational real r as a way to
partition all the rational numbers n/m into those less than r and those
greater than r In Cantor’s case a real was defined as an infinite
sequence of rational numbers n/m that approach r more and more
closely.

History did not take any more kindly to their work than it has to
any other attempt at a “final solution.”

But first, let me tell you about Cantor’s theory of infinite sets and
his invention of new, infinite numbers for the purpose of measuring
the sizes of all infinite sets. A very bold theory, indeed!

Cantor’s starting point is his notion of comparing two sets, finite
or infinite, by asking whether or not there is a one-to-one correspon-
dence, a pairing between the elements of the two sets that exhausts
both sets and leaves no element of either set unpaired, and no ele-
ment of one of the sets paired with more than one partner in the
other set. If this can be done, then Cantor declares that the two sets
are equally big.

Actually, Galileo had mentioned this idea in one of his dialogues,
the one published at the end of his life when he was under house
arrest. Galileo points out that there are precisely as many positive

integers 1, 2, 3, 4, 5, ... as there are square numbers 1, 4, 9, 16, 25, ...
Up to that point, history has decided that Galileo was right on target.

However, he then declares that the fact that the squares are just a

"Earlier versions of the work of Dedekind and of Cantor on the reals are due to
Eudoxus and to Cauchy, respectively, History repeats itself, even in mathematics.
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tiny fraction of all the positive integers contradicts his previ
observation that they are equally numerous, and that this paralc(i) -
precludes making any sense of the notion of the size of an infinjte sOX

The paradox of the whole being equivalent to one of its parts met'

have deterred Galileo, but Cantor and Dedekind took it entire] E'ly
stride. It did not deter them at all. In fact, Dedekind even put i] .
work for him, he used it. Dedekind defined an infinite set to belo .
_having the property that a proper subset of it is just as numerous a n‘:
fs!'In other words, according to Dedekind, a set is infinite if and ox:ll

if it can be put in a one-to-one correspondence with a part of itselry
one that excludes some of the elements of the original set! .

Meanwhile, Dedekind’s friend Cantor was starting to apply this
new way of comparing the size of two infinite sets to common every-
day mathematical objects: integers, rational numbers, algebraic nun};-
bers, reals, points on a line, points in the plane, etc,

Most of the well-known mathematical objects broke into two
classes: 1) sets like the algebraic real numbers and the rational num-
bers, which were exactly as numerous as the positive integers, and are
therefore called “countable” or “denumerable” infinities, an,d 2) sets
like the points in a finite or infinite fine or in the plane or in space.
which turned out all to be exactly as numerous as each other anci
which are said to “have the power of the continuum,™ And this'gave
‘rise to two new infinite numbers, X, (aleph-nought) and ¢ both
invented by Cantor, that are, respectively, the size (or as Cantor’called
it, the “power” or the “cardinality”) of the positive integers and of
the continuum of real numbers,
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Comparing Infinities!

#{reals} = #{points in line} = #{pointsin plane} = ¢

#{positive integers} = #{rational numbers}
= #{algebraic real numbers} = N,

Regarding his proof that there were precisely as many points in a
plane as there are in a solid or in a line, Cantor remarked in a letter to
Dedekind, “Je le vois, mais je ne le crois pas!,” which means “I see it,
but I don't believe it!,” and which happens to have a pleasant melody
in French. .

And then Cantor was able to prove the extremely important and
basic theorem that ¢ is larger than X,, that is to say, that the contin-
uum is a nondenumerable infinity, an uncountable infinity, in other
words, that there are more real numbers than there are positive inte-
gers, infinitely more. This he did by using Cantor’s well-known diago-
nal method, explained in Wallace, Everything and More, which is all
about Cantor and his theory.

In fact, it turns out that the infinity of transcendental reals is
exactly as large as the infinity of all reals, and the smaller infinity of
algebraic reals is exactly as large as the infinity of positive integers.
Immediate corollary: most reals are transcendental, not algebraic,
infinitely more so.

Well, this is like stealing candy from a baby! It’s much less work
than struggling with individual real numbers and trying to prove that
they are transcendental! Cantor gives us a much more general per-
spective from which to view this particular problem. And it’s much
easier to see that most reals are transcendental than to decide if a
particular real number happens to be transcendental!

So that’s the first of what I would call the “philosophical” proofs
that transcendentals exist. Philosophical as opposed to highly techni-
cal, like flying by helicopter to the top of the Eiger instead of reach-
ing the summit by climbing up its infamous snow-covered north face.
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Is it really that easy? Yes, but this set-theoretic approach created as
many problems as it solved. The most famous is called Cantor’s con-
tinuum problem.

What is Cantor’s continuum problem?

Well, it’s the question of whether or not there happens to be any set
that has more elements than there are positive integers, and that has
fewer elements than there are real numbers. In other words, is there an
infinite set whose cardinality or power is bigger than X, and smaller
than ¢? In other words, is ¢ the next infinite number after X,, which
has the name X, (aleph-one) reserved for it in Cantor’s theory, or are
there a lot of other aleph numbers in between?

Cantor's Continuum Problem

Is there a set S such that R, < #8 < ¢?

In other words, is ¢ = R,, which is
the first cardinal number after R,?

A century of work has not sufficed to solve this problem!

An important milestone was the proof by the combined efforts
of Gédel and Paul Cohen that the usual axioms of axiomatic set
theory (as opposed to the “naive” paradoxical original Cantorian
set theory) do not suffice to decide one way or another. You can add a
new axiom asserting there is a set with intermediate power, or that
there is no such set, and the resulting system of axioms will not lead
to a contradiction (unless there was already one there, without even
having to use this new axiom, which everyone fervently hopes is not
the case).

Since then there has been a great deal of work to see if there might
be new axioms that set theorists can agree on that might enable them
to settle Cantor’s continuum problem. And indeed, something called
the axiom of projective determinacy has become quite popular
among set theorists, since it permits them to solve many open prob-
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lems that interest them. However, it doesn’t suffice to settle the contin-
uum problem!

So you see, the continuum refuses to be tamed!

And now we'll see how the real numbers, annoyed at being
“defined” by Cantor and Dedekind, got their revenge in the century
after Cantor, the 20th century.

BOREL'S AMAZING KNOW-IT-ALL REAL NUMBER

The first intimation that there might be something wrong, something
terribly wrong, with the notion of a real number comes from a small
paper published by Emile Borel in 1927.

Borel pointed out that if you really believe in the notion of a
real number as an infinite sequence of digits 3.1415926 ... , then
you could put all of human knowledge into a single real num-
ber. Well, that’s not too difficult to do, that’s only a finite amount of
information. You just take your favorite encyclopedia, for example,
the Encyclopaedia Britannica, which 1 used to use when 1 was in
high-school—we had a nice library at the Bronx High School of
Science—and you digitize it, you convert it into binary, and you use
that binary as the base-two expansion of a real number in the unit
interval between zero and one!

So that’s pretty straightforward, especially now that most infor-
mation, including books, is prepared in digital form before being
printed.

But what’s more amazing is that there’s nothing to stop us from
putting an infinite amount of information into a real number. In fact,
there's a single real number, I'll call it Borel’s number, since he imag-
ined it, in 1927, that can serve as an oracle and answer any yes/no
question that we could ever pose to it. How? Well, you just number all
the possible questions, and then the Nth digit or Nth bit of Borel’s
number tells you whether the answer is yes or no!

If you could come up with a list of all possible yes/no questions
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and only valid yes/no questions, then Borel’s number could give us the
answer in its binary digits. But it’s hard to do that. It’s much easier
to simply list ali possible texts in the English language (and Borel
did it using the French language), all possible finite strings of char-
acters that you can form using the English alphabet, including a
blank for use between words. You start with all the one-character
strings, then all the two-character strings, etc. And you number them
all like that . . .

Then you can use the Nth digit of Borel’s number to tell you
whether the Nth string of characters is a valid text in English, then
whether it's a yes/no question, then whether it has an answer,
then whether the answer is yes or no. For example, “Is the answer to
this question ‘No'?” looks like a valid yes/no question, but in fact has
no answer.

So we can use Nth digit 0 to mean bad English, 1 to mean not a
yes/no question, 2 to mean unanswerable, and 3 and 4 to mean “yes”
and “no” are the answers, respectively. Then 0 will be the most com-
mon digit, then 1, then there’ll be about as many 3's as 4, and, I
expect, a smattering of 2.

Now Borel raises the extremely troubling question, “Why should
we believe in this real number that answers every possible yes/no ques-
tion?” And his answer is that he doesn’t see any reason to believe in it,
none at alll According to Borel, this number is merely a mathematical
fantasy, a joke, a reductio ad absurdum of the concept of a real number!

You see, some mathematicians have what’s called a “constructive”
attitude. This means that they only believe in mathematical objects
that can be constructed, that, given enough time, in theory one could
actually calculate. They think that there ought to be some way to cal-
culate a real number, to calculate it digit by digit, otherwise in what
sense can it be said to have some kind of mathematical existence?

And this is precisely the question discussed by Alan Turing in his
famous 1936 paper that invented the computer as a mathematical
concept. He showed that there were lots and lots of computable real
numbers. That's the positive part of his paper. The negative part is
that he also showed that there were lots and lots of uncomputable real
numbers. And that gives us another philosophical proof that there are
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transcendental numbers, because it turns out that all algebraic reals
are in fact computable.

TURING: UNCOMPUTABLE REALS ARE TRANSCENDENTAL

Turing’s argument is very simple, very. Cantorian in flavor. First he
invents a computer (on paper, as a mathematical idea, a model com-
puter). Then he points out that the set of all possible computer pro-
grams is a countable set, just like the set of all possible English texts.
Therefore the set of all possible computable real numbers must also
be countable. But the set of all reals is uncountable, it has the power
of the continuum. Therefore the set of all uncomputable reals is also
uncountable and has the power of the continuum. Therefore most
reals are uncomputable, infinitely more than are computable.

That’s remarkably simple, if you believe in the idea of a general-
purpose digital computer. Now we are all very familiar with that idea.
Turing’s paper is long precisely because that was not at all the case in
1936. So he had to work out a simple computer on paper and argue
that it could compute anything that can ever be computed, before giv-
ing the above argument that most real numbers will then be uncom-
putable, in the sense that there cannot be a program for computing
them digit by digit forever,

The other difficult thing is to work out in detail precisely why alge-
braic reals can be computed digit by digit. Well, it’s sort of intuitively
obvious that this has to be the case; after all, what could possibly go
wrong? In fact, this is now well-known technology using something
called Sturm sequences, that’s the slickest way to do this; I’'m sure that
it comes built into Mathematica and Maple, two symbolic computing
software packages. So you can use these software packages to calculate
as many digits as you want. And you need to be able to calculate hun-
dreds of digits in order to do research the way described by Jonathan
Borwein and David Bailey in their book Mathematics by Experiment.

But in his 1936 paper Turing mentions a way to calculate algebraic
reals that will work for a lot of them, and since it’s a nice idea, 1
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thought I'd tell you about it. It’s a technique for root-solving by suc-
cessive interval halving.

Let’s write the algebraic equation that determines an individual
algebraic real r that we are interested in as d(x) = 0; d(x) is a poly-
nomial in x. So &(r) = 0, and let’s suppose we know two rational
numbers a, B such that a < r < B and d(a) < d(r) < &(B) and we also
know that there is no other root of the equation ¢(x) = 0 in that
interval. So the signs of &(a) and &(B) have to be different, neither of
them is zero, and precisely one of them is greater than zero and one of
them is less than zero, that's key. Because if ¢ changes from positive
to negative it must pass through zero somewhere in between.

Then you just bisect this interval [a,B]. You look at the midpoint
(o + B)/2, which is also a rational number, and you plug that into ¢
and you see whether or not $((a+B)/2) is equal to zero, less than zero,
or greater than zero. It’s easy to see which, since you’re only dealing
with rational numbers, not with real numbers, which have an infinite
number of digits.

Then if & of the midpoint gives zero, we have found r and we're fin-
ished. If not, we choose the left half or the right half of our original
interval in such a way that the sign of ¢ at both ends is different, and
this new interval replaces our original interval, r must be there, and
we keep on going like that forever. And that gives us better and better
approximations to the algebraic number 7, which is what we wanted to
show was possible, because at each stage the interval containing r is
half the size it was before.

And this will work if 7 is what is called a “simple” root of its defin-
ing equation ¢(r) = 0, because in that case the curve for ¢(x) will in
fact cross zero at x = r. But if 7 is what is called a “multiple™ root,
then the curve may just graze zero, not cross it, and the Sturm
sequence approach is the slickest way to proceed.

Now let’s stand back and take a look at Turing’s proof that there
are transcendental reals. On the one hand, it’s philosophical like Can-
tor’s proof; on the other hand, it is some work to verify in detail that
all algebraic reals are computable, although to me that seems obvious
in some sense that I would be hard-pressed to justify/explain.

At any rate, now I'd like to take another big step, and show you
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that there are uncomputable reals in a very different way from the way
that Turing did it, which is very much in the spirit of Cantor, Instead
I'd like to use probabilistic ideas, ideas from what’s called measure
theory, which was developed by Lebesgue, Borel, and Hausdorff,
among others, and which immediately shows that there are uncom-
putable reals in a totally un-Cantorian manner.

REALS ARE UNCOMPUTABLE WITH PROBABILITY ONE!

I got this idea from reading Courant and Robbins, Whar is Mathe-
matics?, where they give a measure-theoretic proof that the reals are
non-denumerable (more numerous than the integers).

Let’s look at all the reals in the unit interval between zero and one.
The total length of that interval is of course exactly one. But it turns
out that all of the computable reals in it can be covered with intervals
having total length exactly €, and we can make e as small as we want.
How can we do that?

Well. remember that Turing points out that all the possible com-
puter programs can be put in a list and numbered one by one, so
there’s a first program, a second program, and so forthandsoon. ..
Some of these programs don't compute computable reals digit by
digit: let’s just forget about them and focus on the others. So there’s a
first computable real, a second computable real, etc. And you just
take the first computable real and cover it with an interval of size €/2,
and you take the second computable real and you cover it with an
interval of size €/4, and you keep going that way, halving the size of
the covering interval each time. So the total size of all the covering
intervals is going to be exactly

€ L& L & L€ L&
2 4 8 16 32
which can be made as small as you like.

And it doesn’t matter if some of these covering intervals fall par-
tially outside of the unit interval, that doesn’t change anything.
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So all the computable reals can be covered this way, using an arbi-
trarily small part e of the unit interval, which has length exactly equal
to one.

So if you close your eyes and pick a real number from the unit
interval at random, in such a way that any one of them is equally
likely, the probability is zero that you get a computable real. And
that’s also the case if you get the successive binary digits of your real
number using independent tosses of a fair coin. It’s possible that you
get a computable real, but it's infinitely unlikely. So with probability
one you get an uncomputable real, and that has also got to be a tran-
scendental number, what do you think of that!

Liouville, Hermite and Lindemann worked so hard to exhibit indi-
vidual transcendentals, and now we can do it, almost certainly, by just
picking a real number out of a hat! That’s progress for you!

So let’s suppose that you do that and get a specific uncomputable
real that I'm going to call R+, What if you try to prove what some of
its bits are when you write R* in base-two binary?

Well, we’ve got a problem if we try to do that . ..




