
We saw in class how the least upper bound property of the real numbers implies:

(∗) every bounded-above increasing sequence has a limit.

Now let’s do the converse, i.e., assuming the truth of (∗), we’ll deduce the least
upper bound axiom.

First we deduce Archimedes axiom:
1

The sequence 1, 2, 3, . . . of natural numbers has no upper bound.

Indeed, if there were a bound then (∗) would give that this sequence has a limit,
say L; and then for all large enough n we would have |n − L| < 1

2
, which can’t be

since |n − L| < 1

2
and |(n + 1) − L| < 1

2
can’t both hold.

It follows that limn→0 1/n = 0, because for any ǫ > 0, 1/ǫ is not an upper
bound for the integers, so for all large enough integers n we have 1/ǫ < n, i.e.,
1/n < ǫ, i.e., |1/n− 0| < ǫ. And since 2n > n for all integers (proved by induction,
see Appendix A1, or by showing that 2x−x is an increasing function of x for x ≥ 1),
therefore limn→0 1/2n = 0. Hence (†): for any constant C, limn→0 C/2n = 0.

Now for the least upper bound axiom. Suppose that S is a nonempty bounded-
above set. To show it has a least upper bound, we will construct two sequences

(#) s0 ≤ s1 ≤ s2 ≤ s3 ≤ · · · ≤ t3 ≤ t2 ≤ t1 ≤ t0

such that
(i) No si is an upper bound for S.
(ii) Every ti is an upper bound for S,
(iii) For all i, ti − si = (t0 − s0)/2i.

Once we’ve done this, (∗) gives that the increasing sequence (si) has a limit,
say ℓ. This ℓ must be an upper bound of S : if S had a member s > ℓ, then for
any n large enough that (t0−s0)/2n < s−ℓ (see (†)), since ℓ ≥ sn (why?) therefore

(tn − ℓ) ≤ (tn − sn) = (t0 − s0)/2n < (s − ℓ),

and therefore tn < s, contradicting that tn is an upper bound for S.
Moreover, if ℓ > k then there is an m such that ℓ − sm < ℓ − k (because

ℓ = lim si); and since sm is not an upper bound for S, neither is the smaller
number k. Thus ℓ is the least upper bound of S, whose existence we had to show.

So let’s construct the sequences (#). Let t0 be an upper bound for S. Choose
an s ∈ S and set s0 = s−1. Then s0 is not an upper bound for S. (Notice how we’ve
just used the two hypotheses that S is non empty and that S is bounded above.)

We proceed recursively, that is, one step at a time. Suppose we’ve constructed
s0 ≤ s1 ≤ · · · ≤ sn < tn ≤ tn−1 ≤ · · · t1 ≤ t0 satisfying (i), (ii) and (iii), above. (We
just did that for n = 0.) Then if un = (sn+tn)/2

(

the midpoint of [sn, tn]
)

is not an
upper bound for S, set sn+1 = un, tn+1 = tn; otherwise set sn+1 = sn, tn+1 = un.

Then (check), s0 ≤ s1 ≤ · · · ≤ sn ≤ sn+1 < tn+1 ≤ tn ≤ tn−1 ≤ · · · t1 ≤ t0
satisfies (i), (ii), and (iii). In this way, the sequences (#) get generated.

This completes the proof.

1Archimedes (287 BC–212 BC) is considered to be the greatest mathematician until Newton.
Check out his accomplishments by googling his name. For example, he anticipated some of the

techniques of Calculus. His axiom is an explicit statement of a property of real numbers which
was apparently taken for granted before him, but can’t be deduced from Euclid’s axioms, namely,
given any two line segments, by adding the smaller one to itself sufficiently many times, you
eventually get something longer than the bigger one.
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