Math 182 Recitation2-7
Due at recitation, Thurs. Feb. 7, 2008

1. p. 1031, #12.

2. p. 1032, #40.

3. p. 1032, #43.

4. (a) Let \(g(x, y, z) \) be a function whose gradient doesn’t vanish at any point on the surface \(g(x, y, z) = 0 \). Let \(Q = (a, b, c) \) be a point not on that surface. Let \(P \) be a point on the surface whose distance from \(Q \) is minimal, that is, \(\leq \) the distance \(P'Q \) for any other \(P' \) on the surface. Show that the line joining \(P \) and \(Q \) is perpendicular to the surface at \(P \). (In other words, the sphere with center \(Q \) and passing through \(P \) is tangent to the surface at \(P \).)

 One way to proceed is to see what the Lagrange multiplier method says about minimizing the function \((x-a)^2 + (y-b)^2 + (z-c)^2 \) with \(x, y, z \) constrained to satisfy \(g(x, y, z) = 0 \).

 (b) Which point of the sphere \(x^2 + y^2 + z^2 = 1 \) has the greatest distance from \((1, 2, 3)\)?

 (c) In triangle \(ABC \) let the sides \(BC, AC, AB \) have lengths \(a, b, c \), respectively. For a point \(P \) in the interior, let \(x(P), y(P), \) and \(z(P) \) be the distances of \(P \) to \(BC, AC, \) and \(AB \), respectively. Show that for the point where \(x^2 + y^2 + z^2 \) is minimal, it holds that

 \[
 \frac{x}{a} = \frac{y}{b} = \frac{z}{c} = \frac{2\Delta}{a^2 + b^2 + c^2}
 \]

 where \(\Delta \) is the area of the triangle.

 \textbf{Hint.} Begin by showing that for every \(P, ax + by + cz = 2\Delta \). Then minimize \(x^2 + y^2 + z^2 \) subject to this restraint. You can do this with Lagrange multipliers; but there’s an even easier way, using part (a).

5. Google “Lagrange multiplier” and also “Joseph Louis Lagrange.”