Simplicity of A_n $(n \ge 5)$.

LEMMA 1. If $n \ge 3$ then any proper normal subgroup of the alternating group A_n has index divisible by 3.

Proof. Let $p = |A_n/H|$. Then every *p*-th power in A_n lies in *H*. So if *p* is not divisible by 3 then every 3-cycle lies in *H*, whence $H = A_n$. (Any 3-cycle *c* satisfies $c = c^{3n+1} = (c^{-1})^{3n+2}$, for any integer *n*.)

LEMMA 2. A_5 is simple.

Proof. By Lemma 1, any proper $H \triangleleft A_5$ has order dividing 20. So H cannot contain any order-3 element, i.e., 3-cycle; and also H cannot contain any 5-cycle, since any such has 6 conjugates, and 6 doesn't divide 20. The only remaining nontrivial even permutations are the 15 products (ab)(cd) of two disjoint 2-cycles, any two of which are conjugate in S_5 , hence in A_5 (since 15 is odd); and since 15 doesn't divide 20, these can't be in H either. Thus |H| = 1.

THEOREM. A_n is simple for $n \geq 5$.

Proof. Proceed by induction, the case n = 5 being given above. So suppose n > 5, A_{n-1} is simple, and $H \triangleleft A_n$. Then $H \cap A_{n-1}$, being normal in A_{n-1} , is either A_{n-1} or trivial.

In the former case, any 3-cycle, being conjugate to one in A_{n-1} , lies in H, making $H = A_n$. The same holds if H contains any conjugate of A_{n-1} .

The remaining possibility is that H intersects any conjugate of A_{n-1} trivially, i.e., no nonidentity permutation $h \in H$ has a fixed point. Writing h and its powers (none of which have fixed points) as products of cycles, one sees then that h is a product of p q-cycles for some p and q such that pq = n. Any element in the centralizer C_h of h produces a permutation of these cycles, and thus there is a surjective homomorphism $C_h \twoheadrightarrow S_p$. The kernel consists of all elements that are products of powers of these cycles, and so has cardinality q^p . Thus $|C_h| = (q^p)(p!)$, whence the number of S_n -conjugates of h is $n!/(q^p)(p!)$. The number of A_n -conjugates is at least half of that, and—since all such conjugates lie in H—must be less than

$$|H| = |H|/|H \cap A_{n-1}| < |A_n|/|A_{n-1}| = n.$$

Now $n!/(q^p)(p!)$ is the product of all numbers < n which are not multiples of q, which product is at least (n-1)(n-2) if q > 2, or (n-1)(n-3) if q = 2. In either case, since (n-1)(n-2)/2 > (n-1)(n-3)/2 > n when n > 5, we must have q = 1. Thus |H| = 1.

For another proof, see Clark, §83.