Some questions about $\mathbb{Z}[\sqrt{-5}]$:

- **1.** Which \mathbb{Z} -primes p remain prime in $\mathbb{Z}[\sqrt{-5}]$?
- **2.** Which \mathbb{Z} -primes p are irreducible but not prime in $\mathbb{Z}[\sqrt{-5}]$?
- **3.** Which $a + b\sqrt{-5}$ $(b \neq 0)$ are prime in $\mathbb{Z}[\sqrt{-5}]$?
- 4. Which $a + b\sqrt{-5}$ $(b \neq 0)$ are irreducible but not prime in $\mathbb{Z}[\sqrt{-5}]$?

The following facts, conjectured by Euler and proved by Lagrange, are needed. Let p be an odd \mathbb{Z} -prime $\neq 5$. Then:

• $p = a^2 + 5b^2$ $(a, b \in \mathbb{Z})$ if (hard) and only if (easy) p = 20n + 1 or p = 20n + 9 for some $n \in \mathbb{Z}$.

• $2p = a^2 + 5b^2$ $(a, b \in \mathbb{Z})$ if (hard) and only if (easy) p = 20n + 3 or p = 20n + 7 for some $n \in \mathbb{Z}$.

(You might check that these statements are true for some small primes.)

Now here are some answers to questions 1–3. p will always be a \mathbb{Z} -prime.

• p is reducible in $\mathbb{Z}[\sqrt{-5}]$ if and only if $p = a^2 + 5b^2$ for some a, b in \mathbb{Z} —that is, if and only if p = 20n + 1 or p = 20n + 9 for some $n \in \mathbb{Z}$.

Proof. Since $a^2 + 5b^2 = (a + b\sqrt{-5})(a - b\sqrt{-5})$, and both factors have norm $a^2 + 5b^2$, therefore any integer > 1 of the form $a^2 + 5b^2$ is reducible in $\mathbb{Z}[\sqrt{-5}]$.

Conversely, if p is reducible, say $p = \alpha\beta$ (both factors having norm > 1), then $p^2 = N(p) = N(\alpha)N(\beta)$ (where N denotes "norm"), and therefore $N\alpha$ (which can't be 1 or p^2 , since $N(\beta) > 1$) must be p. So if $\alpha = a + b\sqrt{-5}$ then $p = a^2 + 5b^2$. \Box

• Suppose $2p = a^2 + 5b^2$ for some a, b in \mathbb{Z} —that is, p = 20n + 3 or p = 20n + 7 for some $n \in \mathbb{Z}$. Then a and b can't both be divisible by p, since 2p is not divisible by p^2 . So p divides neither of $a \pm b\sqrt{-5}$, whereas it does divide their product; thus p is not prime in $\mathbb{Z}[\sqrt{-5}]$. Moreover, p is irreducible in $\mathbb{Z}[\sqrt{-5}]$, because otherwise we'd have $p = c^2 + 5d^2$, and then both p and 2p would be $\equiv 1$ or 4 (mod 5).

• The other possible remainders when p is divided by 20 are 11, 13, 17, or 19. It can be shown, using the *quadratic reciprocity theorem* (google it!) that when one of these remainders occurs, then p is prime in $\mathbb{Z}[\sqrt{-5}]$.

For large integers N, approximately half the primes < N behave this way—google "Dirichlet arithmetic progression".

• If $a + b\sqrt{-5}$ $(b \neq 0)$ is prime in $\mathbb{Z}[\sqrt{-5}]$, then its norm $a^2 + 5b^2$ is prime in \mathbb{Z} .

Proof. Since $a + b\sqrt{-5}$ is prime, and it divides $a^2 + 5b^2$, therefore it divides some \mathbb{Z} -prime factor q of $a^2 + 5b^2$, say $(a + b\sqrt{-5})\beta = q$, where $\beta \neq \pm 1$ because $b \neq 0$. Then

$$(a^{2} + 5b^{2})N(\beta) = N(a + b\sqrt{-5})N(\beta) = N(q) = q^{2},$$

and since $N(\beta) > 1$ therefore $a^2 + 5b^2 = N(a + b\sqrt{-5}) = q$.

Conversely, if $a^2 + 5b^2 \neq 5$ is prime in \mathbb{Z} then $a + b\sqrt{-5}$ is prime in . We'll show this later; but meanwhile it's clear that $a + b\sqrt{-5}$ is at least irreducible.

Thus finding the primes of the form $a+b\sqrt{-5}$ $(ab \neq 0)$ is the same as determining all relations of the form $q = a^2 + 5b^2$ with $ab \neq 0$ and $q \in \mathbb{Z}$ -prime.

For example, $89 = 3^2 + 5 \cdot 4^2$, so $3 \pm 4\sqrt{-5}$ are both prime in $\mathbb{Z}[\sqrt{-5}]$.

Conclusion. Questions 1–4 lead to questions about ordinary integers that played an important historical role in the development of number theory (but were not originally thought of in connection with $\mathbb{Z}[\sqrt{-5}]$).

For more in this vein, and its vast implications, see, e.g. the book "Primes of the form x^2+ny^2 " by David Cox. <htp://www.cs.amherst.edu/~dac/primes.html>