Due Fri. Sept. 7

1. (a) Find the inverse of 22 in \mathbb{Z}_{91} .

(b) Solve the congruence $11x \equiv 12 \pmod{91}$. (It may help to use (a).)

2. Let a, a_1, a_2, \ldots, a_n be integers.

(a) Prove by induction on n:

If $(a, a_1) = (a, a_2) = \dots = (a, a_n) = 1$ then $(a, a_1 a_2 \dots a_n) = 1$.

(b) With assumptions as in (a), prove that there is an integer x that is $\equiv 1 \pmod{a}$ and is $\equiv 0 \pmod{a_i}$ for all i = 1, 2, ..., n.

(c) (Chinese Remainder Theorem.) Suppose that $(a_i, a_j) = 1$ whenever $i \neq j$. For any integers x_i (i = 1, 2, ..., n), prove that there is an integer x that is $\equiv x_i \pmod{a_i}$ for all i, and that any two such x differ by a multiple of $a_1 a_2 ... a_n$.

3. Prove, for any integers a, b, c, and any n > 0:

- (a) $(a^n, b^n) = (a, b)^n$.
- (b) If (a, b) = 1 and $ab = c^n$ then $a = u(a, c)^n$, where u is a unit.

Do the following problems in Clark:

4. 24α .

5. 24β.

6. 23 ε . (<u>Hint</u>: use 24 α .)