1. Let F be a finite field of cardinality q, and let $0 \neq x \in F$. Given a positive integer n, let d = (n, q - 1).

- (a) Show that if P is the product of the q-1 nonzero elements of F then $x^{q-1}P=P$; and deduce that $x^{q-1}=1$.
 - (b) Show that every d-th power in F is an n-th power.
 - (c) Show that $x^n = 1 \iff x^d = 1$.
- **2.** For any positive integer n, let $\tau(n)$ be the number of positive integers which divide n, and let $\sigma(n)$ be the sum of these divisors.
- (a) Find formulas for $\tau(n)$ and $\sigma(n)$ in terms of the factorization $n = \prod p_i^{e_i}$ into prime powers.
 - (b) Show that for any positive integers m, n,

$$\sigma(m)\sigma(n) = \sigma((m,n))\sigma([m,n]),$$

$$\tau(m)\tau(n) = \tau((m,n))\tau([m,n]).$$

- **3.** Set $j = \sqrt{-2}$. In the ring $\mathbb{Z}[j]$:
- (a) Factor 14 7j and 5 + j into primes. Justify your answer (explain why the factors are primes).
 - (b) Find a linear combination of 14 7j and 5 + j which divides them both.

Do the following problems in Clark:

- 4. 87η .
- 5. 89γ .

<u>Hint</u>. Prove by induction—and use—that every positive integer n satisfies $n^p \equiv n \pmod{p}$.