MA 503 Homework 7

Due Wed. Oct. 31.

A Pythagorean triple is a triple (x, y, z) of positive integers such that $x^2 + y^2 = z^2$. So x, y and z are the sides of a right-angle triangle. Examples: (3, 4, 5), (9, 12, 15), (5, 12, 13). The problem is to find a way of generating all such triples.

1. A Pythagorean triple (x, y, z) is *primitive* if the gcd of x and y is 1.

(a) Prove that if the Pythagorean triple (x, y, z) is primitive then the gcd's (y, z) and (x, z) are both 1.

(b) Prove that if (x, y, z) is a primitive Pythagorean triple then so is (y, x, z). (This is very easy.)

(c) Prove that if (x, y, z) is a primitive Pythagorean triple then exactly one of x and y is even.

<u>Hint</u>: Work mod 4 to see that x and y can't both be odd.

2. (a) Prove that if (x, y, z) is a Pythagorean triple then so is (dx, dy, dz) for any positive integer d.

(b) Prove that any Pythagorean triple has the form (dx, dy, dz) where (x, y, z) is a primitive Pythagorean triple.

3. Problem 2 makes it clear that to generate all Pythagorean triples you just need to know how to generate all primitive ones; and problem 1(b) shows it's enough to generate those primitive (x, y, z) for which y is even (since every other one is obtained from such a one by switching x and y—for example, you get (4,3,5) from (3,4,5) by doing that.

(a) Prove that if (x, y, z) is a primitive Pythagorean triple with y even then there are positive, relatively prime, integers u > v, just one of which is even, such that

$$x = u^{2} - v^{2}$$
$$y = 2uv$$
$$z = u^{2} + v^{2}.$$

<u>Hint</u>: Begin by showing that (z + x)/2 and (z - x)/2 are relatively prime, and that their product is a square.

(b) Show that conversely for any u, v as in (a), $(u^2 - v^2, 2uv, u^2 + v^2)$ is a primitive Pythagorean triple.

(c) Which values of u and v give you the triple (8,15,17)?

4. Find a formula that generates all triples a < b < c of positive integers such that a^2, b^2, c^2 is an arithmetic progression, i.e., $b^2 - a^2 = c^2 - b^2$. (Example: $1^2, 5^2, 7^2$.)

 $\underline{\mathrm{Hint}}.$

$$x^{2} + z^{2} = 2y^{2} \iff \left(\frac{z-x}{2}\right)^{2} + \left(\frac{z+x}{2}\right)^{2} = y^{2}.$$

Remark. It holds, nontrivially, that the product of four distinct integers in arithmetic progression is never a square. In particular, four such numbers can't all be squares—a fact first stated by Fermat in the 1600s, and not proved by anyone else for over 100 years.

5. Do problem 120α in Clark.

EXTRA CREDIT:

6. Read Theorem 114 in Clark, understand its proof, and do problem 114β .