ORDERING THE NATURAL NUMBERS.

This will illustrate the power of the Dedkind-Peano axioms by showing how one introduces an ordering into $(\mathbb{N}, 1, \sigma)$. (The approach will not be the same as the one in Landau's book, which uses Exercise (2) below as a definition.)

Definition 0.2. $x \leq y$ means that every stable subset of \mathbb{N} that contains x also contains y.

x < y means that $x \leq y$ but $x \neq y$.

Remarks. (a) Let x_{\geq} be the intersection of all stable subsets containing x. Then $x_{\geq} = \{ y \mid x \leq y \}$, and $x \leq y \iff x_{\geq} \supseteq y_{\geq}$. (Visualize this on the number line.)

(b) For all $x \in \mathbb{N}$, we have $1 \le x$. (This just restates the induction axiom.)

(c) For all $x \in \mathbb{N}$, we have $x < \sigma(x)$. (\leq is trivial; and prove \neq by induction.)

Proposition 0.3. For all $x, y, z \in \mathbb{N}$, and with $x + 1 := \sigma(x)$:

(i) $x \leq x$.

(ii) If $x \leq y$ and $y \leq z$ then $x \leq z$.

(iii) If x < y then $x + 1 \le y$.

(iv) (Ordering is total.) One of $x \le y, y < x$ always holds.

(v) If $x \leq y$ and $y \leq x$ then x = y. (Thus the conditions in (iv) can't both hold.)

Proof. (i) and (ii) are trivial. Make the class come up with the proofs.

(iii) (Might still be left to the class.) If S is a stable subset containing x + 1 then $S \cup \{x\}$ is a stable subset containing x, hence y; and since $y \neq x$ therefore $y \in S$.

(iv) Fix x. Let $Y = \{ y \mid \text{either } x \leq y \text{ or } y < x \}$. If $x \leq y$ then $x \leq y \leq \sigma(y)$, so, by (ii), $x \leq \sigma(y)$; and if y < x then by (iii), $\sigma(y) \leq x$. Thus Y is stable; and since, by (a) above, $1 \in Y$, therefore $Y = \mathbb{N}$.

(v) If x < y then by (iii) and (b) above, $x+1 \le y \le x$, so by (ii), $(*): x+1 \le x$. This is impossible. To see why, consider the set $Z := \{z \mid z+1 \le z\}$. Since $\sigma(\mathbb{N})$ is a stable set containing $\sigma(1)$ but not 1, therefore $1 \in Z$; and if $z \in Z$ then $\sigma(z) \in Z$, because of the following Lemma. Thus $Z = \mathbb{N}$.

Lemma 1. For any $x, y \in \mathbb{N}$ we have $x \leq y \iff x+1 \leq y+1$.

Proof. Note that $\sigma(\mathbb{N}) \cup \{1\}$ is a stable set containing 1, hence is all of \mathbb{N} . Thus every $x \neq 1$ in \mathbb{N} is of the form $\sigma(z)$ for some z, unique since σ is injective.

Now suppose $x \leq y$. If $T \subset N$ is stable and contains x + 1, then either $1 \in T$, in which case $T = \mathbb{N}$ and $y + 1 \in T$, or $1 \notin T$, in which case the preceding remark shows that $T = \sigma(S)$ where $S \subset \mathbb{N}$ is easily seen to be a stable subset containing x, hence y, and so T contains $\sigma(y) = y + 1$. Thus $x + 1 \leq y + 1$.

Suppose, conversely, that $x + 1 \leq y + 1$. Let $S \subset \mathbb{N}$ be a stable subset containing x. Then $\sigma(S) \subset \mathbb{N}$ is is easily seen to be a stable subset that contains x + 1, hence $y + 1 \ (= \sigma(y))$, whence $y \in S$. Thus $x \leq y$.

Exercises (optional). (Use only what's been shown today, or the properties of addition and multiplication mentioned in class.)

(1) Show that if x < y + 1 then $x \le y$. (Use (iii) above and Lemma 1.)

(2) Show that x < y if and only if there is a z such that x + z = y.

<u>Hint</u>: First show that the set $\{z \mid x < x + z\}$ is stable, and contains 1. Then show that $\{y \mid \text{either } y \leq x \text{ or } y = x + z \text{ for some } z\}$ is stable, and contains 1.

(3) Show that $[x < y] \implies [x + z < y + z \text{ and } x \cdot z < y \cdot z].$