
The fundamental theorem of Galois theory

Definition 1. A polynomial in K[X] (K a field) is separable if it has no multiple roots
in any field containing K. An algebraic field extension L/K is separable if every α ∈ L is
separable over K, i.e., its minimal polynomial mα(X) ∈ K[X] is separable.

Definition 2. (a) For a field extension L/K, AutKL is the group of K-automorphisms
of L.

(b) For any subset H ⊂ AutKL, the fixed field of H is the field

LH := {x ∈ L | hx = x for all h ∈ H}.

Remark. Suppose L/K finite. Writing L = K[α1, . . . , αn], and noting that any K-
automorphism of L is determined by what it does to the α’s (each of which must be taken
to a root of its minimal equation over K), we see that AutKL is finite.

Proposition-Definition. For a finite field extension L/K, and G := AutKL, the following

conditions are equivalent—and when they hold we say that L/K is a galois extension, with

galois group G.

1. L/K is normal and separable.

2. L is the splitting field of a separable polynomial f ∈ K[X].

3. |G| = [L : K].
3′. |G| ≥ [L : K].

4. K is the fixed field of G.

Proof. 1 ⇔ 2. Assume 1. Then L, being normal, is, by definition, the splitting field of a
polynomial in K[X] which has no multiple factors over K, and hence is separable (since
L/K is). Conversely, if 2 holds then L is normal and L = K[α1, . . . , αn] with each αi the
root of the separable polynomial f, whence, by a previous result, L/K is separable.

1 ⇒ 4. Assume 1. Obviously K ⊂ LG , and so it will suffice to show that every β /∈ K is
moved by some K-automorphism θ of L. The minimal polynomial g of β is separable, of
degree ≥ 2, so there exists a root β1 6= β of g, and a K-automorphism θ1 : K(β) −→∼ K(β1)
with θ1β = β1. Since L is a splitting field of f over both K(β) and K(β1), therefore (as in
the proof of uniqueness of splitting fields) θ1 extends to a θ with the desired properties.

The implication 4 ⇒ 1 follows from the next Lemma, as does the implication 4 ⇒ 3. As
3 ⇒ 3′ is trivial, it remains to show 3′ ⇒ 4. But that also follows from the Lemma, which
gives [L : K] ≥ [L : LG ] = |G|, so that |G| ≥ [L : K] ⇒ K = LG .

Lemma. For any finite group of automorphisms H of L, L/LH is normal and separable,

of degree |H|. Moreover H = AutLHL.

Proof. For any α ∈ L, let α = α1, α2, . . . , αnα
be the H-orbit of α. Then α is a root of the

separable polynomial gα(X) =
∏

i(X − αi) ∈ LH[X]; and so L/LH is separable algebraic.
Moreover, any αi is a root of the minimal polynomial of α over LH. Therefore gα is that
minimal polynomial, and [LH(α) : LH] = nα.

Any field F with LH ⊂ F ⊂ L and [F : LH] < ∞ has a primitive element β, and then
[F : LH] = nβ ≤ |H|. Hence L/LH has finite degree, otherwise there’d be F ’s of arbitrarily
large degree over LH. So L/LH has a primitive element—call it α—and then L/LH is the
splitting field of the separable polynomial gα, so that L/LH is normal as well as separable.

Clearly, any θ ∈ AutLHL is determined by θ(α), which is a root of gα, so equal to φ(α)
for some φ ∈ H. Thus AutLHL is contained in, hence equal to, H. Furthermore, φ 7→ φ(α)
is a bijection from H onto the orbit of α. So |H| = nα = [L : LH]. �
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Corollary. Let L ⊃ F ⊃ K be fields, with L/K galois. Then:

(i) L/F is galois.

(ii) F/K is galois iff gF = F for every g ∈ AutKL; in other words, a subfield of L/K
is normal over K iff it is equal to all its conjugates. When F/K is galois, restriction of

automorphisms gives rise to an isomorphism

AutKL/AutF L −→∼ AutKF.

Proof. (i) This is immediate from 2 of the Proposition.
(ii) If F/K is galois, then for every α in F, F contains all the roots in L of the minimal

polynomial of α over K; and since gα must be such a root for any g ∈ AutKL, therefore
gα ∈ F . Thus gF ⊂ F for all g ; and since, clearly, [gF : K] = [F : K], therefore gF = F .

Suppose now that gF = F for every g. Then the group homomorphism AutKL → AutKF
given by restriction is surjective (see the proof of the theorem on uniqueness of splitting
fields), whence the last assertion. It follows from this surjectivity that the fixed field K of
AutKL is also the fixed field of AutKF, so that F/K is galois.

Theorem. (Fundamental theorem of Galois Theory). Let L/K be a galois extension, with

galois group G := AutKL.

To each subfield F of L/K (= field between K and L) associate the group GF := AutF L;
and to each subgroup H < G associate the fixed field LH. Then:

(a) These associations are inverse inclusion-reversing bijections between the set of sub-

fields of L/K and the set of subgroups of G.

(b) If F ⊂ F ′ are subfields of L/K, then

[F ′ : F ] = [GF : G′
F ].

If H′ < H < G are subgroups, then

[H : H′] = [LH
′

: LH].

(c) If F is a subfield of L/K and g ∈ G then gF is a subfield of L/K and

GgF = gGF g−1.

If H < G then

LgHg−1

= gLH.

In other words, “conjugate subfields” correspond to conjugate subgroups.

(d) A subfield F of L/K is normal—hence galois—over K iff GF is a normal subgroup

of G.

Proof. (a) follows from 4 of the Proposition and from the Lemma (last part).
To prove the first part of (b), apply 3 of the Proposition to the galois extensions L/F

and L/F ′ (see Corollary) to get

[F ′ : F ] = [L : F ]/[L : F ′] = |GF |/|GF ′ | = [GF : GF ′ ];

and using (a), deduce the second part by setting F = LH and F ′ = LH
′

.
For the first part of (c), just note that h ∈ gGF g−1 ⇐⇒ g−1hgx = x for all x ∈ F ⇐⇒

hy = y for all y = gx ∈ gF . The second part can easily be checked directly, or, using (a),
deduced from the first part by setting F = LH.

Finally, (d) follows from (c) and the Corollary, because a normal subgroup is one equal
to all its conjugates.


