The fundamental theorem of Galois theory

Definition 1. A polynomial in K[X] (K a field) is separable if it has no multiple roots
in any field containing K. An algebraic field extension L/K is separable if every « € L is
separable over K, i.e., its minimal polynomial m,(X) € K[X] is separable.

Definition 2. (a) For a field extension L/K, Autyx L is the group of K-automorphisms
of L.

(b) For any subset H C Autg L, the fized field of H is the field

L":={xecL|hz=uxforalhecH}

Remark. Suppose L/K finite. Writing L = Klay,...,a,], and noting that any K-
automorphism of L is determined by what it does to the a’s (each of which must be taken
to a root of its minimal equation over K), we see that Auty L is finite.

Proposition-Definition. For a finite field extension L/ K, and G:= Autk L, the following
conditions are equivalent—and when they hold we say that L/K is a galois extension, with
galois group G.

1. L/K is normal and separable.

2. L is the splitting field of a separable polynomial f € K[X].

3. |6|=[L:K].

3.6l > [L: K].

4. K is the fized field of G.

Proof. 1 & 2. Assume 1. Then L, being normal, is, by definition, the splitting field of a
polynomial in K[X] which has no multiple factors over K, and hence is separable (since
L/K is). Conversely, if 2 holds then L is normal and L = K|ay, ..., a,] with each a; the
root of the separable polynomial f, whence, by a previous result, L/K is separable.

1 = 4. Assume 1. Obviously K C L9, and so it will suffice to show that every 8 ¢ K is
moved by some K-automorphism 6 of L. The minimal polynomial g of 3 is separable, of
degree > 2, so there exists a root 31 # (3 of g, and a K-automorphism 6 : K(3) = K(1)
with 68 = 1. Since L is a splitting field of f over both K () and K (), therefore (as in
the proof of uniqueness of splitting fields) #; extends to a 6 with the desired properties.

The implication 4 = 1 follows from the next Lemma, as does the implication 4 = 3. As
3 = 3’ is trivial, it remains to show 3’ = 4. But that also follows from the Lemma, which
gives [L: K] > [L: L9 =G|, so that |G| > [L: K] = K =LY .

Lemma. For any finite group of automorphisms H of L, L/L™ is normal and separable,
of degree |H|. Moreover H = Autpn L.

Proof. For any a € L, let @« = a1, a, ..., ., be the H-orbit of a. Then « is a root of the
separable polynomial g, (X) = [],(X — ;) € L*[X]; and so L/L™ is separable algebraic.
Moreover, any «; is a root of the minimal polynomial of a over L*. Therefore g, is that
minimal polynomial, and [L*(a) : L] = n,.

Any field F with L™ ¢ F C L and [F : L] < co has a primitive element 3, and then
[F: L™] = ng < |H|. Hence L/L™ has finite degree, otherwise there’d be F’s of arbitrarily
large degree over L’ So L/L™ has a primitive element—call it a—and then L/L is the
splitting field of the separable polynomial g, so that L/L™ is normal as well as separable.

Clearly, any 6 € Autyx L is determined by 6(«), which is a root of g4, so equal to ¢(a)
for some ¢ € H. Thus Auty» L is contained in, hence equal to, H. Furthermore, ¢ — ¢(«)
is a bijection from H onto the orbit of a. So |H| =n, = [L: L"]. O
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Corollary. Let L D F D K be fields, with L/K galois. Then:

(i) L/F is galois.

(ii) F/K is galois iff gF = F for every g € Autx L; in other words, a subfield of L/K
is normal over K iff it is equal to all its conjugates. When F/K is galois, restriction of
automorphisms gives rise to an isomorphism

Autg L/Autp L = AutgF.

Proof. (i) This is immediate from 2 of the Proposition.

(ii) If F/K is galois, then for every « in F, F' contains all the roots in L of the minimal
polynomial of o over K; and since ga must be such a root for any g € Autg L, therefore
ga € F. Thus gF C F for all g; and since, clearly, [¢F : K] = [F : K], therefore gF = F.

Suppose now that gF' = F for every g. Then the group homomorphism Autyg L — Autg F’
given by restriction is surjective (see the proof of the theorem on uniqueness of splitting
fields), whence the last assertion. It follows from this surjectivity that the fixed field K of
Autg L is also the fixed field of Autx F, so that F/K is galois.

Theorem. (Fundamental theorem of Galois Theory). Let L/K be a galois extension, with
galois group G:= Autg L.

To each subfield F of L/K (= field between K and L) associate the group Gp:= AutpL;
and to each subgroup H < G associate the fized field L. Then:

(a) These associations are inverse inclusion-reversing bijections between the set of sub-
fields of L/K and the set of subgroups of G.

(b) If F C F’ are subfields of L/K, then
[F': F) = [r : Gh.
If H' < H < G are subgroups, then
[H:H]=[L" L™,
(¢c) If F is a subfield of L/K and g € G then gF is a subfield of L/K and

ggF = ggFg_l'

If H <G then
LM — g,
In other words, “conjugate subfields” correspond to conjugate subgroups.

(d) A subfield F of L/K is normal—hence galois—over K iff Gr is a normal subgroup
of G.

Proof. (a) follows from 4 of the Proposition and from the Lemma (last part).
To prove the first part of (b), apply 3 of the Proposition to the galois extensions L/F
and L/F' (see Corollary) to get

[F": Fl = [L: FI/[L: F') = |Grl/|Gr| = (G : Gr];

and using (a), deduce the second part by setting F' = L™ and F’ = LM,

For the first part of (c), just note that h € gGrg~! <= g lhgr =z forallx € F +—=
hy =y for all y = gz € gF. The second part can easily be checked directly, or, using (a),
deduced from the first part by setting F' = L.

Finally, (d) follows from (c) and the Corollary, because a normal subgroup is one equal
to all its conjugates.



