The fundamental theorem of Galois theory

Definition 1. A polynomial in $K[X]$ (K a field) is separable if it has no multiple roots in any field containing K. An algebraic field extension L/K is separable if every $\alpha \in L$ is separable over K, i.e., its minimal polynomial $m_\alpha(X) \in K[X]$ is separable.

Definition 2. (a) For a field extension L/K, Aut_KL is the group of K-automorphisms of L.

(b) For any subset $\mathcal{H} \subset \text{Aut}_KL$, the fixed field of \mathcal{H} is the field

$$L^\mathcal{H} := \{ x \in L \mid hx = x \text{ for all } h \in \mathcal{H} \}. $$

Remark. Suppose L/K finite. Writing $L = K[\alpha_1, \ldots, \alpha_n]$, and noting that any K-automorphism of L is determined by what it does to the α’s (each of which must be taken to a root of its minimal equation over K), we see that Aut_KL is finite.

Proposition-Definition. For a finite field extension L/K, and $G := \text{Aut}_KL$, the following conditions are equivalent—and when they hold we say that L/K is a galois extension, with galois group G.

1. L/K is normal and separable.
2. L is the splitting field of a separable polynomial $f \in K[X]$.
4. K is the fixed field of G.

Proof. 1 \iff 2. Assume 1. Then L, being normal, is, by definition, the splitting field of a polynomial in $K[X]$ which has no multiple factors over K, and hence is separable (since L/K is). Conversely, if 2 holds then L is normal and $L = K[\alpha_1, \ldots, \alpha_n]$ with each α_i the root of the separable polynomial f, whence, by a previous result, L/K is separable.

1 \Rightarrow 4. Assume 1. Obviously $K \subset L^G$, and so it will suffice to show that every $\beta \notin K$ is moved by some K-automorphism θ of L. The minimal polynomial g of β is separable, of degree ≥ 2, so there exists a root $\beta_1 \neq \beta$ of g, and a K-automorphism $\theta_1 : K(\beta) \xrightarrow{\sim} K(\beta_1)$ with $\theta_1 \beta = \beta_1$. Since L is a splitting field of f over both $K(\beta)$ and $K(\beta_1)$, therefore (as in the proof of uniqueness of splitting fields) θ_1 extends to a θ with the desired properties.

The implication 4 \Rightarrow 3 follows from the next Lemma, as does the implication 4 \Rightarrow 3. As 3 \Rightarrow 3 is trivial, it remains to show 3 \Rightarrow 4. But that also follows from the Lemma, which gives $[L : K] \geq [L : L^G] = |G|$, so that $|G| \geq [L : K] \Rightarrow K = L^G$.

Lemma. For any finite group of automorphisms \mathcal{H} of L, $L/L^\mathcal{H}$ is normal and separable, of degree $|\mathcal{H}|$. Moreover $\mathcal{H} = \text{Aut}_{L^\mathcal{H}}L$.

Proof. For any $\alpha \in L$, let $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_n$ be the \mathcal{H}-orbit of α. Then α is a root of the separable polynomial $g_\alpha(X) = \prod_i (X - \alpha_i) \in L^\mathcal{H}[X]$; and so $L/L^\mathcal{H}$ is separable algebraic. Moreover, any α_i is a root of the minimal polynomial of α over $L^\mathcal{H}$. Therefore g_α is the minimal polynomial, and $[L^\mathcal{H}(\alpha) : L^\mathcal{H}] = n_\alpha$.

Any field F with $L^\mathcal{H} \subset F \subset L$ and $[F : L^\mathcal{H}] < \infty$ has a primitive element β, and then $[F : L^\mathcal{H}] = n_\beta \leq |\mathcal{H}|$. Hence $L/L^\mathcal{H}$ has finite degree, otherwise there’d be F’s of arbitrarily large degree over $L^\mathcal{H}$. So $L/L^\mathcal{H}$ has a primitive element—call it α—and then $L/L^\mathcal{H}$ is the splitting field of the separable polynomial g_α, so that $L/L^\mathcal{H}$ is normal as well as separable.

Clearly, any $\theta \in \text{Aut}_{L^\mathcal{H}}L$ is determined by $\theta(\alpha)$, which is a root of g_α, so equal to $\phi(\alpha)$ for some $\phi \in \mathcal{H}$. Thus $\text{Aut}_{L^\mathcal{H}}L$ is contained in, hence equal to, \mathcal{H}. Furthermore, $\phi \mapsto \phi(\alpha)$ is a bijection from \mathcal{H} onto the orbit of α. So $|\mathcal{H}| = n_\alpha = [L : L^\mathcal{H}]$. \hfill \square
Corollary. Let $L \supset F \supset K$ be fields, with L/K galois. Then:

(i) L/F is galois.

(ii) F/K is galois iff $gF = F$ for every $g \in \text{Aut}_K L$; in other words, a subfield of L/K is normal over K iff it is equal to all its conjugates. When F/K is galois, restriction of automorphisms gives rise to an isomorphism

$$\text{Aut}_KL/\text{Aut}_FL \cong \text{Aut}_KF.$$

Proof. (i) This is immediate from 2 of the Proposition.

(ii) If F/K is galois, then for every α in F, F contains all the roots in L of the minimal polynomial of α over K; and since $g\alpha$ must be such a root for any $g \in \text{Aut}_K L$, therefore $g\alpha \in F$. Thus $gF \subset F$ for all g; and since, clearly, $[gF : K] = [F : K]$, therefore $gF = F$.

Suppose now that $gF = F$ for every g. Then the group homomorphism $\text{Aut}_KL \rightarrow \text{Aut}_KF$ given by restriction is surjective (see the proof of the theorem on uniqueness of splitting fields), whence the last assertion. It follows from this surjectivity that the fixed field K of Aut_KL is also the fixed field of Aut_KF, so that F/K is galois.

Theorem. (Fundamental theorem of Galois Theory.) Let L/K be a galois extension, with galois group $G := \text{Aut}_K L$.

To each subfield F of L/K (= field between K and L) associate the group $G_F := \text{Aut}_F L$; and to each subgroup $H < G$ associate the fixed field L^H. Then:

(a) These associations are inverse inclusion-reversing bijective between the set of subfields of L/K and the set of subgroups of G.

(b) If $F \subset F'$ are subfields of L/K, then

$$[F' : F] = [G_F : G_{F'}].$$

If $H' < H < G$ are subgroups, then

$$[H : H'] = [L^H : L^{H'}].$$

(c) If F is a subfield of L/K and $g \in G$ then gF is a subfield of L/K and $G_{gF} = gG_F g^{-1}$.

If $H < G$ then

$$L^{gHg^{-1}} = gL^H.$$

In other words, “conjugate subfields” correspond to conjugate subgroups.

(d) A subfield F of L/K is normal—hence galois—over K iff G_F is a normal subgroup of G.

Proof. (a) follows from 4 of the Proposition and from the Lemma (last part).

To prove the first part of (b), apply 3 of the Proposition to the galois extensions L/F and L/F' (see Corollary) to get

$$[F' : F] = [L : F]/[L : F'] = [G_F]/[G_{F'}] = [G_F : G_{F'}];$$

and using (a), deduce the second part by setting $F = L^H$ and $F' = L^{H'}$.

For the first part of (c), just note that $h \in gG_F g^{-1} \iff g^{-1}hx = x$ for all $x \in F \iff hy = y$ for all $y = gx \in gF$. The second part can easily be checked directly, or, using (a), deduced from the first part by setting $F = L^H$.

Finally, (d) follows from (c) and the Corollary, because a normal subgroup is one equal to all its conjugates.