Kronecker-Jacobi symbol and Quadratic Reciprocity

Let Q be the field of rational numbers, and let b € Q, b # 0. For a (positive) prime

integer p, the Artin symbol
(@(@) /@>
p

has the value 1 if Q(\/l_)) is the splitting field of p in @(\/l_)), 0 if p is ramified in Q(\/E),
and —1 otherwise (i.e., if @(\/5) # Q and p is inertial). Here we have identified the Galois
group Aut (Q(\/E)) with a subgroup of the multiplicative group {£1}.

For arbitrary positive rational a =[]}, pI', we set

(M> ::ﬁ (M)m (:=1ifm=0, ie,a=1).

a/ .
i=1 pi

This gives rise to a homomorphism (reciprocity map) from the multiplicative group of
non-zero rational numbers a > 0 relatively prime to the discriminant d(b) of Q(v/)/Q,

into the Galois group of Q(\/l_))/@

Exercise. If div(a) is the norm of a divisor of Q(\/I;), and (a,d(b)) = 1, then a lies in the
kernel of the reciprocity map.

For any 0 # x € Q, the sign of z is
sgn(z):= z/|z| = (=1)°@  where e(x):= (sgn(z) —1)/2.
The number x can be written uniquely in the form
/1,2

v =a'y?, where ' =(=1)@pipy...pm

with m > 0 distinct primes p;.

For nonzero rational b, a, define the Kronecker symbol

(9) — (1)@= (M)

a la’|



One checks that:

(g) _ <1) 1 (_il) — (—1)°®) = sgn(b).
o0 () () (el BT
(i) ( g) £ 0 iff o’ and d(b) are relatively prime.

b b b
(iv) < > = <—) (—) as long as the right hand member does not vanish.
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Well-known facts about behavior of primes in quadratic number fields give, further:

b
(v) If p is an odd prime and b is an integer then <—> is just the usual Legendre symbol.
p

(vi) If 2 does not divide d(b) (i.e., d(b) =b =1 (mod 4)), then

b b -1 b2—1
(—) =(-1)"7 = (-1)"85 = £1 according as b’ is or is not a square mod d(2) = 8.

b
Now (iv), (v), (vi) allow us to define (—) solely in terms of Legendre symbols, to wit:
a

()= vee 11 (4)

p prime
pla’

(This is how it was done originally). From this definition, one gets at once:

b1b b b
(vii) (ﬁ) = (—1) (—2> as long as the right hand member does not vanish.
a

a a

(viii) If @ > 0 and by, bo are integers with by = by (mod d(a)), then

(4)-()

(If a is an odd positive integer, it is even sufficient that by = by (mod a))



The heart of the reciprocity law lies in the following fact.

b
THEOREM. The mapping a — (—) induces a homomorphism x, from the multiplica-
a

tive group (Z/d(b)Z)* of units in Z/d(b)Z onto the Galois group Aut(Q(vb)). This x,,
called the quadratic character of @(\/5)/@ when Q(\/E) # Q (i.e., b # 1), is the unique
/
homomorphism taking any odd prime p not dividing b to the Legendre symbol (b—)
p

In other words:

(x) if af = a5 (mod d(b)) then (ﬁ) N (£>
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Moreover, if Q(\/l;) # Q then there exists a with (é) =-—1.

Proof. Uniqueness is shown by replacing a by ap,) := a’ + nd(b) where n is such that
apy) is positive and odd, and then factoring ajy,) into primes. (Such an n clearly exists if a
is odd or if @’ is even and relatively prime to d(b)—so that d(b) is odd.)

It is an exercise to show that the unique quadratic number field with discriminant d
(namely Q(v/d)) is a subfield of the cyclotomic field Q(¢;), where (; is a primitive |d|-th
root of unity. [Start with the facts that Q(\/j:Q) C Q(¢g) and that for an odd prime p,

For any prime p, (%) is the image of p under the Artin map into Q(\/l_)), hence

the restriction of the image of p under the Artin map into Q(¢,;) (d := d(b)), i.e., the
automorphism taking ¢, to ¢}. Here, in view of (iv), we can replace p by any positive
integer a; and furthermore, to do the same for negative a, it will suffice to do it for —1, i.e.,

to show that the automorphism 6 taking ¢, to Cd_l takes Vb to (%) Vb = sgn(b)v/b. But
this follows at once from the fact that the fixed field of 0 is @(C d) N R whenever |d| > 1.
Surjectivity of x, results from its factorization as
(Z/d(b)Z)" = Aut(Q((y)) — Aut(Q(VD)).
Q.E.D.

COROLLARY 1. For any odd integer a,

(__1) = sen(a).(~1) 7 = (-1)*F*

a

(: +1 according as a is or is not a square mod d(—1) = —4).

Proof. Since d(—1) = —4, the Theorem (with b = —1) reduces the problem to the two
simple cases a = 1, a = 3.



COROLLARY 2. For any odd integer a,

(= £1 according as a is or is not a square mod d(2) = 8).

Proof. Since d(2) = 8, the Theorem (with b = 2) reduces the problem to the simple
cases a = 1,3,5,7.
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COROLLARY 3. If q is an odd prime, ¢* = (—1)qTq, and a # 0 is an integer, then

(5)-6)

Proof. Note that d(¢*) = q. So for variable a with (a,q) = 1, (q_) and (ﬁ) are
a q
both homomorphisms of the (cyclic) group of units in Z/qZ onto a group of order 2. But

there is only one such homomorphism, hence the assertion holds in this case.

COROLLARY 4. Let b be any odd integer, set b*:= (—1)b_le (so that d(b*) = b*), and

let a # 0 be an integer. Then
PY_ (e
a) \[b]

Proof. We may assume that b is square—free, and (a, b) = 1; and then use bjb5 = (b1b2)*
and b* = |b|* to reduce, via (iv) and (vii), to Corollary 3.

Combining these corollaries we obtain the reciprocity law for the Kronecker symbol:

If (a,d(b)) = (b,d(a)) =1, then, with a’ = 2™ag, b’ = 2"by, (ag and by odd), it holds that

@Y (b)) = (qyert et e @)
b a

Proof. We can replace a by a’ and b by b (see (ii)), i.e., we may assume that a and b
are squarefree integers. Then at least one of a,b must be odd; we may assume b odd.

Now if b =1 (mod 4) then bOT_l is even, by = b = b*, and by Corollary 4,

()-()-(-crt

whence the assertion in this case.




If b=3 (mod 4) then by = b = —b*, a = ag (since 1 = (a,d(b) = (a,4d)), and by (vii),
(vi) and Corollary 4,

()= () (&) () -ty

whence the assertion in this case too. Q.E.D.

Remark. The kernel of x, consists of all residue classes in Z/d(b)Z of norms of ideals
in the ring of integers of Q(\/Z_)) which are relatively prime to d(b).

Sufficiency follows from the exercise on page 1. When p is prime, and x,(p):= (%) =1

then p splits in Q(\/B ), so p is a norm. Then use Dirichlet’s theorem on primes in
arithmetic progressions to see that for any integer a with (a,d(b)) = 1, there exists a
prime p such that p = a (mod d(b)).

Example. 4177 is a prime number. Is 2819 a quadratic residue or non-residue?

(2819/4177) = (4177/2819) = (1358/2819)
(2/2819)(679/2819) = —(679,/2819)
(2819/679) = (103/679) = —(679/103)
= —(61/103) = —(103/61) = —(42/61)

= —(2/61)(21/61) = (61/21) = (19/21)

= (21/19) = (2/19) = -1 (nonresidue).

Exercises.
1. Check that (g) = 1, and that 5 is not a square (mod 6).

2. Show that (50009/129061) = —1. (129061 is prime.)
3. Try to show, without using the Theorem, that for integers a, b with 0 < a < d(b),

(=)= (=)

Remarks. 1. The key to the above approach to reciprocity was the fact that any quadratic
extension of Q is contained in a cyclotomic field. An important theorem (Kronecker—
Weber) states that any abelian extension of Q is contained in a cyclotomic field. 1t follows,
as in the above proof, that if K/Q is an abelian extension, with, say K C @(w ) then the
splitting field of a prime p which does not ramify in K depends only on the residue class
of pin Z/nZ. Similar simple decomposition laws hold for abelian extensions of arbitrary
number fields; this is a basic fact of class field theory.

2. In more sophisticated treatments of reciprocity, sign complications are dealt with
more elegantly in terms of behavior at the “infinite prime.”






