1. Let $f(X) \in \mathbb{Q}[X]$ be an irreducible polynomial of degree n > 2 such that f(X) = f(-X). Prove that the galois group of f is not the symmetric group S_n .

2. Let K be the splitting field over \mathbb{Q} of $X^4 - 2X^2 - 1$.

(a) Determine the galois group of K/\mathbb{Q} .

(b) Show that the only three subfields of K having degree 2 over \mathbb{Q} are $\mathbb{Q}(\sqrt{-1})$, $\mathbb{Q}(\sqrt{2})$, and $\mathbb{Q}(\sqrt{-2})$.

3. D&F, p. 582, **#11**.

4. Let k be a field of characteristic $\neq 2$, and let $f \in k[X]$ be an irreducible polynomial of degree 4. If r_1 , r_2 , r_3 and r_4 are the roots of f (in some splitting field), then the polynomial g whose roots are $r_1r_2+r_3r_4$, $r_1r_3+r_2r_4$ and $r_1r_4+r_2r_3$ is called the *resolvent cubic* of f.

(a) Show that the discriminant of f is the same as that of g.

(b) Let $G \subset S_4$ be the galois group of f, and let $V \triangleleft S_4$ be the unique normal subgroup of order 4. Prove that the fixed field T of $V \cap G$ is a splitting field of g.

(c) Let t = [T : k] (see (b)). Prove that $G = S_4$, A_4 or V according as t = 6, 3, or 1. What are the possibilities for G when t = 2?

(d) Can the roots of $X^4 + X - 5 \in \mathbb{Q}[X]$ be constructed with ruler and compass? (<u>Hint</u>. Compute the resolvent cubic—see Homework 1.)

(e) Determine the galois group for the minimal polynomial over \mathbb{Q} of each of

 $\sqrt{3+2\sqrt{2}}, \qquad \sqrt{7+2\sqrt{10}}, \qquad \sqrt{5+2\sqrt{5}}, \qquad \sqrt{5+2\sqrt{21}}.$ (Cf. D&F, p. 618, **#13**.)