Math 553 Homework 6

Due Fri. Oct. 12, 2012

1. Let α and β be rational numbers, with $|\alpha| \leq 1/2$, and let m > 0 be an integer such that $\alpha^2 - m\beta^2 = -1 - \delta$ where $0 \leq \delta < 1$. Set $\epsilon := 1$ if $\alpha \geq 0$ and -1 if $\alpha < 0$. Show that if m is not of the form $5n^2$ $(n \in \mathbb{Z})$ then $|(\alpha + \epsilon)^2 - m\beta^2| < 1$.

Deduce that $\mathbb{Z}[\omega]$ is norm-Euclidean when $\omega = \sqrt{6}$, when $\omega = \sqrt{7}$, or when $\omega^2 - \omega + q = 0$ with q = -4, -5 or -7.

2. (Fermat). Find all solutions in positive integers of the equation y³ = x² + 4.
<u>Hint</u>. Prove and use the following facts about Gaussian integers.
(i) a + bi is divisible by 1 + i ⇐⇒ a - b is even.
(ii) If y³ = x² + 4 (x, y ∈ Z), then

$$(x+2i, x-2i) = \begin{cases} 1 & \text{if } x \text{ is odd} \\ (1+i)^3 & \text{if } x \text{ is even.} \end{cases}$$

(iii) If $y^3 = x^2 + 4$ then $x + 2i = i^n (a + bi)^3$ for some *n*, *a*, *b*.

3. Let $\omega \in \mathbb{C}$ satisfy $\omega^2 - p\omega + q = 0$ where p and q are integers such that $p^2 - 4q$ is not the square of an integer. The *norm* of $a + b\omega \in \mathbb{Z}[\omega]$ is

$$N(a+b\omega) := (a+b\omega)(a+b\bar{\omega}) := (a+b\omega)(a+b(p-\omega)).$$

Prove for any integers a and b that $n := |N(a+b\omega)|$ is the cardinality of $\mathbb{Z}[\omega]/(a+b\omega)\mathbb{Z}[\omega]$; and deduce that if (a, b) = 1 then there is an isomorphism of rings

$$\mathbb{Z}/N(a+b\omega)\mathbb{Z} \xrightarrow{\sim} \mathbb{Z}[\omega]/(a+b\omega)\mathbb{Z}[\omega].$$

<u>Hint</u>. Show that the cardinality of $\mathbb{Z}[\omega]/(a+b\omega)\mathbb{Z}[\omega]$ is the same as that of $\mathbb{Z}[\omega]/(a+b\overline{\omega})\mathbb{Z}[\omega]$, and that multiplication by $a+b\omega$ gives a group isomorphism

$$\mathbb{Z}[\omega]/(a+b\bar{\omega})\mathbb{Z}[\omega] \xrightarrow{\sim} (a+b\omega)\mathbb{Z}[\omega]/n\mathbb{Z}[\omega].$$

Then use that the cardinality of $\mathbb{Z}/n\mathbb{Z}$ is n^2 . (Why?)

(OVER)

4. Let $\omega \neq -1$ be a complex number satisfying $\omega^3 = -1$. We showed in class that $\mathbb{Z}[\omega]$ is a Euclidean domain.

(a) Let p > 3 be an odd prime in \mathbb{Z} . Show that:

 $p \equiv 1 \pmod{6} \iff -1$ has three cube roots in $\mathbb{Z}/p \iff -3$ is a square in \mathbb{Z}/p .

(b) Prove that every prime p > 0 in \mathbb{Z} of the form p = 6n + 1 can be represented in the form $p = a^2 + ab + b^2$ (a > b > 0) in one and only one way.

(c) Prove that every prime p > 0 in \mathbb{Z} of the form p = 6n + 1 can be represented in the form $p = a^2 + 3b^2$ (a, b > 0) in one and only one way.

(d) Prove that every *odd* prime p in \mathbb{Z} factors into primes in $\mathbb{Z}[\sqrt{-3}]$. What about p = 2?

5. (a) Let n > 1 be an integer. Prove that a prime p in \mathbb{Z} has at most one representation of the form $p = a^2 + nb^2$ with a, b positive integers.

(b) Show that p as in (a) is of the form $a^2 + 2b^2$ if and only if -2 is a square in \mathbb{Z}/pZ .

(c) Let F be a field in which $2 \neq 0$. Show that F has an element of multiplicative order 8 if and only if both -1 and 2 are squares in F.

(d) (Stated by Fermat about 350 years ago; first published proof by Euler over 100 years later.) Prove that every prime p > 0 in **Z** of the form p = 8n + 1 can be represented in the form $p = a^2 + 2b^2$ (a > 0, b > 0).

(e) Repeat problem (b) for p = 8n + 3.

You will need that 2 is not a square in \mathbb{Z}/p . Here is a sketch of one way to see this:

Let F be any finite field, of odd cardinality $q \quad (\Rightarrow 2 \neq 0 \text{ in } F)$.

Let $S \subset F$ be the set of all x such that x and x + 1 are both nonzero squares, and let s be the cardinality of S.

- i) Show that $x \in S \Leftrightarrow 1/x \in S$; and deduce that s is odd iff 2 is a square in F.
- ii) Show that $\sigma \mapsto (\sigma + \sigma^{-1} 2)/4$ is a two-to-one map from the set Σ of all squares $\sigma \neq 0, 1, -1$ in F onto S.

iii) The cardinality of Σ is $\frac{q-3}{2}$ if -1 is not a square, and $\frac{q-5}{2}$ otherwise. (Why?)

iv) Deduce that 2 is a square in $F \iff q \equiv \pm 1 \mod 8$.