Math 553 Homework 9

1. Let $K \subset L$ be a field extension of finite degree, and let $f \in K[X]$ be an irreducible polynomial whose degree is relatively prime to [L:K]. Show that f is irreducible in L[X]. <u>Hint</u>: Consider the degree [F:K] where F is obtained from L by adjoining a root of f.

2. Read D&F pp. 587-8, starting with Prop. 18 (to be proved in class).

(a) Factor $X^{16} - X$ into irreducible polynomials over \mathbb{F}_4 and over \mathbb{F}_8 . Represent the elements of \mathbb{F}_4 as 0, 1, α , and $\alpha^2 = \alpha + 1$.

(b) <u>Optional</u>. In MAPLE type Factor $(X^{80} - 1) \mod 3$; $\langle \text{ return } \rangle$. How many irreducible polynomials of degree 4 are there in $\mathbb{Z}/3[X]$? What about degree 3? (<u>After answering, type</u> ? mipolys).

(c) <u>Optional</u>. Type ? Factor . Display the set of all irreducible polynomials of degree 2 over a field of cardinality 9.

3. (a) Show that the polynomials $f(X) = X^3 + X^2 + 1$ and $g(X) = X^3 + X + 1$ are irreducible over the field \mathbb{F}_4 with four elements. (Cf. 1.)

(b) The fields $\mathbb{F}_4[X]/(f(X))$ and $\mathbb{F}_4[Y]/(g(Y))$ must be isomorphic, since both have cardinality 64. Describe *explicitly* an isomorphism between them.

4. Determine the minimal polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over each of the following: (a) \mathbb{Q} , (b) $\mathbb{Q}(\sqrt{5})$, (c) $\mathbb{Q}(\sqrt{10})$, (d) $\mathbb{Q}(\sqrt{15})$.

5. Let F be a field, and let α be an element which generates a field extension of F of degree 5. Prove that α^2 generates the same extension.

6. Decide whether or not $i := \sqrt{-1}$ is in the field

(a) $\mathbb{Q}(\sqrt{-2})$, (b) $\mathbb{Q}(\sqrt[4]{-2})$, (c) $\mathbb{Q}(\sqrt[4]{-4})$, (d) $\mathbb{Q}(\alpha)$ where $\alpha^3 + \alpha = -1$.

7. Let α , β be complex numbers of degree 3 over \mathbb{Q} , and let $K = \mathbb{Q}(\alpha, \beta)$. Determine the possibilities for $[K : \mathbb{Q}]$.

8. Determine whether or not the regular 9-gon is constructible by ruler and compass.

9. (a) Let F be a finite field of characteristic p, and let $\varphi \colon F \to F$ be the map defined by $\varphi(x) = x^p$. Show that φ is an automorphism of F.

(b) Show that every automorphism of F is a power of φ .

<u>Hint</u>: Let *E* be the prime subfield of *F*. There is a β such that $F = E(\beta)$. (Why?). Show that every root of the minimal polynomial of β over *E* has the form $\varphi^n(\beta)$.