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A NEW PRIME p FOR WHICH THE LEAST
PRIMITIVE ROOT (mod p) AND THE LEAST
PRIMITIVE ROOT (mod p2) ARE NOT EQUAL

A. PASZKIEWICZ

Abstract. With the aid of a computer network we have performed a search
for primes p < 1012 and revealed a new prime p = 6692367337 for which its
least primitive root (mod p) and its least primitive root (mod p2) are not equal.

1. Introduction

Denote by g(p) the least primitive root of a prime p and by h(p) the least
primitive root (mod p2). Note that according to Jacobi, for an odd prime p, any
primitive root (mod p2) is also a primitive root (mod pk) for each natural number
k. Given a primitive root (mod p), it is quite easy to find a primitive root (mod pk).
This is due to an old theorem by V. A. Lebesque which states:

Theorem. Let p be an odd prime. If g is a primitive root (mod p) and g · g′ ≡
1 (mod pk), 1 < g, g′ < p, then either g or g′ is a primitive root (mod pk) for
k = 1, 2, . . . .

Unfortunately, this theorem does not give the answer to which number g or g′

is the primitive root (mod pk). It has been shown by computation that in most
small cases we have g(p) = h(p). In 1971 E. L. Litver and G. E. Yudina [5] found
that among primes below 1001321 there exists only one prime p = 40487, for which
g(p) �= h(p). We have g(p) = 5 and h(p) = 10 for that p.

2. Method of approach and the new result

From elementary number theory we have the following simple criterion.

Criterion. If g is a primitive root (mod p), then it is also a primitive root (mod p2)
if and only if gp−1 �≡ 1 (mod p2).

The above criterion suggests a method for obtaining exceptional primes p for
which g(p) �= h(p). It is sufficient to check for each prime p if g(p)p−1 ≡ 1 (mod p2).

We have divided all computations into two steps. In the first step we took
advantage of a large earlier precomputed table consisting of primes less than 232

and its least primitive roots. There is only one prime p in the interval [2, 232] for
which g(p) �= h(p), just the prime p = 40487, found by Litver and Yudina. All
computations of this step were performed on one Pentium IV PC computer. In
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the second step, we used about 20 Pentium PC computers at the Warsaw School
of Information Technology under auspices of the Polish Academy of Sciences and
performed computations for primes p up to 1012. During all process of computation
we exploited the fact stated by R. Crandall, K. Dilcher and C. Pomerance [2] that
below 4 · 1012 there exist only two primes p = 1093, found by W. Meissner [6] and
p = 3511, found by N. Beeger [1], for which the congruence 2p−1 ≡ 1 (mod p2)
holds. These are called Wieferich primes. We check that for these two primes we
have g(p) = h(p). The search for Wieferich primes has been extended and the
recent result for these primes was established by J. Knauer and J. Richstein [4],
who checked all primes up to 1.25 ·1015 and did not find any new Wieferich primes.
All these arguments imply that there is no need to consider the least primitive root
g = 2 in our study. By [8] this eliminates about 37.4% of primes p ∈ [2, 1012] for
which we do not verify the condition of the above critetion.

Our calculations show that there is only one Litver–Yudina type prime p =
6692367337 in the interval [232, 1012]. For this prime p we have g(p) = 5 and
h(p) = 7.

In [3] all generalized Wieferich primes were found, with bases a between 100 and
1000, and p < 1011. The smaller values of a are listed in [7]. It is worth mentioning
that the prime p = 6692367337 is among these reported in [3]. It follows from [3],
that for all 1012 < p < 1013 if g(p) = 3 or g(p) = 5, then g(p) = h(p).

On the base of computational observations we can formulate the following con-
jecture and question.

Conjecture. For most primes p, we have g(p) = h(p).

Question. Do there exist infinitely many primes p for which g(p) �= h(p)?

Concerning the Conjecture and Question it should be pointed out that we do
not know that there are infinitely many primes p with g(p) = h(p). I believe that
the answer is positive in both cases.
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