Selected Math 553 Homework Solutions

HWS6, 1. Let @ and 3 be rational numbers, with |o| < 1/2, and let m > 0 be an integer
such that o> —m@%2 = —1 —§ where 0 < 6 < 1. Set e:=1if & > 0 and —1 if o < 0. Show
that if m is not of the form 5n (n € Z) then |(a + €)? — mB?| < 1.

Deduce that Z[w] is norm-Euclidean when w = v/6, when w = v/7, or when w?—w+¢q = 0
with ¢ = —4,—5 or —7.

Solution.

It holds that
(a4 e)? —mp? = (a®> —mpB% + 1) + 20e = =0 + 2ae = —6 + 2|,

and that

—1<—642la] < -6+1<1,

so that |(a + €)? — m3?| < 1, with equality only if § = 0 and o = £1/2—in which case
mB3? = a? + 1 = 5/4, whence m = 5n?/q? for some relatively prime integers n and q # 0;
and since ¢? divides 5n? therefore ¢ divides 5, forcing ¢> = 1, i.e., m = 5n?, which is
excluded by assumption.

Let’s deduce that Z[/m] is norm-Euclidean when m = 6 or 7. (The argument will also
cover the cases m = 2 and m = 3, treated previously in class.)

We need that any w + vy/m where u and v are rational has a “good approximation”
a+by/m (a,b € Z), that is, if := a — v and 8:= b — v then

(1.1) la? —m3?| < 1.

Choose a,b € Z such that |a —u| <1/2 and |b—v| < 1/2. If (1.1) holds, fine. (This always
happens for m = 2 or 3.) If not, then since m < 8 therefore a? — mB%? = —1 — § where
0 <6 < 1, and the above result shows that (1.1) will hold after a is replaced by a + e.

As for Z[w] where w? —w + ¢ =0 (¢ < 0), we need that, with preceding notation,

(1.2) :<(a_u)+b2v>2_(1_4q)(b21)>2>—1.

Set m:=1—4q, f:=(b—v)/2, a:= a+ b — u, choosing b € Z so that |8| < 1/4, and then
a € 7 so that |a] < 1/2. As above, (1.2) is satisfied—after replacement of a by a + e, if
necessary—as long as a? — mf% > —2 and m # 5n?%, which does hold if ¢ = —4,—5 or —7
(and also in the cases ¢ = —2 and ¢ = —3, treated previously in class).



HWS6, 2. (Fermat). Find all solutions in positive integers of the equation y® = 2% + 4.

Hint. Prove and use the following facts about Gaussian integers.
(1) a + bi is divisible by 1 +i <= a — b is even.
(ii) If y® = 22 + 4 (z,y € Z), then

1 if x is odd

(1+4)3 if z is even.

(:p+2i,x2i):{

(iii) If y2 = 22 + 4 then x + 2i = i"(a + bi)3 for some n, a, b.

Solution. First, the hints.

(i) For given a,b € Z, there exist ¢,d € Z such that
a+bi=(c+di)(1+i)=(c—d)+ (c+d)i

iff the equations ¢ —d = a, ¢+ d = b can be solved in Z, i.e., iff (a +)/2 and (a — b/2 are
in Z, i.e., iff a — b is even.

(ii) Any common factor p of (z + 2i) and (z — 2¢) divides their difference, which is
45 = —i(141)*, so p must be an associate of (14)" (0 < n < 4). (Note that 1+ has prime
norm 2, so that 144 is prime.) If  is odd then by (i), (z + 2i) is not divisible by (14 %), so
p is a unit. If z is even, say x = 2z, then z must be odd (otherwise both 3® and 2% would
be divisible by 8, contradicting ¥ — 22 = 4), and so

(x4 2, x —2i) =2(z +i,1+1i) = (1 +4)3.

(iii) Since (z + 2i)(x — 2i) = y>, and every unit in Z[i] is a cube, we see that if = + 2i
and x — 2i are relatively prime, i.e., x is odd, then for some a,b € Z, (x + 2i) = (a + bi)3.
When z, and hence y is even, say y = 2w, then

r+21 x—21 y

(141i)3 (1+4)3% =8’

and since the two factors on the left are relatively prime, it follows easily that, again,
(x4 2i) = (a + bi)3 for some a and b.

Thus

z+2i = (a+bi)® = (a® — 3ab?) + (3a®b — b3)i,

so that = a(a? — 3b?) and b(3a? — b?) = 2. The latter equality forces b = 1 and a = +1
or b= —2 and a = +1, giving, respectively, ’m =2, y=2, ‘ or ’ x=11, y=5.




HWS, 1. Let R be a UFD, with fraction field K. Suppose you already have computer
algorithms for factoring into primes in R and in the polynomial ring K[X]. Describe briefly
how you would instruct a computer to factor into primes in R[X].

Solution. Given a polynomial p € R[X], factor it into primes in K[X]. Represent each
prime K[X]-factor in the form (c¢;/d;)p; with ¢;,d; € R, and p; € R[X] primitive, i.e., the
ged of the coefficients of p; is 1. (Any polynomial ¢ € K[X] has the form (1/d)q’ with
¢ € R[X]; and (1/d)q’ = (¢/d)q* where ¢ = ged of the coefficients of ¢'—determined by
factoring them into primes, whence ¢* € R[X] is primitive.) So

(2.1) p:H%pizsnpi (Wherec:Hci, d:Hdi).
i=1 " i=1 i=1 i=1

What is usually called Gauss’s Lemma, shown by arguing as in the proof of Proposition 5
on p. 303 of D&F, is the assertion that any product of primitive polynomials is primitive.
It follows that in (2.1), ¢ is the ged of the coefficients of dp, whence d|c in R.

Since R[X] is a UFD, Corollary 6 on p. 304 of D&F gives that each p; is prime in R[X].
And by Proposition 2 on p. 296 of D&F, every prime element in R is prime in R[X]. Thus
a prime factorization of p can be gotten from (2.1) by factoring ¢/d into primes in R.

HWS, 2. Let k be a field, z, y, and z indeterminates.

(a) Let f(z) and g(z) be relatively prime polynomials in k[z]. Show that in the poly-
nomial ring k(y)[z], f(z) — yg(x) is irreducible.

(b) Prove that in k(y, z)[z], the polynomial
zt —yza® + (y22% — y)2® + (vPz — y)z +yP2

is irreducible. (Hint. Eisenstein, after rearranging.)

Solutions. (a) By Proposition 5 on p. 303 of D&F, it suffices that f(z) — yg(z) be irre-
ducible in kly][x] = kly, ] = k[z,y] = k[z][y], which it is, by Corollary 6 on p.304 of D&F,
because it is primitive in k[z][y] and irreducible in k(z)[y] (its degree being 1).

(b) The polynomial can be viewed as the primitive polynomial

2?2 —y(2® —yr — y)z + 2(z® — yx —y) € klx, y][2],

to which one applies Eisenstein’s criterion with the prime ® — y(z + 1) € k[x,y] (see (a))
to get irreducibility in k[x, y][z] & kly, z][z], whence in k(y, z)[z] (by Proposition 5 on p. 303
of D&F). Note that Proposition 13 on p. 309 isn’t quite good enough, because it refers to a
monic polynomial; but pretty much the same argument applies to any primitive polynomial
an®™ + an_12" "1+ ... with a,, ¢ P (the prime ideal in Prop. 13).



HWS8, 3. Let R be an integral domain with fraction field K, let R[X] be a polyno-
mial ring, and let a and b be nonzero elements in R. Prove:

(a) If Ris a UFD and P C R[X] is a prime ideal with PN R = (0), then P is a principal
ideal.

(b) aRN bR = abR iff the ring R[X]/(aX — b) is an integral domain.

(c) If ¢ = ag = bp is a nonzero common multiple of a and b then ¢ is an l.c.m. of @ and b
iff pX — ¢ is a prime element in R[X].

(d) An l.c.m. [a,b] exists iff the kernel of the R-homomorphism ¢: R[X] — R[%] ¢ K
taking X to & is a principal ideal.

Solutions. (a) The K[X]-ideal PK[X] generated by P is principal, with generator, say,
q = (¢/d)g* (see solution to 2 above), and then the primitive polynomial f:= ¢* is also a
generator. Being in PK[X], f has the form > h; f; with h; € K[X] and f; € P, from which
follows that af € P for some a # 0 € R. As P is prime and a ¢ P, therefore f € P.

Now any g € P is a multiple of f in K[X]. But a careful reading of the proof of
Proposition 5 on p. 303 of D&F shows that if p € R[X] factors as p = AB in K[X], with
B a primitive polynomial in R[X], then A € R[X]. Thus g is a multiple of f in R[X]; and
so P is generated by f.

(b) Suppose aRNbR = abR. Let f(X) lie in the kernel of ¢. In R[%][X], a is a unit, so
f(X) = (aX — b)g(X) + ¢; clear denominators to get that for some n > 0, h € R[X], and
re R,

a"f(X) = (aX —b)h(X) + 1.

Set X = b/a to see that r = 0. Now choose the least such n. Then if n > 0, the coefficients
of bg = aX —a"f lie in aRNbR = abR, whence the coefficients of g are divisible by a. Hence
a" 1 f(X) = (aX — b)(a"*h(X)), contradicting the minimality of n. So n = 0 and aX — b
divides f. Thus the kernel of ¢ is generated by aX — b, and R[X]/(aX — b) is isomorphic
to the image of ¢, clearly an integral domain.

Conversely, if the element aX — b is prime in R[X], and d € aR N bR = abR, say
d = ap = bq, then p(aX —b) = b(¢X —p) and aX — b doesn’t divide b, and so aX — b divides
gX — p, whence alg and ab|gb = d. Thus aRN bR = abR.

(¢c) Suppose ¢ = [a,b]. Note that neither p nor ¢ is 0, since ¢ # 0. If z is a common
multiple of p and ¢ then bx is a common multiple of bp = aq and of bg, so bz is a multiple
of cq = bpg, whence x is a multiple of pg. Thus [p, q] = pq, or equivalently, pRNqR = pqR;
and by (b), pX — ¢ is prime.

Conversely, if pX — ¢ is prime, so that by (b), pR N ¢R = pqR, i.e., [p,q] = pq, then
[pa, pb] = [gb, pb] = pqgb, whence [a,b] = ¢gb = c.

(d) As in the proof of (¢), if ¢ = ag = bp = [a,b], then pR N ¢R = pgR; so by (b), the
kernel of ¢: R[X] — R[%] = R[%] is generated by pX — q.

Conversely, if the kernel of ¢ is principal, then since it contains a X — b and no nonzero

element of R, its generator, a prime element, must be of the form pX — ¢; and by (b),
pRNgR = pgR, i.e., [p,q] = pq. Moreover, aX —b = r(pX — q) for some r € R. Hence

[a,b] = [rp, rq] = pgr.



HWS8, 4. (a) Prove that if z # 0 and y are elements in a UFD such that 22 divides y?,
then z divides y.

(b) Let k be a field. In the quotient ring R = k[X,Y, Z]/(Y? — X2Z) let x = X and
y = Y be the natural images of X and Y. Show that 22 divides y? in R, but = does not
divide y.

(c) Is R an integral domain? (Why?)

Solutions. (a) [(z,y)? = (z2,3?) = 2?] = [(z,y) =z].

(b) Let z = Z. Then y? = 2%2. If x|y then there are polynomials f and g such that
Y = Xf(X,Y.2)+(Y? - X?Z)9(X.Y, Z).

Setting X = 0 produces a contradiction.

(c) Yes, because Y? — X2Z is irreducible (primitive in k[X,Y][Z] and irreducible in
k(X,Y)[Z]), therefore prime (since k[X,Y, Z] is a UFD).



