
Selected Math 553 Homework Solutions

HW6, 1. Let α and β be rational numbers, with |α| ≤ 1/2, and let m > 0 be an integer

such that α2 − mβ2 = −1 − δ where 0 ≤ δ < 1. Set ǫ := 1 if α ≥ 0 and −1 if α < 0. Show

that if m is not of the form 5n2 (n ∈ Z) then |(α + ǫ)2 − mβ2| < 1.

Deduce that Z[ω] is norm-Euclidean when ω =
√

6, when ω =
√

7, or when ω2−ω+q = 0

with q = −4,−5 or −7.

Solution.

It holds that

(α + ǫ)2 − mβ2 = (α2 − mβ2 + 1) + 2αǫ = −δ + 2αǫ = −δ + 2|α|,

and that

−1 < −δ + 2|α| ≤ −δ + 1 ≤ 1,

so that |(α + ǫ)2 − mβ2| ≤ 1, with equality only if δ = 0 and α = ±1/2—in which case

mβ2 = α2 + 1 = 5/4, whence m = 5n2/q2 for some relatively prime integers n and q 6= 0;

and since q2 divides 5n2 therefore q2 divides 5, forcing q2 = 1, i.e., m = 5n2, which is

excluded by assumption.

Let’s deduce that Z[
√

m ] is norm-Euclidean when m = 6 or 7. (The argument will also

cover the cases m = 2 and m = 3, treated previously in class.)

We need that any u + v
√

m where u and v are rational has a “good approximation”

a + b
√

m (a, b ∈ Z), that is, if α := a − u and β := b − v then

(1.1) |α2 − mβ2| < 1.

Choose a, b ∈ Z such that |a− u| ≤ 1/2 and |b− v| ≤ 1/2. If (1.1) holds, fine. (This always

happens for m = 2 or 3.) If not, then since m < 8 therefore α2 − mβ2 = −1 − δ where

0 ≤ δ < 1, and the above result shows that (1.1) will hold after a is replaced by a + ǫ.

As for Z[ω] where ω2 − ω + q = 0 (q < 0), we need that, with preceding notation,

(1.2)

1 > Norm
(

(a − u) + (b − v)ω
)

= (a − u)2 + (a − u)(b − v) + q(b − v)2

=

(

(a − u) +
b − v

2

)2

− (1 − 4q)

(

b − v

2

)2

> −1.

Set m := 1 − 4q, β := (b − v)/2, α := a + b − u, choosing b ∈ Z so that |β| ≤ 1/4, and then

a ∈ Z so that |α| ≤ 1/2. As above, (1.2) is satisfied—after replacement of a by a + ǫ, if

necessary—as long as α2 − mβ2 > −2 and m 6= 5n2, which does hold if q = −4,−5 or −7

(and also in the cases q = −2 and q = −3, treated previously in class).



HW6, 2. (Fermat). Find all solutions in positive integers of the equation y3 = x2 + 4.

Hint. Prove and use the following facts about Gaussian integers.

(i) a + bi is divisible by 1 + i ⇐⇒ a − b is even.

(ii) If y3 = x2 + 4 (x, y ∈ Z), then

(x + 2i, x − 2i) =

{

1 if x is odd

(1 + i)3 if x is even.

(iii) If y3 = x2 + 4 then x + 2i = in(a + bi)3 for some n, a, b.

Solution. First, the hints.

(i) For given a, b ∈ Z, there exist c, d ∈ Z such that

a + bi = (c + di)(1 + i) = (c − d) + (c + d)i

iff the equations c − d = a, c + d = b can be solved in Z, i.e., iff (a + b)/2 and (a − b/2 are

in Z, i.e., iff a − b is even.

(ii) Any common factor p of (x + 2i) and (x − 2i) divides their difference, which is

4i = −i(1+ i)4, so p must be an associate of (1+ i)n (0 ≤ n ≤ 4). (Note that 1+ i has prime

norm 2, so that 1+ i is prime.) If x is odd then by (i), (x+2i) is not divisible by (1+ i), so

p is a unit. If x is even, say x = 2z, then z must be odd (otherwise both y3 and x2 would

be divisible by 8, contradicting y3 − x2 = 4), and so

(x + 2i, x − 2i) = 2(z + i, 1 + i) = (1 + i)3.

(iii) Since (x + 2i)(x − 2i) = y3, and every unit in Z[i] is a cube, we see that if x + 2i

and x − 2i are relatively prime, i.e., x is odd, then for some a, b ∈ Z, (x + 2i) = (a + bi)3.

When x, and hence y is even, say y = 2w, then

x + 2i

(1 + i)3
x − 2i

(1 + i)3
=

y3

−8i
,

and since the two factors on the left are relatively prime, it follows easily that, again,

(x + 2i) = (a + bi)3 for some a and b.

Thus

x + 2i = (a + bi)3 = (a3 − 3ab2) + (3a2b − b3)i,

so that x = a(a2 − 3b2) and b(3a2 − b2) = 2. The latter equality forces b = 1 and a = ±1

or b = −2 and a = ±1, giving, respectively, x = 2, y = 2, or x = 11, y = 5.



HW8, 1. Let R be a UFD, with fraction field K. Suppose you already have computer

algorithms for factoring into primes in R and in the polynomial ring K[X ]. Describe briefly

how you would instruct a computer to factor into primes in R[X ].

Solution. Given a polynomial p ∈ R[X], factor it into primes in K[X]. Represent each

prime K[X]-factor in the form (ci/di)pi with ci, di ∈ R, and pi ∈ R[X] primitive, i.e., the

gcd of the coefficients of pi is 1. (Any polynomial q ∈ K[X] has the form (1/d)q′ with

q′ ∈ R[X]; and (1/d)q′ = (c/d)q∗ where c = gcd of the coefficients of q′—determined by

factoring them into primes, whence q∗ ∈ R[X] is primitive.) So

(2.1) p =

n
∏

i=1

ci

di

pi =
c

d

n
∏

i=1

pi

(

where c =

n
∏

i=1

ci, d =

n
∏

i=1

di

)

.

What is usually called Gauss’s Lemma, shown by arguing as in the proof of Proposition 5

on p. 303 of D&F, is the assertion that any product of primitive polynomials is primitive.

It follows that in (2.1), c is the gcd of the coefficients of dp, whence d|c in R.

Since R[X] is a UFD, Corollary 6 on p. 304 of D&F gives that each pi is prime in R[X].

And by Proposition 2 on p. 296 of D&F, every prime element in R is prime in R[X]. Thus

a prime factorization of p can be gotten from (2.1) by factoring c/d into primes in R.

HW8, 2. Let k be a field, x, y, and z indeterminates.

(a) Let f(x) and g(x) be relatively prime polynomials in k[x]. Show that in the poly-

nomial ring k(y)[x], f(x) − yg(x) is irreducible.

(b) Prove that in k(y, z)[x], the polynomial

x4 − yzx3 + (y2z2 − y)x2 + (y2z − y)x + y2z

is irreducible. (Hint. Eisenstein, after rearranging.)

Solutions. (a) By Proposition 5 on p. 303 of D&F, it suffices that f(x) − yg(x) be irre-

ducible in k[y][x] ∼= k[y, x] ∼= k[x, y] ∼= k[x][y], which it is, by Corollary 6 on p. 304 of D&F,

because it is primitive in k[x][y] and irreducible in k(x)[y] (its degree being 1).

(b) The polynomial can be viewed as the primitive polynomial

x2y2z2 − y(x3 − yx − y)z + x(x3 − yx − y) ∈ k[x, y][z],

to which one applies Eisenstein’s criterion with the prime x3 − y(x + 1) ∈ k[x, y] (see (a))

to get irreducibility in k[x, y][z] ∼= k[y, z][x], whence in k(y, z)[x] (by Proposition 5 on p. 303

of D&F). Note that Proposition 13 on p. 309 isn’t quite good enough, because it refers to a

monic polynomial; but pretty much the same argument applies to any primitive polynomial

anxn + an−1x
n−1 + . . . with an /∈ P (the prime ideal in Prop. 13).



HW8, 3. Let R be an integral domain with fraction field K, let R[X ] be a polyno-

mial ring, and let a and b be nonzero elements in R. Prove:

(a) If R is a UFD and P ⊂ R[X ] is a prime ideal with P ∩R = (0), then P is a principal

ideal.

(b) aR ∩ bR = abR iff the ring R[X ]/(aX − b) is an integral domain.

(c) If c = aq = bp is a nonzero common multiple of a and b then c is an l.c.m. of a and b

iff pX − q is a prime element in R[X ].

(d) An l.c.m. [a, b] exists iff the kernel of the R-homomorphism φ : R[X ] → R[ b
a ] ⊂ K

taking X to b
a is a principal ideal.

Solutions. (a) The K[X]-ideal PK[X] generated by P is principal, with generator, say,

q = (c/d)q∗ (see solution to 2 above), and then the primitive polynomial f := q∗ is also a

generator. Being in PK[X], f has the form
∑

hifi with hi ∈ K[X] and fi ∈ P , from which

follows that af ∈ P for some a 6= 0 ∈ R. As P is prime and a /∈ P , therefore f ∈ P .

Now any g ∈ P is a multiple of f in K[X]. But a careful reading of the proof of

Proposition 5 on p. 303 of D&F shows that if p ∈ R[X] factors as p = AB in K[X], with

B a primitive polynomial in R[X], then A ∈ R[X]. Thus g is a multiple of f in R[X]; and

so P is generated by f .

(b) Suppose aR∩ bR = abR. Let f(X) lie in the kernel of φ. In R[ 1a ][X], a is a unit, so

f(X) = (aX − b)g(X) + c; clear denominators to get that for some n ≥ 0, h ∈ R[X], and

r ∈ R,

anf(X) = (aX − b)h(X) + r.

Set X = b/a to see that r = 0. Now choose the least such n. Then if n > 0, the coefficients

of bg = aX−anf lie in aR∩bR = abR, whence the coefficients of g are divisible by a. Hence

an−1f(X) = (aX − b)(a−1h(X)), contradicting the minimality of n. So n = 0 and aX − b

divides f . Thus the kernel of φ is generated by aX − b, and R[X]/(aX − b) is isomorphic

to the image of φ, clearly an integral domain.

Conversely, if the element aX − b is prime in R[X], and d ∈ aR ∩ bR = abR, say

d = ap = bq, then p(aX−b) = b(qX−p) and aX−b doesn’t divide b, and so aX−b divides

qX − p, whence a|q and ab|qb = d. Thus aR ∩ bR = abR.

(c) Suppose c = [a, b]. Note that neither p nor q is 0, since c 6= 0. If x is a common

multiple of p and q then bx is a common multiple of bp = aq and of bq, so bx is a multiple

of cq = bpq, whence x is a multiple of pq. Thus [p, q] = pq, or equivalently, pR∩ qR = pqR;

and by (b), pX − q is prime.

Conversely, if pX − q is prime, so that by (b), pR ∩ qR = pqR, i.e., [p, q] = pq, then

[pa, pb] = [qb, pb] = pqb, whence [a, b] = qb = c.

(d) As in the proof of (c), if c = aq = bp = [a, b], then pR ∩ qR = pqR; so by (b), the

kernel of φ : R[X] → R[ q
p ] = R[ b

a ] is generated by pX − q.

Conversely, if the kernel of φ is principal, then since it contains aX − b and no nonzero

element of R, its generator, a prime element, must be of the form pX − q ; and by (b),

pR ∩ qR = pqR, i.e., [p, q] = pq. Moreover, aX − b = r(pX − q) for some r ∈ R. Hence

[a, b] = [rp, rq] = pqr.



HW8, 4. (a) Prove that if x 6= 0 and y are elements in a UFD such that x2 divides y2,

then x divides y.

(b) Let k be a field. In the quotient ring R = k[X,Y,Z]/(Y 2 − X2Z) let x = X and

y = Y be the natural images of X and Y . Show that x2 divides y2 in R, but x does not

divide y.

(c) Is R an integral domain? (Why?)

Solutions. (a)
[

(x, y)2 = (x2, y2) = x2
]

=⇒
[

(x, y) = x
]

.

(b) Let z = Z. Then y2 = x2z. If x|y then there are polynomials f and g such that

Y = Xf(X,Y,Z) + (Y 2 − X2Z)g(X,Y,Z).

Setting X = 0 produces a contradiction.

(c) Yes, because Y 2 − X2Z is irreducible (primitive in k[X,Y ][Z] and irreducible in

k(X,Y )[Z]), therefore prime (since k[X,Y,Z] is a UFD).


