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Straightedge and compass

PREVIEW

For over 2000 years, mathematics was almost synonymous with the
geometry of Euclid’s Elements, a book written around 300 BCE and
used in school mathematics instruction until the 20th century. Eu-
clidean geometry, as it is now called, was thought to be the founda-
tion of all exact science.
Euclidean geometry plays a different role today, because it is no
longer expected to support everything else. “Non-Euclidean geome-
tries” were discovered in the early 19th century, and they were found
to be more useful than Euclid’s in certain situations. Nevertheless,
non-Euclidean geometries arose as deviations from the Euclidean,
so one first needs to know what they deviate from.
A naive way to describe Euclidean geometry is to say it concerns the
geometric figures that can be drawn (or constructed as we say) by
straightedge and compass. Euclid assumes that it is possible to draw
a straight line between any two given points, and to draw a circle
with given center and radius. All of the propositions he proves are
about figures built from straight lines and circles.
Thus, to understand Euclidean geometry, one needs some idea of
the scope of straightedge and compass constructions. This chapter
reviews some basic constructions, to give a quick impression of the
extent of Euclidean geometry, and to suggest why right angles and
parallel lines play a special role in it.
Constructions also help to expose the role of length, area, and angle
in geometry. The deeper meaning of these concepts, and the related
role of numbers in geometry, is a thread we will pursue throughout
the book.

1



2 1 Straightedge and compass

1.1 Euclid’s construction axioms

Euclid assumes that certain constructions can be done and he states these
assumptions in a list called his axioms (traditionally called postulates). He
assumes that it is possible to:

1. Draw a straight line segment between any two points.

2. Extend a straight line segment indefinitely.

3. Draw a circle with given center and radius.

Axioms 1 and 2 say we have a straightedge, an instrument for drawing
arbitrarily long line segments. Euclid and his contemporaries tried to avoid
infinity, so they worked with line segments rather than with whole lines.
This is no real restriction, but it involves the annoyance of having to extend
line segments (or “produce” them, as they say in old geometry books).
Today we replace Axioms 1 and 2 by the single axiom that a line can be
drawn through any two points.

The straightedge (unlike a ruler) has no scale marked on it and hence
can be used only for drawing lines—not for measurement. Euclid separates
the function of measurement from the function of drawing straight lines
by giving measurement functionality only to the compass—the instrument
assumed in Axiom 3. The compass is used to draw the circle through a
given point B, with a given point A as center (Figure 1.1).

A

B

Figure 1.1: Drawing a circle
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To do this job, the compass must rotate rigidly about A after being
initially set on the two points A and B. Thus, it “stores” the length of the
radius AB and allows this length to be transferred elsewhere. Figure 1.2
is a classic view of the compass as an instrument of measurement. It is
William Blake’s painting of Isaac Newton as the measurer of the universe.

Figure 1.2: Blake’s painting of Newton the measurer

The compass also enables us to add and subtract the length |AB| of
AB from the length |CD| of another line segment CD by picking up the
compass with radius set to |AB| and describing a circle with center D
(Figure 1.3, also Elements, Propositions 2 and 3 of Book I). By adding
a fixed length repeatedly, one can construct a “scale” on a given line, effec-
tively creating a ruler. This process illustrates how the power of measuring
lengths resides in the compass. Exactly which lengths can be measured in
this way is a deep question, which belongs to algebra and analysis. The
full story is beyond the scope of this book, but we say more about it below.

Separating the concepts of “straightness” and “length,” as the straight-
edge and the compass do, turns out to be important for understanding the
foundations of geometry. The same separation of concepts reappears in
different approaches to geometry developed in Chapters 3 and 5.
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C D

|AB|
|CD|− |AB|

|CD|+ |AB|

Figure 1.3: Adding and subtracting lengths

1.2 Euclid’s construction of the equilateral triangle

Constructing an equilateral triangle on a given side AB is the first proposi-
tion of the Elements, and it takes three steps:

1. Draw the circle with center A and radius AB.

2. Draw the circle with center B and radius AB.

3. Draw the line segments from A and B to the intersection C of the two
circles just constructed.

The result is the triangle ABC with sides AB, BC, and CA in Figure 1.4.

A B

C

Figure 1.4: Constructing an equilateral triangle

Sides AB and CA have equal length because they are both radii of the
first circle. Sides AB and BC have equal length because they are both radii
of the second circle. Hence, all three sides of triangle ABC are equal. �



1.2 Euclid’s construction of the equilateral triangle 5

This example nicely shows the interplay among

• construction axioms, which guarantee the existence of the construc-
tion lines and circles (initially the two circles on radius AB and later
the line segments BC and CA),

• geometric axioms, which guarantee the existence of points required
for later steps in the construction (the intersection C of the two cir-
cles),

• and logic, which guarantees that certain conclusions follow. In this
case, we are using a principle of logic that says that things equal to
the same thing (both |BC| and |CA| equal |AB|) are equal to each
other (so |BC| = |CA|).

We have not yet discussed Euclid’s geometric axioms or logic. We
use the same logic for all branches of mathematics, so it can be assumed
“known,” but geometric axioms are less clear. Euclid drew attention to
one and used others unconsciously (or, at any rate, without stating them).
History has shown that Euclid correctly identified the most significant ge-
ometric axiom, namely the parallel axiom. We will see some reasons for
its significance in the next section. The ultimate reason is that there are
important geometries in which the parallel axiom is false.

The other axioms are not significant in this sense, but they should also
be identified for completeness, and we will do so in Chapter 2. In particu-
lar, it should be mentioned that Euclid states no axiom about the intersec-
tion of circles, so he has not justified the existence of the point C used in
his very first proposition!

A question arising from Euclid’s construction

The equilateral triangle is an example of a regular polygon: a geometric
figure bounded by equal line segments that meet at equal angles. Another
example is the regular hexagon in Exercise 1.2.1. If the polygon has n
sides, we call it an n-gon, so the regular 3-gon and the regular 6-gon are
constructible. For which n is the regular n-gon constructible?

We will not completely answer this question, although we will show
that the regular 4-gon and 5-gon are constructible. The question for general
n turns out to belong to algebra and number theory, and a complete answer
depends on a problem about prime numbers that has not yet been solved:
For which m is 22m

+1 a prime number?
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Exercises

By extending Euclid’s construction of the equilateral triangle, construct:

1.2.1 A regular hexagon.

1.2.2 A tiling of the plane by equilateral triangles (solid lines in Figure 1.5).

1.2.3 A tiling of the plane by regular hexagons (dashed lines in Figure 1.5).

Figure 1.5: Triangle and hexagon tilings of the plane

1.3 Some basic constructions

The equilateral triangle construction comes first in the Elements because
several other constructions follow from it. Among them are constructions
for bisecting a line segment and bisecting an angle. (“Bisect” is from the
Latin for “cut in two.”)

Bisecting a line segment

To bisect a given line segment AB, draw the two circles with radius AB as
above, but now consider both of their intersection points, C and D. The
line CD connecting these points bisects the line segment AB (Figure 1.6).



1.3 Some basic constructions 7

A B

C

D

Figure 1.6: Bisecting a line segment AB

Notice also that BC is perpendicular to AB, so this construction can be
adapted to construct perpendiculars.

• To construct the perpendicular to a line L at a point E on the line,
first draw a circle with center E, cutting L at A and B. Then the line
CD constructed in Figure 1.6 is the perpendicular through E.

• To construct the perpendicular to a line L through a point E not on
L , do the same; only make sure that the circle with center E is large
enough to cut the line L at two different points.

Bisecting an angle

To bisect an angle POQ (Figure 1.7), first draw a circle with center O cut-
ting OP at A and OQ at B. Then the perpendicular CD that bisects the line
segment AB also bisects the angle POQ.

O Q

P
A

B

C

D

Figure 1.7: Bisecting an angle POQ
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It seems from these two constructions that bisecting a line segment and
bisecting an angle are virtually the same problem. Euclid bisects the angle
before the line segment, but he uses two similar constructions (Elements,
Propositions 9 and 10 of Book I). However, a distinction between line seg-
ments and angles emerges when we attempt division into three or more
parts. There is a simple tool for dividing a line segment in any number of
equal parts—parallel lines—but no corresponding tool for dividing angles.

Constructing the parallel to a line through a given point

We use the two constructions of perpendiculars noted above—for a point
off the line and a point on the line. Given a line L and a point P outside L ,
first construct the perpendicular line M to L through P. Then construct
the perpendicular to M through P, which is the parallel to L through P.

Dividing a line segment into n equal parts

Given a line segment AB, draw any other line L through A and mark
n successive, equally spaced points A1,A2,A3, . . . ,An along L using the
compass set to any fixed radius. Figure 1.8 shows the case n = 5. Then
connect An to B, and draw the parallels to BAn through A1,A2, . . . ,An−1.
These parallels divide AB into n equal parts.

A B

L

A1

A2

A3

A4

A5

Figure 1.8: Dividing a line segment into equal parts

This construction depends on a property of parallel lines sometimes at-
tributed to Thales (Greek mathematician from around 600 BCE): parallels
cut any lines they cross in proportional segments. The most commonly
used instance of this theorem is shown in Figure 1.9, where a parallel to
one side of a triangle cuts the other two sides proportionally.
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The line L parallel to the side BC cuts side AB into the segments AP
and PB, side AC into AQ and QC, and |AP|/|PB| = |AQ|/|QC|.

B C

A

L P Q

Figure 1.9: The Thales theorem in a triangle

This theorem of Thales is the key to using algebra in geometry. In
the next section we see how it may be used to multiply and divide line
segments, and in Chapter 2 we investigate how it may be derived from
fundamental geometric principles.

Exercises
1.3.1 Check for yourself the constructions of perpendiculars and parallels de-

scribed in words above.

1.3.2 Can you find a more direct construction of parallels?

Perpendiculars give another important polygon—the square.

1.3.3 Give a construction of the square on a given line segment.

1.3.4 Give a construction of the square tiling of the plane.

One might try to use division of a line segment into n equal parts to divide
an angle into n equal parts as shown in Figure 1.10. We mark A on OP and B at
equal distance on OQ as before, and then try to divide angle POQ by dividing line
segment AB. However, this method is faulty even for division into three parts.

P

O

Q
A B

Figure 1.10: Faulty trisection of an angle

1.3.5 Explain why division of AB into three equal parts (trisection) does not al-
ways divide angle POQ into three equal parts. (Hint: Consider the case in
which POQ is nearly a straight line.)



10 1 Straightedge and compass

The version of the Thales theorem given above (referring to Figure 1.9) has
an equivalent form that is often useful.

1.3.6 If A,B,C,P,Q are as in Figure 1.9, so that |AP|/|PB| = |AQ|/|QC|, show
that this equation is equivalent to |AP|/|AB| = |AQ|/|AC|.

1.4 Multiplication and division

Not only can one add and subtract line segments (Section 1.1); one can also
multiply and divide them. The product ab and quotient a/b of line seg-
ments a and b are obtained by the straightedge and compass constructions
below. The key ingredients are parallels, and the key geometric property
involved is the Thales theorem on the proportionality of line segments cut
off by parallel lines.

To get started, it is necessary to choose a line segment as the unit of
length, 1, which has the property that 1a = a for any length a.

Product of line segments

To multiply line segment b by line segment a, we first construct any triangle
UOA with |OU | = 1 and |OA| = a. We then extend OU by length b to B1
and construct the parallel to UA through B1. Suppose this parallel meets
the extension of OA at C (Figure 1.11).

By the Thales theorem, |AC| = ab.

O C

B1

U

A

Multiply by a

1
a

b

ab

Figure 1.11: The product of line segments
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Quotient of line segments

To divide line segment b by line segment a, we begin with the same triangle
UOA with |OU | = 1 and |OA| = a. Then we extend OA by distance b to
B2 and construct the parallel to UA through B2. Suppose that this parallel
meets the extension of OU at D (Figure 1.12).

By the Thales theorem, |UD| = b/a.

O B2

D

Divide by a
U

A

1
a b

b/a

Figure 1.12: The quotient of line segments

The sum operation from Section 1.1 allows us to construct a segment
n units in length, for any natural number n, simply by adding the segment
1 to itself n times. The quotient operation then allows us to construct a
segment of length m/n, for any natural numbers m and n �= 0. These are
what we call the rational lengths. A great discovery of the Pythagoreans
was that some lengths are not rational, and that some of these “irrational”
lengths can be constructed by straightedge and compass. It is not known
how the Pythagoreans made this discovery, but it has a connection with the
Thales theorem, as we will see in the next section.

Exercises

Exercise 1.3.6 showed that if PQ is parallel to BC in Figure 1.9, then |AP|/|AB|=
|AQ|/|AC|. That is, a parallel implies proportional (left and right) sides. The
following exercise shows the converse: proportional sides imply a parallel, or
(equivalently), a nonparallel implies nonproportional sides.

1.4.1 Using Figure 1.13, or otherwise, show that if PR is not parallel to BC, then
|AP|/|AB| �= |AR|/|AC|.
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B C

A

L P Q

R

Figure 1.13: Converse of the Thales theorem

1.4.2 Conclude from Exercise 1.4.1 that if P is any point on AB and Q is any point
on AC, then PQ is parallel to BC if and only if |AP|/|AB| = |AQ|/|AC|.

The “only if” direction of Exercise 1.4.2 leads to two famous theorems—the
Pappus and Desargues theorems—that play an important role in the foundations
of geometry. We will meet them in more general form later. In their simplest
form, they are the following theorems about parallels.

1.4.3 (Pappus of Alexandria, around 300 CE) Suppose that A,B,C,D,E,F lie al-
ternately on lines L and M as shown in Figure 1.14.

O
L

M

A

B

E

DF

C

Figure 1.14: The parallel Pappus configuration

Use the Thales theorem to show that if AB is parallel to ED and FE is
parallel to BC then

|OA|
|OF| =

|OC|
|OD| .

Deduce from Exercise 1.4.2 that AF is parallel to CD.
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1.4.4 (Girard Desargues, 1648) Suppose that points A,B,C,A′,B′,C′ lie on con-
current lines L ,M ,N as shown in Figure 1.15. (The triangles ABC and
A′B′C′ are said to be “in perspective from O.”)

O

L

M

N

A

B

C

A′

B′

C′

Figure 1.15: The parallel Desargues configuration

Use the Thales theorem to show that if AB is parallel to A′B′ and BC is
parallel to B′C′, then

|OA|
|OC| =

|OA′|
|OC′| .

Deduce from Exercise 1.4.2 that AC is parallel to A′C′.

1.5 Similar triangles

Triangles ABC and A′B′C′ are called similar if their corresponding angles
are equal, that is, if

angle at A = angle at A′ (= α say),
angle at B = angle at B′ (= β say),
angle at C = angle at C′ (= γ say).

It turns out that equal angles imply that all sides are proportional, so we
may say that one triangle is a magnification of the other, or that they have
the same “shape.” This important result extends the Thales theorem, and
actually follows from it.
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Why similar triangles have proportional sides

Imagine moving triangle ABC so that vertex A coincides with A′ and sides
AB and AC lie on sides A′B′ and A′C′, respectively. Then we obtain the
situation shown in Figure 1.16. In this figure, b and c denote the side
lengths of triangle ABC opposite vertices B and C, respectively, and b′ and
c′ denote the side lengths of triangle A′B′C′(= AB′C′) opposite vertices B′

and C′, respectively.

A = A′

B′

C′

B

C
α

β

β

γ γ

c

c′ −
c

b b′−b

Figure 1.16: Similar triangles

Because BC and B′C′ both meet AB′ at angle β , they are parallel, and
so it follows from the Thales theorem (Section 1.3) that

b
c

=
b′−b
c′− c

.

Multiplying both sides by c(c′− c) gives b(c′− c) = c(b′−b), that is,

bc′−bc = cb′− cb,

and hence
bc′ = cb′.

Finally, dividing both sides by cc′, we get

b
c

=
b′

c′
.

That is, corresponding sides of triangles ABC and A′B′C′ opposite to the
angles β and γ are proportional.
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We got this result by making the angles α in the two triangles coincide.
If we make the angles β coincide instead, we similarly find that the sides
opposite to α and γ are proportional. Thus, in fact, all corresponding sides
of similar triangles are proportional. �

This consequence of the Thales theorem has many implications. In
everyday life, it underlies the existence of scale maps, house plans, engi-
neering drawings, and so on. In pure geometry, its implications are even
more varied. Here is just one, which shows why square roots and irrational
numbers turn up in geometry.

The diagonal of the unit square is
√

2

The diagonals of the unit square cut it into four quarters, each of which is
a triangle similar to the half square cut off by a diagonal (Figure 1.17).

1

d/
2

d/
2

d/2

d/2

Figure 1.17: Quarters and halves of the square

Each of the triangles in question has one right angle and two half right
angles, so it follows from the theorem above that corresponding sides of
any two of these triangles are proportional. In particular, if we take the half
square, with short side 1 and long side d, and compare it with the quarter
square, with short side d/2 and long side 1, we get

short
long

=
1
d

=
d/2

1
.

Multiplying both sides of the equation by 2d gives 2 = d2, so d =
√

2. �
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The great, but disturbing, discovery of the Pythagoreans is that
√

2 is
irrational. That is, there are no natural numbers m and n such

√
2 = m/n.

If there are such m and n we can assume that they have no common
divisor, and then the assumption

√
2 = m/n implies

2 = m2/n2 squaring both sides

hence m2 = 2n2 multiplying both sides by n2

hence m2 is even

hence m is even since the square of an odd number is odd

hence m = 2l for some natural number l

hence m2 = 4l2 = 2n2

hence n2 = 2l2

hence n2 is even

hence n is even since the square of an odd number is odd.

Thus, m and n have the common divisor 2, contrary to assumption. Our
original assumption is therefore false, so there are no natural numbers m
and n such that

√
2 = m/n. �

Lengths, products, and area

Geometry obviously has to include the diagonal of the unit square, hence
geometry includes the study of irrational lengths. This discovery trou-
bled the ancient Greeks, because they did not believe that irrational lengths
could be treated like numbers. In particular, the idea of interpreting the
product of line segments as another line segment is not in Euclid. It first
appears in Descartes’ Géométrie of 1637, where algebra is used systemat-
ically in geometry for the first time.

The Greeks viewed the product of line segments a and b as the rectan-
gle with perpendicular sides a and b. If lengths are not necessarily num-
bers, then the product of two lengths is best interpreted as an area, and the
product of three lengths as a volume—but then the product of four lengths
seems to have no meaning at all. This difficulty perhaps explains why al-
gebra appeared comparatively late in the development of geometry. On the
other hand, interpreting the product of lengths as an area gives some re-
markable insights, as we will see in Chapter 2. So it is also possible that
algebra had to wait until the Greek concept of product had exhausted its
usefulness.
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Exercises

In general, two geometric figures are called similar if one is a magnification of the

other. Thus, two rectangles are similar if the ratio long side
short side is the same for both.

1

√
2+1

1

√
2−1

Figure 1.18: A pair of similar rectangles

1.5.1 Show that
√

2+1
1 = 1√

2−1
and hence that the two rectangles in Figure 1.18

are similar.

1.5.2 Deduce that if a rectangle with long side a and short side b has the same
shape as the two above, then so has the rectangle with long side b and short
side a−2b.

This simple observation gives another proof that
√

2 is irrational:

1.5.3 Suppose that
√

2+1 = m/n, where m and n are natural numbers with m as
small as possible. Deduce from Exercise 1.5.2 that we also have

√
2+1 =

n/(m−2n). This is a contradiction. Why?

1.5.4 It follows from Exercise 1.5.3 that
√

2+1 is irrational. Why does this imply
that

√
2 is irrational?

1.6 Discussion

Euclid’s Elements is the most influential book in the history of mathemat-
ics, and anyone interested in geometry should own a copy. It is not easy
reading, but you will find yourself returning to it year after year and notic-
ing something new. The standard edition in English is Heath’s translation,
which is now available as a Dover reprint of the 1925 Cambridge Univer-
sity Press edition. This reprint is carried by many bookstores; I have even
seen it for sale at Los Angeles airport! Its main drawback is its size—three
bulky volumes—due to the fact that more than half the content consists of
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Heath’s commentary. You can find the Heath translation without the com-
mentary in the Britannica Great Books of the Western World, Volume 11.
These books can often be found in used bookstores. Another, more recent,
one-volume edition of the Heath translation is Euclid’s Elements, edited by
Dana Densmore and published by Green Lion Press in 2003.

A second (slight) drawback of the Heath edition is that it is about 80
years old and beginning to sound a little antiquated. Heath’s English is
sometimes quaint, and his commentary does not draw on modern research
in geometry. He does not even mention some important advances that were
known to experts in 1925. For this reason, a modern version of the El-
ements is desirable. A perfect version for the 21st century does not yet
exist, but there is a nice concise web version by David Joyce at

http://aleph0.clarkeu.edu/~djoyce/java/elements/elements.html

This Elements has a small amount of commentary, but I mainly rec-
ommend it for proofs in simple modern English and nice diagrams. The
diagrams are “variable” by dragging points on the screen, so each diagram
represents all possible situations covered by a theorem.

For modern commentary on Euclid, I recommend two books: Euclid:
the Creation of Mathematics by Benno Artmann and Geometry: Euclid and
Beyond by Robin Hartshorne, published by Springer-Verlag in 1999 and
2000, respectively. Both books take Euclid as their starting point. Artmann
mainly fills in the Greek background, although he also takes care to make
it understandable to modern readers. Hartshorne is more concerned with
what came after Euclid, and he gives a very thorough analysis of the gaps
in Euclid and the ways they were filled by modern mathematicians. You
will find Hartshorne useful supplementary reading for Chapters 2 and 3,
where we examine the logical structure of the Elements and some of its
gaps.

The climax of the Elements is the theory of regular polyhedra in Book
XIII. Only five regular polyhedra exist, and they are shown in Figure 1.19.
Notice that three of them are built from equilateral triangles, one from
squares, and one from regular pentagons. This remarkable phenomenon
underlines the importance of equilateral triangles and squares, and draws
attention to the regular pentagon. In Chapter 2, we show how to construct
it. Some geometers believe that the material in the Elements was chosen
very much with the theory of regular polyhedra in mind. For example,
Euclid wants to construct the equilateral triangle, square, and pentagon in
order to construct the regular polyhedra.
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Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Figure 1.19: The regular polyhedra

It is fortunate that Euclid did not need regular polygons more complex
than the pentagon, because none were constructed until modern times. The
regular 17-gon was constructed by the 19-year-old Carl Friedrich Gauss
in 1796, and his discovery was the key to the “question arising” from the
construction of the equilateral triangle in Section 1.2: for which n is the
regular n-gon constructible? Gauss showed (with some steps filled in by
Pierre Wantzel in 1837) that a regular polygon with a prime number p of
sides is constructible just in case p is of the form 22m

+1. This result gives
three constructible p-gons not known to the Greeks, because

24 +1 = 17, 28 +1 = 257, 216 +1 = 65537

are all prime numbers. But no larger prime numbers of the form 22m
+1 are

known! Thus we do not know whether a larger constructible p-gon exists.
These results show that the Elements is not all of geometry, even if

one accepts the same subject matter as Euclid. To see where Euclid fits
in the general panorama of geometry, I recommend the books Geometry
and the Imagination by D. Hilbert and S. Cohn-Vossen, and Introduction
to Geometry by H. S. M. Coxeter (Wiley, 1969).




