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Abstract. We adapt a method of Schur to determine the sign in the quadratic
Gauss sum and derive from this, the law of quadratic reciprocity.

1. Introduction

Let p and q be odd primes, with p 6= q. We define the Legendre symbol (p/q) to
be 1 if p is a square modulo q and −1 otherwise. The law of quadratic reciprocity,
first proved by Gauss in 1801, states that

(p/q)(q/p) = (−1)(p−1)(q−1)/4.

It reveals the amazing fact that the solvability of the congruence x2 ≡ p(mod q) is
equivalent to the solvability of x2 ≡ q(mod p).

There are many proofs of this law in the literature. Gauss himself published five
in his lifetime. But all of them hinge on properties of certain trigonometric sums,
now called Gauss sums, and this usually requires substantial background on the
part of the reader. We present below a proof, essentially due to Schur [2] that uses
only basic notions from linear algebra. We say “essentially” because Schur’s goal
was to deduce the sign in the quadratic Gauss sum by studying the matrix

A = (ζrs) 0 ≤ r ≤ n − 1, 0 ≤ s ≤ n − 1

where ζ = e2πi/n. For the case of n = p a prime, Schur’s proof is reproduced in
[1] and a ‘slicker’ proof was later supplied by Waterhouse [3]. Our point is to show
that Schur’s proof can be modified to determine tr A when n is an odd number and
this allows us to deduce the law of quadratic reciprocity.

2. The trace of A

Observe that the (u, v)-th entry of A2 is

n−1
∑

k=0

ζukζkv =

{

n if u + v ≡ 0(mod n)
0 otherwise

so that

A2 =













n 0 · · · 0 0
0 0 · · · 0 n
0 0 · · · n 0
· · · · · · · · · · · · · · ·
0 n · · · 0 0













.
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It is easily seen that A4 = n2I, from which we deduce that the eigenvalues of A2

are ±n. For each eigenvalue, we can compute the eigenspace directly. For example,
for the eigenvalue n, we get that any eigenvector (x0, x1, · · ·xn−1) must satisfy the
system of equations xn−j = xj , 1 ≤ j ≤ n − 1. For n odd, we find the dimension
of this eigenspace to be 1 + (n− 1)/2 = (n + 1)/2. Similarly, the eigenspace corre-
sponding to −n has dimension (n − 1)/2. Therefore the characteristic polynomial
of A2 is

(x − n)(n+1)/2(x + n)(n−1)/2.

We conclude that the eigenvalues of A are ±√
n,±i

√
n, where i =

√
−1. Let a, b, c, d

denote the multiplicities of the eigenvalues
√

n,−√
n, i

√
n and −i

√
n respectively.

Then

a + b =
n + 1

2
; c + d =

n − 1

2
(2.1)

so that

trA = ((a − b) + (c − d)i)
√

n. (2.2)

On the other hand,

|tr A|2 =
∑

k,ℓ

ζk2−ℓ2 =
∑

k,ℓ

ζ(k−ℓ)(k+ℓ).

Setting k − ℓ = α in the sum, we obtain

|trA|2 =
∑

α,ℓ

ζα2+2αℓ.

Since n is odd, the inner sum for α fixed is zero unless α ≡ 0(mod n) in which case
it is n. We have proved:

Lemma 2.1. For odd n,

|tr A| =
√

n.

Corollary 1.

tr A =

{

±√
n if n ≡ 1(mod 4)

±i
√

n if n ≡ 3(mod 4)

Proof. From (2.2),

|tr A|2 =
(

(a − b)2 + (c − d)2
)

n

and we deduce c − d = 0 and a − b = ±1 or a − b = 0 and c − d = ±1. In the first
case using (2.1), we solve the system a + b = (n + 1)/2, a − b = ±1 and deduce
n ≡ 1(mod 4). Similarly, in the second case, we deduce n ≡ 3(mod 4). This proves
the corollary.

3. The determinant of A

Recall the Vandermonde determinant:
∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

· · ·
1 xn x2

n · · · xn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

i<j

(xj − xi).
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Now detA is a Vandermonde determinant. It is somewhat easier to consider
(detA)2:

(detA)2 = (−1)(
n

2
)
∏

r 6=s

(ζr − ζs).

The product is equal to
n−1
∏

j=0

f ′(ζj)

with f(x) = xn − 1. Thus,

(detA)2 = (−1)(
n

2
)nn,

from which we deduce

detA = ±i(
n

2
)nn/2. (3.1)

We would like to determine the sign in (3.1). This is easily done as in [2]. We have

detA =
∏

s<r

(ζr − ζs) =
∏

s<r

ηr+s(η(r−s) − η−(r−s))

where η = eπi/n. Since

∑

s<r

(r + s) =

n−1
∑

r=1

r−1
∑

s=0

(r + s) =

n−1
∑

r=1

(

r2 +
r(r − 1)

2

)

= 2n

(

n − 1

2

)2

is divisible by 2n, we deduce

detA =
∏

s<r

(

2i sin
(r − s)π

n

)

= i(
n

2
)(positive quantity).

Thus, from 3.1 we conclude

Lemma 3.1. For n odd,

det A = i(
n

2
)nn/2.

Corollary 2. For n odd,

2b + c − d ≡
(n

2

)

(mod 4).

Proof. Since detA is the product of the eigenvalues

detA = (
√

n)a(−
√

n)b(i
√

n)c(−i
√

n)d = (−1)b+dic+dnn/2 = i2b+c+3dnn/2.

Thus, by Lemma 3.1,

2b + c + 3d ≡ 2b + c − d ≡
(n

2

)

(mod 4),

from which the result follows.

Corollary 2 can be used to determine tr A explicitly. Returning to case 1, c− d = 0
so that

2b ≡
(n

2

)

(mod 4).

Thus from (2.1),

a − b = a + b − 2b =
n + 1

2
− 2b ≡ n + 1

2
− n(n − 1)

2
≡ 1(mod 4)
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because n ≡ 1(mod 4). Similarly in the second case, a − b = 0 so that from (2.1)
2b = (n + 1)/2 and

c − d ≡ n(n − 1)

2
+ 2b ≡ −n − 1

2
+

n + 1

2
≡ 1(mod 4).

This proves:

Theorem 1. For odd n,

tr A =
n−1
∑

j=0

e2πij2/n

{ √
n if n ≡ 1(mod 4)

i
√

n if n ≡ 3(mod 4).

4. The law of quadratic reciprocity

Let

S(n, a) =

n−1
∑

j=0

e2πij2a/n.

We will prove:

Lemma 4.1. Let m, n be coprime positive integers. Then

S(m, n)S(n, m) = S(mn, 1).

Proof. We have

n−1
∑

j=0

m−1
∑

k=0

e2πij2m/ne2πik2n/m =
∑

j,k

e
2πi

mn
(j2m2+k2n2) =

∑

j,k

e
2πi

mn
(jm+kn)2

We note that as 0 ≤ j ≤ n−1 and 0 ≤ k ≤ m−1, the set of integers jm+kn forms
a complete set of residue classes modulo mn. The result is now immediate.

If p, q are primes, note that

p−1
∑

j=0

e2πij2q/p =

p−1
∑

k=0

(

1 +

(

k

p

))

e2πikq/p =

p−1
∑

k=0

(

k

p

)

e2πikq/p

because the sum of the p-th roots of unity is zero. Also, the right hand side is equal
to

(

q

p

) p−1
∑

k=0

(

kq

p

)

e2πikq/p =

(

q

p

)

S(p, 1)

by the multiplicative property of the Legendre symbol. Therefore, S(p, q) = (q/p)S(p, 1).
We can now deduce

Theorem 2.
(

q

p

) (

p

q

)

= (−1)(p−1)(q−1)/4

for any distinct odd primes p, q.

Proof. Define for odd n, e(n) = 1 if n ≡ 1(mod 4) and i if n ≡ 3(mod4). Then, the
result of Theorem 1 can be written as S(n, 1) = e(n)

√
n. Thus,

e(pq)
√

pq = S(pq, 1) = S(p, q)S(q, p) = (q/p)(p/q)S(p, 1)S(q, 1) = (q/p)(p/q)e(p)e(q)
√

pq

from which we deduce
(q/p)(p/q)e(p)e(q) = e(pq)

which is the law of quadratic reciprocity.
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