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Introduction 

We present a new proof of the existence of a desingularization for any 
excellent surface (where "surface" means "two-dimensional reduced noe- 
therian scheme"). The problem of resolution of singularities of surfaces has 
a long history (cf. the expository article [25]). Separate proofs of resolution 
for arbitrary excellent surfaces were announced by Abhyankar and Hironaka 
in 1967; to date (1977) full details have not yet been published (but cf. [2], 
[12], [13], [14] and [15]). Actually Hironaka's results on "embedded" resolu- 
tion are stronger than what we shall prove, viz. the following theorem 
(which nevertheless suffices for many applications). 

Unless otherwise indicated, all rings in this paper will be commutative 
and noetherian, and all schemes will be noetherian and reduced. We say 
that a point z of a scheme Z is regular if the stalk 0,, of the structure 
sheaf at z is a regular local ring, and singular otherwise; Z is non-singular 
if all its points are regular. 

THEOREM. For a surface Y, with normalization Y, there exists a 
desingularization (i.e., a proper birational map f: X - Y with X non- 
singular) if and only if the following conditions hold: 

(a) Y is finite over Y. 
(b) Y has at most finitely many singular points. 
(c) For every y e Y, the completion of the local ring Oy, is normal. 
(These conditions (a), (b), (c) are of course satisfied if Y is excellent 

[EGA IV, ? 7.8].) 
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The raison d'6tre of this paper must lie in its methods, which rely on 
homology, duality, and differentials, and so differ markedly from those of 
Abhyankar and Hironaka. We now describe briefly the basic ideas, assuming 
for simplicity that Y is irreducible, normal, and proper over a field k. 

The main point is to show that: 

(*) Among all the normal surfaces proper over k and birationally equi- 
valent to Y there is one-call it Z-whose arithmetic genus X(Z) = h0((D,) - 

hl(OZ) + h2(OZ) is minimal.' 

It was suggested by Zariski, in [35], that desingularizing such a Z 
should not be too difficult. In fact the minimality of X(Z) is equivalent with 
all the singularities of Z being pseudo-rational (cf. ?(1a)) (for if g: We Z 
is a proper birational map, the Leray spectral sequence gives 

X(Z) - X(W) -h(Rlg*Ow) . . . ; 

and in Section 1 we show that pseudo-rational singularities can indeed be 
resolved, even by successively blowing up points. The proof uses standard 
techniques; things work out pretty smoothly because of the following two 
properties of pseudo-rational singularities: 

(i) (cf. (1.5)) If Xis a normal surface having only pseudo-rational singu- 
larities, and X' .-i X is obtained by blowing up a point of X, then X' is 
normal and X' has only pseudo-rational singularities. 

(ii) (cf. (1.6)) The tangent cone of a pseudo-rational singularity is de- 
fined (ideal-theoretically) in some projective space by the vanishing of certain 
quadratic forms. 

* * * 

For surfaces over fields, H. Matsumura has had for a long time a proof 
of (*) based on the theory of Picard varieties (private communication, Decem- 
ber 1967). I don't know how to generalize this proof to the case of arbitrary 
surfaces. 

The approach to (*) taken in this paper is inspired by results of Laufer 
[22, Theorem 3.4]. Let f: X -- Y be a birational map of normal irreducible 
surfaces, both proper over a perfect field k. Let K be the field of rational 
functions on X and Y. Let wx be a dualizing sheaf on X; wA can be realized 
concretely as the sheaf of 2-forms (differentials) of K/k without poles on X. 
Duality theory gives isomorphisms of k-vector spaces 

(H't(XI cox' `) H`-(X1 Ox1) (i = O. 1. 2) 
1 (*) can be reformulated in numerous tantalizing ways. It is equivalent, for example, 

to the finite-dimensionality of H'(O0'R) where _5P is the Zariski-Riemann space associated with 
Y (cf. [17]). It can also be posed as a statement about certain Hilbert-Samuel polynomials 
in a two-dimensional normal local ring (cf. Remark (B), end of Section (la)). 
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(for a k-vector space V, V' is the dual space Homk( V, k)). Furthermore the 
vanishing theorem ((2.4), and cf. (2.3)) gives R'f *(wo,) = 0, so that we have 
an isomorphism 

H1( Y. f *wxf) "`, H'(X, (ox) 

There is an obvious inclusion f*Cw x C wy whose cokernel has zero-dimen- 
sional support: for y e Y, the dimension of the stalk (woy/f*(wx), is the number 
of k-linearly independent 2-forms with no pole at y, but with some pole 
along a component of f'`(y). Dualizing the exact sequence 

0 - H0(f *,cw) = H0(wx) - H0(wo) > H0(wy/f*wx) 
Hl(f*wox) = H'(wox) H'(woy)) H'(Wys/f*ox) = 0, 

we obtain an exact sequence 
0 < H2(Ox) < H2(@y) < H0(woy/f*(wx)' < H'(Ox) < H'(@y) < 0, 

which yields the key expression for "change of arithmetic genus" in terms 
of differentials: 

(**) X(Oy) - X(Ox) =-h0(oy*(x) 

From (**) we deduce: 
(i) Y has only pseudo-rational singularities for all X --Yas above, 

we have ), = f*ox. 
(ii) (*) is true if and only if (Y being fixed) the integers h0(wy/f*(wx) are 

bounded above independently of X. 

Now y- = (Q')', where Q' = A2(QY/k) is the sheaf of Kahler two-forms 
(over k) on Y, and for any Oy-module 2, 2' is the sheaf Homoy(2, Oy) So 
there is a natural map 0: Q' - wy whose cokernel has zero-dimensional sup- 
port; and one sees easily that for any f: X -k Y as above, 

Y1) I_- f*((Wx) . 

Thus an upper bound as called for in (ii) above is h0(coker vs), Q.E.D. for (*)! 

If the ground field k, of characteristic p, is not perfect then we must 
use differentials over a suitable "admissible" field ko with kv _ k _- k, [k: kJ] < oo. 
When we consider the mixed characteristic case, we cannot use differentials 
at all, but there are other effective ways to represent dualizing sheaves (cf. 
Section 2, whose main purpose is to work out a suitably general form of 
(**), viz. Theorem (2.2)). 

* * * 

The actual proof of reduction to pseudo-rational singularities is given 
in Section 3. For reasons explained below, this will not be the proof of (*) 
just indicated, but a variant which, if less striking, is ultimately shorter 
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and has the additional advantage of applying simultaneously to the equi- 
characteristic and mixed characteristic cases. This proof is based on the 
existence of "good trace" maps for certain finite algebraic field extensions. 
A "good trace" is a linear map closely related-in the equicharacteristic case- 
to the "trace of a differential" studied by Kunz ([21, ? 1]). In any case, when 
we deal with separable field extensions the ordinary trace map is a good 
trace, and consequently Section 4, on the existence of good traces, is really 
necessary only for treating surfaces over a power series ring k[[ U, V]] with 
k an imperfect field. 

Now what is the trouble with the above-indicated proof based on the 
relation a), = (Q2)"? Since we are interested in arbitrary surfaces, we must 
work with schemes of finite type over a formal power series ring k[[ U, V]] 
(k a field). In this case the appropriate differential modules to consider are 
those of [3, ? 2.3]. To proceed as above we would need a theorem for normal 
surfaces on the representation of a) in terms of such differentials. Such a 
theorem, though true, seems to be available in the literature only for vari- 
eties over fields ([19], [21]). I intend to give a proof for the general case 
(i.e., schemes over power series rings) elsewhere. To do so here would have 
made this paper longer than necessary, and that is why the above line of 
reasoning, though perfectly justifiable, is not entirely followed. 

For now, let me just state that two basic ingredients for tying together 
differentials and dualizing sheaves are: (A) the correct notion of "trace of 
a differential"; and (B) the existence of "admissible" fields ko (cf. above; when 
[k: kP] < ?o, then kP is admissible, and there is no problem). For our purposes 
we cannot avoid (B), which is treated in Section 4. (For varieties over fields, 
cf. [19], [20]; over power series rings there are additional difficulties because 
there are infinitely many coefficients floating around; cf. [16].) Thus Section 
4 is a sort of poor man's substitute for a complete proof of w, (Q')". 

* ~ ~ ~~~** 
The study of surfaces Y such that a), = feawo for all X (cf. above), as a 

possible step toward resolution of singularities, was proposed to me by 
Zariski for a thesis problem in 1964. At that time (**) was apparently not 
known, nor was there available any theory of pseudo-rational singularities. 
After a few weeks of fruitless effort I turned to other totally unrelated ques- 
tions, which ultimately led (via the theory of complete ideals in two-dimen- 
sional local rings) to an interest in rational singularities... . The proof of 
resolution outlined above (for surfaces over fields) was announced in 1973 
[24]; the extension to the mixed characteristic case dates from 1974. 

* * * 

This introduction is concluded with some further remarks on the theorem. 
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A. If a surface Y can be desingularized at all, then there exists a 
(unique) minimal desingularization fJ: X2 -- Y; in other words, for any 
desingularization f: X-- Y there is a unique map g: X-+ X. such that f = f og 
[RS, page 277, Corollary (27.3)]. 

B. Assume that the surface Y (with normalization Y) can be desingu- 
larized. Consider the sequence 

F = yO < Yl ' Y2 < .<. - - ... 

where, for each i > 0, Yj~j is obtained from YI by blowing up all the singular 
points of Y, (which can be seen to be finite in number) and then normalizing 
the resulting surface. Then for some n, Yn is non-singular (cf. [RS; ? 2]; 
alternatively use [ibid.; (26.1), (1.2), and (4.1)]). 

Some further light on this result is shed by the remark at the end of 
Section (lb). 

(The desingularization constructed by this canonical process need not 
be minimal, even for "absolutely isolated" singularities [32a, p. 346, (5.11)]. 

C. If f: X-- Y is a desingularization of a normal surface Y, then f 
can be obtained by blowing up an 0,-ideal 5 such that (,/5 has at most zero- 
dimensional support. 

Proof. First of all, a pasting argument reduces us to the case 
Y = Spec(R), R a two-dimensional normal local ring. (Consider the finitely 
many points where the rational map f l is not defined.) Now let E1, * * *, E, 
be the irreducible components of f-'(y) (y = closed point of Y). The inter- 
section matrix (Ei.Ej) is negative-definite (cf. [RS, ? 14], where the more 
efficient proof of Mumford [27, page 6] should have been adapted; cf. also 
part V in the proof of Theorem (2.4) below). Hence we can find a divisor 
E = E ajEj, such that (E.Ej)>O for i = 1, 2, * * *, r, and all the integers a, 
are < 0 (cf. [RS, middle of page 238, remark (ii)]). Setting 2 = Ox(E) _ Ox, 
and 

I = HO() (- HO(Ox)= R 

we have that I is an ideal of R with RuI of dimension ? 0. The restriction 
of 2 to f'-(y) is ample (cf. e.g. [18, pages 318-319]), so 2 itself is ample [EGA 
III, (4.7.1)], and after replacing E by nE (n > 0), we may assume that 2 is 
very ample. [EGA III, (2.3.4.1)] shows then that X = Proj($3",0 I"), the 
blow-up of L 

D. Assume that a desingularization f: X Y as in the theorem exists. 
f being proper, f*Qr is a coherent 0,-module, and so Y = Spec(f*Qr) is finite 
over Y. The singularities of Y are to be found among the finitely many 
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points where the rational map f'-: YH - X is not defined. Thus we have the 
necessity of (a) and (b), and that of (c) is given by [RS, page 232, Remark (16.2)]. 

As for sufficiency, we can replace Y by Y, and then a simple pasting 
argument shows that it is enough to prove: if R is a two-dimensional local 
ring whose completion R1 is normal, then R can be desingularized by blow- 
ing up an m-primary ideal (m - maximal ideal of R). Now if there exists 
a desingularization f: X.-* Spec(R), then this desingularization can be ob- 
tained by blowing up an ideal I which is primary for nitR (cf. Remark C 
above); if f: X-p Spec(R) is obtained by blowing up the m-primary ideal 

I = I n R, then, since R is flat over R and I IR, we have 

Xk= X@RR, 
and it follows easily that f is a desingularization of Spec(R) (cf. beginning 
of proof of the second Proposition in Section (lb) below; or just use [EGA 
OIV, (17.3.3(i)]). 

So to establish the theorem, it remains to prove: 

THEOREM'. Let R be a complete two-dimensional normal local ring. 
Then there exists a desingularization f: X - Spec(R). 

1. Resolution of analytically normal pseudo-rational singularities 

(la) Pseudo-rational singularities ............................... 156 
(lb) Birational stability of (analytically normal) pseudo-rationality. 160 
(lc) The tangent cone is an intersection of quadrics ......... o ..... 161 
(1d) An important subspace of in/nm2 .......... o............. * ... 163 
(le) Proof of Theorem (1.2) ...................................... 169 
(if) Proof of Proposition (1.28) ................................... 172 
(1g) Uniformization of rank two valuations by blowing up and nor- 

malizing ..................................... 174 

(la) Pseudo-rational singularities. 

PROPOSITION-DEFINITION (1.1) (cf. [RS, page 212, ? 9]). Let R be a two- 
dimensional local ring. R is said to be pseudo-rational if R is normcal, and 
satisfies the following equivalent conditions: 

(i) For any pro jective birational map W-e Spec(R) there exists a proper 
birational map Z A W such that Z is normal and H'(Z, &,) = 0. 

(ii) For any proper birational map W Spec(R), the normalization 
W is finite over W, and H'(W, (Dyp) = 0. 

(iii) The completion R is reduced (i.e. has no non-zero nilpotents) and 
for every proper birational map W Spec(R) with W normal, we have 
H1( W, O(9) = 0. 
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Proof. Clearly (ii) (i). Conversely, if W- -Spec(R) is proper and 
birational, then (i) together with Chow's lemma [EGA II, (5.6.2)] gives us 
a proper birational h: Z --W with Z normal and H'(Z, &z) = 0; but then 
W= Spec(h*(0z) is finite over W, and 

H'( W. Ow) =H'( W. h*(9z) _~ HI(Z~ ez); 
thus (i) (ii). The equivalence of (ii) and (iii) follows from Rees' character- 
ization of "analytically unramified" local rings [28]. 

Remark. A two-dimensional normal local ring R is rational if there 
exists a desingularization X -. Spec(R) with H'(X, Ox) = 0. If R is rational 
then R is pseudo-rational (cf. [RS, page 200, A) and B)]). Conversely, if R is 
pseudo-rational, and if R admits a desingularization W- -Spec(R), then 
H'(W, (,) = 0, so R is rational. (As pointed out in the introduction (Remark 
D), if R admits a desingularization then the completion R remains normal; 
and we are about to prove the converse.) 

* * * 

The present Section 1 is devoted to proving that one can resolve "ana- 
lytically normal" pseudo-rational singularities by successively blowing up 
isolated singular points. More precisely: 

We say that a surface Y has only pseudo-rational singularities if for 
each singular point y of Y, the local ring 0, y is two-dimensional and pseudo- 
rational. An iterated blow-up is a composed map Z -. Y of the form 

Z = Y- Y. _1 ' ... * Y, - Yo = Y, 

where each map Y[ - Yi-1 (0 < i ? n) is obtained by blowing up a finite set 
of closed points on Yi_1. 

THEOREM (1.2). Let Y be a surface having only pseudo-rational singu- 
larities. Assume that Y has at most finitely many singular points, and 
that for each such singular point y, the completion of the local ring 0,,,, is 
normal. Then there exists an iterated blow-up Z - Ywith Z non-singular. 

Theorem (1.2) reduces Theorem' at the end of the introduction to the 
following: 

THEOREM*. Let R be a complete two-dimensional normal local ring. 
Then there exists a proper birational map W - Spec(R) such that W has 
only pseudo-rational singularities. 

(Any W as in Theorem* is a normal surface (use the "dimension formula" 
[EGA IV, (5.5.8)]), and W has only finitely many singularities [EGA IV, 
(6.12.2)]; furthermore, since R is complete, therefore W is excellent, so all 
the local rings w (w G W) have normal completion.) 
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Theorem* will be proved in Sections 2-4. The following observations 
will help to bring the problem into focus. 

Let R be a two-dimensional normal local ring whose completion R is 
reduced. For any proper birational map Z - Spec(R) with Z normal, let X) 
be the (finite) length of the R-module H'(Z, (z). We set 

H(R) = supz(\z) .( x), 

the "sup" being taken over all Z as above. (1.1) (iii) states that R is pseudo- 
rational H(R) = 0. 

LEMMA (1.3). For a proper birational map g: We Spec(R) (R as above) 
with W normal, the following conditions are equivalent: 

(i) W has only pseudo-rational singularities (necessarily finite in 
number, see above). 

(ii) Xw = H(R). 
(iii) For any proper birational map h: Z W with Z normal, the 

canonical map 

H'(Wy , Lz) = H'(W, O~w) H'(Z, Adz) 
is bijective; equivalently, R'hOz = 0. 

Remark. Clearly a W satisfying these conditions exists if and only if 
H(R) < ao. So Theorem* states that H(R) < oo if R is complete. (Actually 
I don't know any example of an R with H(R) = 

Proof of (1.3). W being a normal surface (see above), R'h*O. has sup- 
port of dimension ? 0, and so "equivalently" in (iii) follows from the canonical 
exact sequence 

(1.3a) 0 - H'(W, Ow) - H'(Z, Oz) - H0(R'h*eC) > H2(W, w) = 0 

(where H2 vanishes because the fibres of g have dimension ? 1: cf. [EGA III, 
(4.2.2)]; or else cover Wby two affine open subsets and use Cech cohomology). 

Similarly, for any proper birational maps Z - Z'-+ Spec(R) with Z and 
Z' normal, H'(Z', Oz&) C H'(Z, Oz), and hence (ii) > (iii). 

(iii) (ii). For any proper birational Z' - Spec(R), there exists a com- 
mutative diagram of proper birational maps 

W Zf 

Spec(R) 

where Z" is the reduced closed image in W x , Z' of the generic point of 
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Spec(R) (Z" is the "birational join" of W and Z'). The normalization Z of 
Z" is finite over Z" (since R1 is reduced, cf. [28]); so by (iii) xw = 'X > , 
and (ii) follows. 

(iii) follows easily from (i), because two-dimensional regular local rings 
are rational, hence pseudo-rational (preceding remark). 

(iii) (i). Let S be the local ring of a singular point on W; S is two- 
dimensional and normal. Let g': W' - Spec(S) be a projective birational 
map. There exists a projective birational map g*: W*~ . oW such that 
g'-g* x w Spec(S) (cf. e.g. [EGA III, (2.3.5)]). iR being reduced, the normal- 
ization Zof W* is finite over W*, so we have a proper birational map h: Z--W. 
By (iii), Rlh*(z = 0, and so H'(Z', Oz,) = 0, where Z' = Zx w Spec(S) is the 
normalization of W'. Thus by (1.1)(i), S is pseudo-rational. Q.E.D. 

COROLLARY (1.4). Let R be a two-dimensional pseudo-rational local 
ring with maximal ideal m and fraction field K. Let S be a normal local 
ring with maximal ideal rt, such that R _ S _ K, m _ rt, S/n is an algebraic 
field extension of Rim, and such that S is essentially of finite type over R 
(i.e., S is a localization of a finitely generated R-algebra). Then S is two- 
dimensional and pseudo-rational. 

Proof. The dimension formula [EGA IV, (5.5.8)] gives dim.(S) S 2, while 
Zariski's "main theorem" gives dim(S/mS) 2 1 (unless S= R); thus dim(S) = 2. 

Clearly there exists a proper birational map W -- Spec(R) such that 
S = @Oww for some w e W; and (1.1)(ii) allows us to assume that W is normal. 
Then :\w = H(R) = 0, and the conclusion follows from (1.3). 

* ** 

The following two remarks, due essentially to Rees [29, page 21], will 
not really be needed elsewhere in this paper. 

(A) (1.3) can be sharpened: 

Let R be as in (1.3), and let W-- Spec(R) be a proper birational map 
with W normal. For each closed point w e W, let el, be the degree of the 
residue field of @w. over that of R. Then 

(W) H(R) = %w + Eu ew ewH(0w, 
w closed 

(Proof. If H(R) < cc, choose h: Z - W with Xz = H(R), cf. proof of 
(iii) (ii) in (1.3); then Z has only pseudo-rational singularities, and the 
result is given by the exact sequence (1.3a). If H(R) = oo, a similar argu- 
ment shows that H(Ow,) = oo for some w e W.) 

(#) shows that singularities have a tendency to become pseudo-rational, 
in the following sense: if 0 < H(R) < cc, then either H(Ow?) < H(R) for all 
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w e W; or there is just one w for which H(O,W) H(R), and then es. 1, all 
other singularities on W are pseudo-rational, and H-( W, O,) = 0. 

(B) Here is another interpretation of H(R). 

We consider ideals I in R such that RuI is zero-dimensional, and such 
that for all n> 0 the ideal IP is integrally closed. For all large n, the length 
of the R-module RIP" is given by a polynomial 

teo(I)(2) + pe1(I)n + tt2(I) 

with integers 4cei(I). In fact, ,2(I) = SW, where W is the (normal) surface 
obtained by blowing up I [RS, (5.2) and (23.2)]. From this it can be shown 
that 

H(R) -= sup1(p,2(I)). 
Thus, Theorem* says: if R is complete, then 

sup1(42(I)) < .c 

(lb) Birational stability of (analytically normal) pseudo-rationality. 
This part (lb) and the next part (lc) bring out properties of pseudo-rationa- 
lity which make a relatively simple proof of Theorem (1.2) possible. 

Let (R, ma) be a local ring. (The notation signifies that ma is the unique 
maximal ideal of R.) A quadratic transform of R is an R-algebra which is 
R-isomorphic to the local ring 0T,,W for some closed point w e W= Proj(,.0UnVn) 
(the R-scheme obtained by blowing up m). 

For later application, the principal result of (ib) is: 

PROPOSITION (1.5). Let (R, m) be a pseudo-rational two-dimensional 
local ring. Then any quadratic transform S of R is again a pseudo-rational 
two-dimensional local ring. Furthermore, if the completion R is normal, 
then so is S. 

Proof. Let W be the normalization of W = Proj(@",0 m"). Then W is 
finite over W, and H'(O-) = 0, and so by [RS, (7.2)] we have m" = H?(M"(9i) 
for all n > 0. This implies that me is integrally closed (cf. e.g. [ibid., proof 
of (6.2)]), and hence [ibid., (5.2)] W is already normal (i.e., W= W). So (1.5) 
is a consequence of Corollary (1.4) and the following: 

PROPOSITION. Let (R, ma) be a two-dimensional normal local ring with 
field of fractions K. Let (S, it) be a normal local ring with RCS_ K, mcnu 
and such that S is essentially of finite type over R (i.e., S is a ring of 
fractions of a finitely generated R-algebra). If R is normal, then so is S. 
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Proof. Let S*= S R R. For any t > O, 

S*/ntS* = (S/nt)?R R = (S/nt) ?R/ t(R/mtR) = S/lt 

and so uS* is a maximal ideal such that the canonical map of S into the local- 
ization T - (S*)., induces an isomorphism of completions S T. Since R 
is excellent and T is essentially of finite type over R, for T = S to be normal 
it is enough that T be normal [EGA IV, (7.8.3) (ii), (iii), (v)]. 

Since S is normal, and dim(S) ? 2 (by the dimension formula [EGA IV, 
(5.5.8)]), therefore S is Cohen-Macaulay, and hence so is T (since S= "T, for 
example). It will suffice therefore to show that T> is regular for each height- 
one prime P of T. 

Note that if K is the fraction field of R, then S* C K 0R R _ K, so that 
TICK. IfPlR mR, then 

;Tp 2TRpnfl 

since R,,- is a discrete valuation ring, therefore T, = R, - and T, is regular. 
If PnR = ntR, thenQ = P nS is a prime ideal of S, with Q nR m. 

So the domain S/Q is essentially of finite type over the field Rim, and there- 
fore the completion S/QS is reduced. We have 

P2 QT = QTn Tz= QS3n T 

so T/QT (-S/QS) is reduced, P/QT is a minimal prime of T/QT, and hence 
Q T, is the maximal ideal of T,. Since the maximal ideal nTZ P, therefore 
Q # t, so SQ is a discrete valuation ring, and the maximal ideal (QSQ) T, of 

T, is principal; thus T, is regular. Q.E.D. 

Remark (not used elsewhere). In view of Remark (A) at the end of 

Section (la), the first part of the proof of (1.5) implies that in the process of 
desingularizing Spec(R) (R as (1.3)) by successively blowing up and normal- 
izing, at most H(R) normalizations are actually necessary. 

(lc) The tangent cone is an intersection of quadrics. 

PROPOSITION (1.6). Let (R, m) be a two-dimensional normal local ring. 
Assume that there exists a proper birational map f: W -e Spec(R) such that 
mOw is invertible and H'(W, Ow) = 0 (an assumption which certainly holds 
if R is pseudo-rational). Let (z,, z1 ** , zj) be a minimal basis of m, and let 

0: S = kAZO, Z, ...* Zj1 -> ,: m,/m+' = Gm 
(k R/m; Z0, *--, Z. indeterminates) 

be the homomorphism of graded k-algebras for which 

0(Zi) - canonical image of zi in m/m2 (O < i ? !)) . 
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Then the kernel of 0 is generated by Z(v - 1)/2 k-linearly independent 
quadratic forms Q, (1 < a ! v(v - 1)/2); moreover, if v ? 3 then the k-vector 
space generated by the linear forms 

aQalaZi (1 <!_ c:!-< v^(v^ - 1)/2; 0 :!< j < ) 

has dimension ?> - 1. 

Remark. More information about the kernel of 0 and its syzygies can 
be found in Wahl's paper [33]. 

Proof of (1.6). Simple considerations show that it is permissible to 
replace R by the localization of the polynomial ring R[ U] at the prime ideal 
mR[ U]; so we may assume that R/m is infinite. Then there exist elements 
x, y e m and an integer a> O such that ml+l = (x, y)mnt (cf. [30, pages 153-154]). 

Remarks. 1 (cf. [31]). If R has multiplicity e, then the m-primary 
ideal (x, y) also has multiplicity e [30, page 154, Theorem 2]. R being a 
Cohen-Macaulay local ring, we have 

e = ?,J(R1(x, y)) (XR = length of an R-module), 
and 2 = XR((x, y)/m(x, y)) (Nakayama's lemma), 
whence 

(1.7) e + 1 = XR(mI(x, y)m) > XR(m/ml) = 3 + 1 . 

2. (x, y) is part of a minimal basis of m (otherwise, say, x e m2 + yR, 
whence 

ma+l = (x, y)ma C-ma+2 + yma 

so that (Nakayama's lemma) ma+1 = yma yR, which is absurd). The con- 
clusions of (1.6) clearly do not depend on the choice of the minimal basis 
(Z0, *.e, z"), so we may assume x = z., y - zg,= and correspondingly set 
X = ZP-1, Y- =Z 

Now the basic point (to be proved below) is that in fact 

(1.8) m2 = (X, y)m . 

This implies that the kernel of 0 contains >(v - 1)/2- elements Qij 

(O < i < j < v - 2) of the form 

Q-j = ZZj + E` (actjjZjX + bij6Z1Y) + eijX2 + f%6XY + gi jy2 

(with aij6, bj, eijt fij, gij e k). The Qfj are linearly independent, and if v > 3, 
then so are the v - 1 partial derivatives DQo;/aZo (1 < j < v - 2) and aQ1/,aZ,. 
Let us show then that the ideal I generated by the Qjj is the entire kernel 
of 0, i.e., the map j: S/I-f Gm induced by 0 is injectivo. 

Let S' = 3), S, be the graded k[X, Y]-submodule of S generated by 
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the v homogeneous elements 1, Z0, Z1, **., Z,-2. Clearly the canonical map 
S o-- S/I restricts to a surjection *r': S'-k S/I. So we need only check that 
0d0 ': S' -+ G, is infective. But if o +' had a non-zero element of degree 
(say) q in its kernel, then an easy calculation would give, for n > q: 

dimk(m"/m"+') ? dim,,(S.) - (n - q + 1) 

= ('n + 1) - (n - q + 1) 
= - 1)n + q, 

so that e < v - 1, contradicting (1.7). 

It remains to prove (1.8). 
Let 5 be the invertible @,-ideal m@,. Since ma+l = (x, y)ma, therefore 

5a+1 = (x, y)gP, and multiplying by 4-a gives 

= (x, Y)@w. 
Note also that 

m C ?()CH?(O,) = R 
and 1 0 H0(?), so that H0(?) = m. 

Now we have an exact sequence of @,-modules 

0 -) @9 a 
g2 ,0 

where a and f8 are given locally by 

a(t) = tx @ (-ty), 
,841 ) t2) = t1y + t2x . 

Since the fibres of f have dimension < 1, H2 vanishes on coherent @w-modules 
([EGA III, (4.2.2)]; or note that W can be covered by two affine open sub- 
sets ...). 5 = (x, Y)@w is a homomorphic image of 02, therefore H'(5) is a 
homomorphic image of H1(02w)= 0, whence H%8) is surjective, i.e., 

H(g2) = (x, y)H'(?) = (x, y)m . 
Since m2 c H0(D2), we conclude that m2 = (x, y)m. Q.E.D. 

Remark. The bijectivity of a o *' (see above) implies that for all n > 0 

(1.9) dimk(m"/m"+') 3fi- + 1 

(whence, in particular, H'( W, (X,) 0 for W = Proj(fDl">, m") [RS, page 253, 
(23.2)]). (1.9) could also be proved along the lines of [ibid., page 254, (23.3)]; 
since (1.9) (e a') (1.8) (cf. (1.7)) and (1.9) (j o *' bijective), this would 
give another proof of Proposition (1.6). 

(1d) An important subspace of m/M2. We now review, in a decidedly 
ad hoc way, some techniques of Hironaka insofar as they are required for 
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proving (1.2). In this context, Corollary (1.21) gives another consequence of 
pseudo-rationality which simplifies the resolution process. 

We begin with some preliminary remarks on quadratic transforms and 
embedding dimension. Let (R, m) be a local ring with residue field kI = Rim, 
and let R' be a quadratic transform of R (cf. (lb)). Then mR' is invertible, 
say mR' tR' (t e mn). R'/tR' is the local ring of a closed point on the closed 
fibre CR Proj($f, rn/m"+). Let v + 1 be the embedding dimension of R 
(i.e., the dimension of the k-vector space m/m2), in symbol: 

emdim(R) = v + 1. 

A minimal basis (z., z1, .., zk) of nm defines a homomorphism of graded 
k-algebras 

6: k[Z] =k[Zo Zl, *.*., ZJ - D+ no r/w+' 

where the Z, are indeterminates, and 8(Zi) is the canonical image of zf in 
m/m2 (O g i ? i!'). Corresponding to 8, we get a closed immersion of 0R into 
the projective space P' Proj(k[Z]). So R'/tR' is a homomorphic image of 
the local ring of a closed point of P', i.e., of a regular local ring of dimension 
v; thus emdim(R'/tR') < a, and we conclude that 

(1.10) emdim(R') < v + 1 = emdim(R). 

The following simple observation gives a useful sufficient condition for 
strict inequality in (1.10). 

LEMMA (1.11). With preceding notation, let h e k[Z] be a homogeneous 
polynomial with 6(h) = 0, and let H C P" be the subscheme h = 0 of P' (so 
that CR C Hi= Proj(k[Z]/h)). Let ~ e CR be the point whose local ring is R'/mR'. 
If 5 is a regular point of H then 

emdim(R') < emdim(R). 

Proof. R'/rnR'= R'/tR' is a homomorphic image of the regular local 
ring 0,,C, whose dimension is <v; thus emdim(R'/tR') < v, and so 
emdim(R') < v + 1. Q.E.D. 

In attempting to resolve pseudo-rational singularities by blowing up, 
we will naturally be most interested in the quadratic transforms R' for 
which emdim(R') = emdim(R). We can gain some control over these R' by 
means of a certain k-vector subspace of M/M2 which corresponds to some bad 
singularities of the tangent cone. 

Let (R, i), k[Z], 0, be as above. For any homogeneous h e k[Z] let 
1, F'P" be the set of singular (i.e., non-regular) points of the scheme 
Proj(k[Z]/h); and set 
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d 

= 
nflh h (o(h) = 0) 

Note that 0 restricts to an isomorphism 

81: (linear forms in k[Z]) :, m/m2. 

We define a k-vector subspace VR of m/m2: 

VR = {v e m/m2 I the linear form 0171(v) vanishes everwhere on 

It is easily checked that VR depends only on R, and not on any choice 
of basis for m. 

Say that an element v e m/n2 vanishes at the quadratic transform RI of 
R if the linear form 8'1(v) vanishes at the point e e CR B P' whose local ring 
is R'/mR' (cf. preceding remarks). An equivalent and more intrinsic condition 
is the following (proof left to the reader): if v is the natural image of, say, 
V e m, then v vanishes at R' if and only if r ? iR'. 

Now, as an immediate corollary of (1.11) we have: 

COROLLARY (1.12). If R' is a quadratic transform of R such that 
emdim(R') = emdim(R) then all the elements of VR vanish at R'. In parti- 
cular, if VR = m/m2 (i.e., Se is empty) then for all quadratic transforms R' 
of R we have emdim(R') < emdim(R). 

** * 
Let ZR be the codimension of VR in m/m2. From (1.12) it appears that 

as far as resolution is concerned, the smaller ZR is, the better. We will see 
below ((1.19) and (1.20)) that for pseudo-rational two-dimensional R, VR is 
always ?2, and almost always ?1. For this purpose, and for other valuable 
information about VR, we need the following very special case of Hironaka's 
results in [15]. 

LEMMA (1.13). Let k1Z] = k[Z0, ***, Zj] be a polynomial ring over a 
field k, k[Z], = linear forms in k[Z], P" = Proj(k[Z]). Let Q e k[Z] be a 
non-zero quadratic form, and let IQ C PP be the set of singular points of the 
scheme Proj(k[Z]/Q). Let I be a subset of IQ, and let VQ (resp. Ve) be the 
k-vector subspace of k[Z], consisting of those linear forms which vanish 
everywhere on IQ (resp. 1). Then: 

(i) If V is a k-vector subspace of k[Z], such that Q e k[ V] (the k-sub- 
algebra of k[Z] generated by V), then V Q VQ. 

(ii) Conversely, if the characteristic of k (char k) is : 2, then Q e k[ VQ], 
and 

(iii) if char k = 2 and the dimension dimk(VI) > v- 2, then Q e k[ V>]. 
Proof. (i) If Q e k[ V], then clearly any point e # (O O, *..., 0) of k"+' 

where all the forms in V vanish represents a point of IQ, so that L(e) = 0 
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for all L e VQ. Consequently VD VQ. 
(ii), (iii). Let (XA, *.., X,) be a (vector space) basis of Va, and expand 

it to a basis (X., *-* *, X,, YK, * * *, YP) of k[Z], (p - p - 1). Expressing Q 
as a form of degree 2 in the X's and Y's and using the fact that 

aQ/aXi C eV (O ? i 4 Iet), aQ/a Yj e VE (O ? j p< ), 
we find that 

(1.14) Q = Q'(X) + Q"(Y) 

where 
Q'(X) e k[X0, *. *, XJ = k1 V:] 

Q"(Y) e k[Y, *Y*, YP], 

and where furthermore 

(1.15) Wf laYj 0 (O ? j ? p) 

If char k # 2, then (1.15) forces Q" 0, and (ii) follows (take I = IQ). 
If char k = 2, then (by(1.15)) Q" must be of the form 

(1.16) Q" = aoYo2 + ? apYp (aiG k) . 
Identify the linear space A C P' defined by X27 == * * * = 0= with 

PP = Proj(k[ Yo, Y1, *.., Ye]) = Proj(k[ Y]). Suppose Q" 0 0. I claim that: 

(1.17) If a linear form L e k[ Y] vanishes everywhere on the singular 
locus of Proj(k[ Y]/Q"), then L = 0. 

For, if L # 0, then L cannot lie in V, (which is generated by the X's), 
so L(?) # 0 for some G E S. But all the X's do vanish at I, and Q(e) = 0, so 
Q"%-) = 0 (cf. (1.14)); and since L(e) # O e must be regular on Proj(k[ Y]/Q") 
A n (Q = 0); hence f C Q, contradiction. 

Now one checks (keeping in mind (1.16)) that if 

v -2?<dimk(V_) = [e + 1 (i.e., p 2), 

then (1.17) is false. (In fact, using Zariski's mixed Jacobian criterion [34a, 
page 39, Theorem 11]-or otherwise-one finds that the singular locus of 
Proj(k[ Y]/Q") is a proper linear subvariety of PP.) Hence Q" = 0 in this case 
too, and (iii) is proved. Q.E.D. 

COROLLARY (1.18). Let (R, m), 0 be as in (1.6), let K2 be the setof quadratic 
forms in the kernel of 0, and let 

fl= nQe2 hQ (notation as in (1.13)) 

Then 
K, k[ V>] 
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and consequently dimk(Vx) > v - 1. Furthermore, if V is any k-vector 
subspace of k[Z], such that K2 1k[ V], then V = V,. 

Proof. For K2 C- k[ V] it suffices, by (1.13), that dimk(VI) 2 v - 2; but 
this inequality is trivial if vi!< 2, and if v ? 3 the last assertion of (1.6) even 
gives dimk(VI) z 2v - 1. 

Since K2 C k[ Van] and dimk(K2) = (v- 1)/2 (cf. (1.6)), we must in fact 
have dimk(Vj) ?>: v- 1 for any v. 

The proof of the last assertion is similar to the proof of (i) in (1.13). 
** * 

With the notation and assumptions of (1.18), since K2 generates the 

kernel of 0 (1.6), it is clear from the definition of VR that 

(1.18a) Vy.-( Van) = Va - 

As before, we set 

z-R = codimension of VR in rn/rn2. 

(1.18) and (1.12) now give: 

COROLLARY (1.19). Let R be as in (1.6). Then VR ? 2. If zrR = 0, then 
for every quadratic transform R' of R, we have emdim(R') < emdim(R). 

Under suitable conditions the inequality VR < 2 of (1.19) can be improved: 
the following generalizes somewhat a remark of Hironaka communicated to 
me by Wahl. 

PROPOSITION (1.20). Let (R, m) be a two-dimensional normal local ring 
of embedding dimension v + 1 > 4, let W be the normalization of W= 
Proj(,,,0 ml"), and assume that W is finite over W and that Hl(Sw) = 0 
(assumptions which certainly hold if R is pseudo-rational"'). Then ZR < 1. 

Before proving (1.20) we note: 

COROLLARY (1.21). With assumptions as in (1.20), there is at most one 
quadratic transform R' of R such that emdim(R') = emdim(R). If such an 
R' exists, then it has the same residue field as R. 

Proof of (1.21). If VR = 0 use (1.19). If VR = 1 (i.e., dimk(VR) = 2) let 
(x, z1, .* *, z.) be a generating set of m such that VR is generated (as a k-vector 
space) by the images of z1, * , z, in m/r2. By (1.12), if emdim(R') = emdim(R), 
then mR' = xR' and zijx is a non-unit in R' (1i ? i.'); hence R' must be the 
localization of R[z1/x, ..., zl/x] at the maximal ideal generated by 
x, z1/x, *.-, zp/x, and our assertion follows. 

Proof of (1.20). To begin with, our assumptions imply that W is 

or even if R is reduced and H(Ow,w) = H(R) <oo for some we W (?(la), Remark (A)). 
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normal (cf. proof of (1.5)). 

Next, if r, > 1, then by (1.19) VR = 2, i.e., dimk(VR) = -1. Choose a 
generating set (z., z1, *.., z,) of m such that the k-vector space VR is gen- 
erated by the images of zo, z1, *.., z,2 in rn/m2. Since the kernel of 0 is 
generated by v(Q - 1)/2 independent quadratic forms Qa e k[ V,] (cf. (1.6) 
and (1.18)), and dimk( V>) diMk( VR) = - 1 (remark preceding (1.19)), we 
must in fact have 

(1.22) kernel of 0 (ZjZ;)k[Z0, .., Zj (O ?i ? j ? -2) 

AYZo .. f 41-2 )2k[Zoy ... y Z.]. 

Thus in R we have zizj En m,3 i.e., with I = (zo, *.*, Z,2)R, and z,1 = x, Z, =Y 
we have relations 

(1.23) zizj - Gij(x, y)eIIM2 (O z j <v -2) 

where Gij( U1, U2) C R[ U1, U2] (U1, U2 indeterminates) is a cubic form. 
Now, fixing i and j, since v > 3 we can choose 1 = i with 0 ? 1 ? v - 2, 

and then, by (1.23), 

z1Gij(x, y) - ziG1j(x, y) e I2rn2 c m5; 

so if G is the natural image of G in k[ U1, U2], we have 

Z1Gij(Zp.l, Z.) - ZiG1j(Zl, Zj) e kernel of 0 

and since 1 / i it follows at once from (1.22) that Oij = 0, i.e., all the coef- 
ficients of Gij lie in m. This implies that W is not normal (contradiction), 
as follows: 

Let R' be a quadratic transform of R. Then R'/mR' is the local ring of 
a point of the subscheme of PL defined by the ideal (Z0, .**, Z1-2)2. Hence 
the images of the zi (0 ? i ? v - 2) in M/m2 vanish at R', so the principal 
ideal mR' is generated either by x or by y, say nR' = xR'; and if 
I' = (z0/x, *.., z_2/x)R', then 

(1.23a) VxR' = (I', xR') / xR' . 

From (1.23) we get 

(zj/x)(zj/x) - xGij(l, y/x) E xI' . 

Since all the coefficients of Gij lie in m C xR', we deduce that 

(II)2 XI' + x2R'. 

It follows that for any valuation ring R, _ R', we have I'R, C xR,, and so 

(I'/x) ( integral closure of R' . 

Since I' X xR' (1.23a), R' cannot be normal. 
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(le) Proof of Theorem (1.2). We are now ready to prove Theorem (1.2). 
With Y as in (1.2), let y1, y2, *.*, y, be all the singular points of Y, and 

set 

vi + 1 = emdim(O0,,) (1 ? i _ n) 
( Y) = max1l1i, (vi) (=1 if Y is non-singular). 

Assume that v(Y) > 1. Choose i such that pi = v(Y), and let Y' - Y be 
obtained by blowing up yi. Then (1.5) implies that for each singular point 
y of Y', the local ring 0,,, is two-dimensional and pseudo-rational. Y' has 
at most finitely many singular points (use [EGA IV, (6.12.2)] and the fact 
that Y' is a normal surface). Furthermore, 

V(Y') ? V(Y) (cf. (1.10)) . 
Now repeat the procedure with Y' in place of Y, to get Y" *-. Y', etc. 

Theorem (1.25) below obviously implies that after a finite number of steps 
we obtain a surface Y* with v(Y*) < v(Y), and from this Theorem (1.2) fol- 
lows at once. 

A quadratic sequence is a sequence (finite or infinite) of homomorphisms 
of local rings 
(1.24) Ro R R2 
such that for each i > 0, Ri is a quadratic transform of R_1, R, --+ R, being 
the canonical map. (Often, but not always, the maps will just be inclusions.) 

THEOREM (1.25). Let (R, m) be a non-regular two-dimensional pseudo- 
rational local ring with normal completion R. Then there exist only 
finitely many quadratic sequences (1.24) for which R = R0, Ri is an R-sub- 
algebra of the fraction field of R for all i > 0, and 

emdim(R0) - emdim(R1) = emdim(R2) = 

(In particular, the number of members of such a sequence is bounded above 
by an integer depending only on R.) 

Proof. Keep in mind that for any quadratic sequence as in (1.25), all 
the R, (i > 0) are two-dimensional pseudo-rational local rings with normal 
completions (cf. (1.5)). 

We have ZR ! 2 (1.19). If ZR = 0 then the assertion is trivial (1.19). 
Suppose next that zR- 1. Then if R1 exists at all, it is uniquely de- 

termined by R (proof of (1.21)). Set R1 = R' (assuming that R, exists). Let 
k = R/m, and let (x, z1, ..., z) be a minimal generating set of m such that 
the k-vector space VR is generated by the images of (z1, *. . , zr) in M/nt2; then 
we have (cf. proof of (1.21)) mR' = xR', the maximal ideal m' of R' is gen- 
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erated by (x, z', *., zp) where z' = zi/x (1 <i ? < ), and the residue field 
R'/m'- k. 

Let 
0: k[X, Z1, ** , Zj] - 9 

@nto Mr/M+ 
be as usual, and let Q be a quadratic form in the kernel of 8. By (1.18a) we 
have 

(1.26) V7 = kZ1 + kZ2+ " + kZvI 
and by (1.18), 

Q = Q(Z1, ... , Zs) e k[Z1, * ..., ZJ . 
Since 8(Q) 0, there is a relation in R of the form 

Q*(Z ...* *, Z,) e m3 

where Q* e R[Z1, , Z] is a quadratic form whose natural image in 
k[Z1, ... , Zj is Q. Dividing by x2, we see that in R', 

Q* (z', * * z') e xR'. 
Since emdim(R') = emdim(R) = v + 1, therefore x 0 (z,, z')R', so we 
must in fact have 

*(z, . . ,zp m' 
Hence if 

Of: k[Xj Z11 ZsJ 6),X;?: (M')'4/Wm) +1 

is as usual, then the kernel of 8' contains a quadratic form Q'(X, Z1, ..*, ZP) 
such that 

(1.27) Q'(O, Z1, *.., ZV) = Q(Z1, *.., Zr,) 

I claim that VR < 1. For, by (1.18) 

Q' e k[ Vy,] (self-evident notation) 

whence, by (1.27), 
Q e k[ V'] 

where V' is the image of Vz under the k-homomorphism *: k[X, Z1, . * *, Zj 
k[Z1, * * *, Zj for which +(X) = 0 and *(Z,) = Zj (1 < i g v). Since Q is an 
arbitrary member of K2 (notation of (1.18)) we have K2c k[ V'], so by 
(1.18) V' = V>. Hence (cf. (1.26)) 

= dimk( V7) ? dimk( V') ? dimk( VS,) = diMk( VRi) 
(the last equality by (1.18a)), so that 

zR = emdim(R') - dimk(VR') = v + 1 - dimk(VR') < 1. 
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Furthermore if the image of x in (m')/(i')2 is in V.,, then Zr. = 0. For 
then Z' lies in the hyperplane X = 0, and hence is contained in So, the inter- 
section of the singular sets of the schemes 

(Q' = o) n (x-=0) = Proj(k[Z1, *.., ZJ/Q) (O / Q e K2). 

If V0 is the space of linear forms in k[Z1, *., Zj vanishing on So, then 
K2kC[VO] (cf. proof of (1.18)), so V0o V, (1.18), and therefore all the 
Zi (1 < i: < L) are in V0, i.e., So is empty. Thus ?' is empty, and 

dimk(VP,) = dimk(V7P) = v + 1 (cf. (1.18a)) 

i.e., TRf = 0. 
If 0R, = 0, then we are done (1.19). Otherwise, we can repeat the whole 

preceding argument with R, in place of R and R2 in place of R', but with 
the same x. If (1.25) is false, then continuing in this manner, we find a 
quadratic sequence whose existence contradicts the following proposition: 

PROPOSITION (1.28). Let R1 be any (noetherian) local ring of dimension>O 
whose completion RO has an isolated singularity (i.e., for any non-maximal 
prime ideal 4 in RO, the localization (RO), is regular). Let Ro -R1 R A *-2 

be an infinite quadratic sequence satisfying: 
(i) there is an element x in RO such that for all n > O. m0,R,+ = xR.+ 

(min is the maximal ideal of R), and 
(ii) for all n>0, R"+, has the same residue field as Rn (i.e., the natural 

inclusion R/,/m a R" +,/m" is an isomorphism). 
Then for all sufficiently large N the local ring RN is regular. 

Before proving (1.28), let us consider the case VR = 2. In this case, v = 2 
(1.20). A discussion of this case, with many more details than we need here, 
is given in [RS, pages 264-268]. (N.B. The integer r of loc. cit. is 3 - yR.) A 
perusal of this discussion shows that we need only consider the case where, 
for a suitable basis (x, y, z) of m, we have a relation of the form 

(1.29) z2 _ Xy2 G zM2 + (x, y)" . 

Setting R1 = (R', m'), we have two possibilities (cf. [ibid., page 266]): either 
R' is the unique quadratic transform of R such that m' is generated by 
(y, x/y, z/y), in which case zR, = 0, and R2 does not exist (1.19); or R' is the 
localization of k1x, y/x, zix] at the maximal ideal generated by x, y' = y/x, 
ZP = z/x (so that R'/m' = k). In this latter case, we have (after dividing 
(1.29) by x2) a relation 

(Z)2 _ x(y')2 6 xz'R' + x2R' 

If Z: < 2, then we have a previously considered case. If zR' = 2, then either 
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we have case (III b) or (III c) of [loc. cit., page 265], in which case there are at 
most three possibilities for R1 and none for R1; or we have, after replacing 
z' by z' + ax and y' by y' + f8x for suitable a, f8 e R', a relation 

WY - X(,y)2 G z'(m')2 + (X, y')3uni . 

Now we can repeat the argument with R1 in place of R and R2 in place of 
R'. Continuing in this way, we obtain, as before, a contradiction with (1.28). 

It remains to prove (1.28). 

(If) Proof of Proposition (1.28). 
(I) To begin with, we can reduce to the case where R1 is complete, as 

follows: Let I: (R, m) -+ (R*, m*) be a homomorphism of local rings with 

0(m) c (m*), such that the induced map of completions 0: R-+ R* is an iso- 
morphism; in particular, R* is flat over R, via I. Let (R', m') be a quadratic 
transform of R. Then n = m'(R' @R R*) is a maximal ideal of R' @o R*; the 
localization R' =(R' ?R R*), is a quadratic transform of R*; and the natural 
map I': R' - R'* induces an isomorphism of completions. (The proofs of these 
statements, and the consequent reduction to the case where R, is complete, 
are left to the reader.) Assume then that R1 is complete, and has an isolated 
singularity. 

(II) Note that x is not a zero-divisor in R, for n > 0, since xR, n%_lR, 
is invertible. In particular, x X x2R1 inlR1, so x C mt, and we can extend x 
to a minimal generating set (x, y1 , y,) of o,. 

I claim that there exist elements pij in R1 (i = 1, 2, <, ; 0 < j K ci) 
such that, for each j > 0, nmj is generated in Rj by the elements x, yij 
(i = 1, 2, ... , v) where 

-ij = Oj(x)-j-(yi-AO x- x2A- .xax -pijxi) , 

v being the composed map RoR 1* Rj. (From now on, to avoid 
cluttering up formulas, we treat only the case where all the maps ho are 
inclusions. So for example, we can write 

-ij = x-(y - AO- Pi1x Pi- x) 

To obtain the proof for the general case, the concerned reader can insert 
0j's in the following arguments as required.) The assertion is clear for j = 0, 
with pi, 0 0 for all i. We proceed by induction from j to j + 1. By assump- 
tion, Rj+l is the localization R*, where 

R*R Rjdr i, , 1_ x x 

and 
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q - Mj+ n R* 
Since Rjl has the same residue field as Ro, we can find pi j+ e Ro such that 

Vij - P10i+i C nlj l. x 

Then the canonical map 

Rj/nij R*j(x, YVj - Pl-1Y ... _ -P2j+) 

is bijective, so that (x, *..., (yij/x) - pj+, *.. ) is a maximal ideal, necessari- 
ly equal to q. The assertion for j + 1 follows. 

(1II) Next, we define elements zi e R,: 

Zi =i - E7=0 Pix (i = ly 2, ... . x) . 

Then 

xjzi- yi (mod xR6) (O ? j < c) 

and so mj is generated by (x, x-jz1, *.**, x-jz,). It follows that for any j > 0, 
xi X (z1, ** *, z)R0 = p0 (say) . 

So Ro/po has dimension _ 1, and since its maximal ideal is generated by the 
image of x, Ro/po is a discrete valuation ring; thus po is a prime ideal. Similarly 
for any j > 0, the ideal 

Pi = z(xzl, *Y xz, Rj 

is prime, Rj/pj being a discrete valuation ring with maximal ideal generated 
by the image of x. 

For j < j', we have Jpj c- pj x 0 pj; so pi is the contraction (inverse image) 
of pj, in Rj. Hence, since blowing up a point induces an isomorphism outside 
the point in question, we have isomorphisms 

(Ro)4o~ (Rl)pl ~)(R)4 > - 
Note that by assumption (RO),0 is a regular local ring, of dimension, say, 

d. So the same is true of (Rj),6 (j >0), and therefore Rj has Krull dimension 
>d + 1. We will show: for all sufficiently large N, pN is generated by d 
elements (whence m, is generated by d + 1 elements). For such N, therefore, 
R, is regular, of dimension d + 1, as desired. 

(IV) Fix an integer j, set R = Rj, pjP zi = x-jzj. After rearrang- 
ing, we may assume that (z', *.., zi) (,ce') is a minimal basis of p. Clearly 
for N > 0, pj+, is generated by x-Nz* ** , x-4. It will therefore suffice to 
show that if ie > d, then for all sufficiently large N, pjd? is generated by a 
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proper subset of {X-NZ, ***, x-z }. 
Recall that R. is regular, of dimension d, and that R/I is a discrete 

valuation ring, with maximal ideal x(R/l). We may therefore assume that 
Z, *, 4 generate PRM, whence (e being > d) there is a relation 

(1.30) wizd = wjzX (wP 0 P) 

furthermore, for suitable units si in R, and suitable qj with 0 < qj < , we 
have 

wj =_ sx'i (mod Up) (i = 1, 2, ** d, Be) 

(by convention x?- 0), so that (1.30) gives 

(1.31) 6rxqyzy-Ed xSiXqizi (mod 2) (qp < c) 
Let 

q =min(qj, .. 
Y d, qa) 

so that q < q, < o. Dividing (1.31) by x"', we obtain, in Rjq, 

qp-q(X-qZ') -qd & q(X(qZ) (mod M+q) 

Since one of the exponents qj - q (i = 1, 2, ... , d, p) is 0, we see (Nakayama's 

lemma) that in the basis (X-qZ, *.., x-qz') of p+,,q at least one of the members 
x-z' (i - 1, 2, *.i, d, e) is redundant. 

This completes the proof of Proposition (1.28) and of Theorem (1.2). 

(ig) Uniformization of rank two valuations by blowing up and normal- 
izing. From (1.28) we can deduce a special case (needed in Section 3) of "local 
uniformization." 

Let R be a noetherian local domain, and let v be a valuation of the frac- 
tion field K of R, such that v dominates R (i.e., v(r) > 0 for all r e R, and 
v(r)>0 if r is a non-unit in R). The "normal transform" of R along v is the 
unique local ring R* of a point on the normalization of the blow-up of (the 
closed point of) Spec(R), such that R* is dominated by v. The "normal 
sequence along v determined by R" is the sequence 

(1.32) R = RO < R1 < R2 < *- 

where for each i > 0, Ri+, is the normal transform of Ri along v. 

PROPOSITION (1.33). Let R be a two-dimensional local ring whose com- 
pletion R is normal. Let v be a rank two valuation of the fraction field of 
R such that v dominates R, and let (1.32) be the normal sequence along v 
determined by R. Then for some N, the local ring R, is regular. 

Proof. We first remark that all the local rings R, are essentially of 
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finite type over R, and have normal completions. The proof is by induction 
on n: if R, is normal, then by Rees [28], R,,, is essentially of finite type over 
Ri, and R'j1 is normal (cf. Proposition in ?(1b)). 

Next, we recall that the valuation ring R, of v is Un2o Rn, (cf. [34, 
Theorem 10, page 681] for surfaces over fields; a similar argument works in 
the general case-use the following results in [38]: Corollary, page 21; 
Proposition 1, page 330; Corollary 2, page 339; and the argument in the 
middle of page 392). 

Now v is discrete of rank two ([1, page 330, Theorem 1], or [38, page 338, 
Corollary 1]), and hence the maximal ideal of R, is principal, generated, say, 
by x. Furthermore, for each n > 0, the residue field k1 of R, is finite algebraic 
over the residue field kn, of Rq, (loc. cit.). Hence for some m we have x G Rm 
and k, = k.. Without loss of generality assume that m = 0; then from (1.28) 
it follows that v dominates a regular local ring R' essentially of finite type 
over Ro (namely some member of the quadratic sequence "along v" starting 
with Ro). 

Since R, Un,0 R,, therefore RF,? contains R' for some n, and R, is 
essentially of finite type over R' (cf. beginning of this proof). From (1.4) 
we get that R, is pseudo-rational. Then from (1.28) and (1.5), we conclude 
that RN is regular for some N > n. 

2. Duality and vanishing 
(2a) The dual of HI ....................................... 175 
(2b) Proof of Theorem (2.3) ..................................... 178 
(2c) Proof of Theorem (2.4) ..................................... 183 
(2d) Appendix: Duality with supports ........................... 187 

(2a) The dual of HI. The purpose of Section 2 is to establish an ap- 
propriate generalization of the relation (**) of the introduction. To state 
things precisely, we need some preliminary definitions. 

Let R be a two-dimensional regular local ring, with fraction field K, 
and let S be a two-dimensional regular local ring with R _ S C K. Then [1, 
page 343, Theorem 31 there is a unique quadratic sequence 

R = RocRc c.R, = S 
(i.e., each Ri (O < i ? n) is a quadratic transform (?(lb)) of Ri-,). We define 
a fractionary S-ideal cos 1 S by induction as follows: 

wial = R. 
(O)Ri+i 

= (Ri(ntiRi+J)-l (i > ?) 

where nti is the maximal ideal of Ri (so that ntjRj+j is an invertible Ri+,-ideal). 
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Using the fact that any proper birational map of non-singular surfaces 
can be factored into a sequence of blow-ups ([36, page 46]; cf. also [RS, page 
204]) we see easily that for any proper birational map f: Y-- Spec(R) with 
Y non-singular there is a unique invertible @1,-submodule wy of the constant 
sheaf KOy (=sheaf of rational functions on Y) such that for any closed 
point y e Y, with local ring S = (9,, the stalk w,,, coincides with W,. 

Now let L be a finite algebraic field extension of K, and fix a non-zero 
K-linear map T: L K. (For example T could be "Trace" if L is separable 
over K.) Let f: Ye Spec(R), wc, be as above, and for any y e Y let (, be 
the integral closure in L of the local ring Yy, Set 

CY {!G L I T(y"&) _ wy, for all y e Y}. 
In particular, set 

C = CSpec(R) - 

I claim that Cy C C. For this, it clearly suffices to show that 

(2.1) R= nyeyy, Y (= HO(Y, wy)) 

But if f(y) = p e Spec(R), and p is not the maximal ideal in R, then coy, = RPY 
and from this (2.1) is immediate. 

Here is the main result. 

THEOREM (2.2). Let (R, m) be a two-dimensional regular local ring, 
with fraction field K, and let L be a finite algebraic field extension of K 
such that for every proper birational f: Y - Spec(R) with Y non-singular, 
the normalization Y of Y in L is finite over Y.' Let I be the infective 
hull of the R-module R/m. Then, with C}- CC as above, there is an iso- 
morphism of R-modules 

C/CYr~ Hom,(H'(F Ye-), I ). 
The precise role played by Theorem (2.2) in the proof of Theorem* ?(la) 

is explained at the beginning of Section 3. 

Theorem (2.2) is a consequence of the following two results. First there 
is a "duality theorem" (2.3), which is actually a special case of a corollary 
of Grothendieck's local and global duality theorems (cf. Appendix (2d) below). 
In order to make this paper independent of the massive machinery of duality 
theory, I will give an ad hoc proof; it should however be said that the first 
proof I had was the one presented in the appendix. The result itself was 

1 It suffices for this that L OK K be reduced, where K is the fraction field of the com- 
pletion R (cf. [28] and [EGA Oiv, (23.1.7)1). 
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suggested by Laufer's use of Serre duality in [22]. 
Secondly there is a "vanishing theorem" (2.4) which generalizes a result 

of Laufer ([22, Theorem 3.2]).1 

THEOREM (2.3). Let (R, m) be a two-dimensional regular local ring and 
let f: Y e Spec(R) be a proper birational map with Y non-singular. Set 
w = wy, and let E = f-'({m}) be the closed fibre on Y. Then H_,2(w) = I, the 
infective hull of R/m; and for all coherent Oy-modules X, the Yoneda map 

HE y) >Hom,(Ext' (f, w), HE(Q) 

is an isomorphism. 

Explanation. To any element 

0 - O w- * -K - 0 

of Ext'y(ffw) associate the coboundary map HE'() HEU(Q). This gives a 
pairing 

Ext"y(9", () x HE,(yT) >HE(6) 

to which the map in (2.3) corresponds. 

THEOREM (2.4). Let A be a two-dimensional normal semilocal ring with 
Jacobson radical n, let g: X-- Spec(A) be a proper birational map with X 
normal, and let E1, * * *, Et, be the irreducible components of E = X@A (A/n). 
If 2 is an invertible Ox-module such that (2 . Ej)! 0 for all i, then HE(2) = 0. 

Explanation. E, is a curve which is proper over a field k = A/m, m 
some maximal ideal of A; (AGE,) is by definition the degree (over k) of the 
invertible OEi-module j*2, where j: E, X is the inclusion map.2 

Before proving (2.3) and (2.4), let us deduce (2.2). Let z: Ye4 Y be the 
canonical (finite) map. It is easily seen that 

Cy -- H( Y, (?) 

where Cy is the Oy-module 

-y = w ) (w = Yy). 

Furthermore, since Y is regular, of dimension 2, both Wr*y- and C? are locally 
I For Laufer's result in any characteristic p>O, cf. [32, page 21, Prop. (2.6)]. For higher- 

dimensional generalizations (in char 0), cf. [5]. 
2 In the proofs of (2.3) and (2.4) we will use freely the properties of intersection numbers 

given in ?? 10-and 13 and page 221 of [RS]. Correction: In Lemma (10.1) of loc. cit., replace 
D Ot by T 8 91; also, in the proof replace both ici*F and icilg by Pa(rY)+T(?), where a, Pi, i 

are given by 
T > iri 

* i i i 9 < . 
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free ?,-modules, of rank [L: K]. Hence 

H'(Y, O-) = H1(Y, ,,(e_) 
= H'( Y, y w)) 
= Extra (dy, @) 

and (2.3) gives an isomorphism 

HEI(Cy) 1--, Hom,(H ('F Ye 0e I ) 
So to prove (2.2), we need an isomorphism 

C/CY >`? HE(Cy). 

Let 

U= Y-E= Spec(R)-{m}. 

Then we have an exact sequence 

0 - > H'(CY) -> H0(Y, e') , H0(U, E') > Hk(Cy) > H1(Y, C)-) 

0 Cy C 

and we need only show that H'(Y, Cy) = 0. But 

H1(Y9 Cy) =H1(Y9 5.(7r0- e)) 

=Ext'y(7r*o,- (0) 

is a finite-length R-module which is Matlis-dual (by (2.3)) to 

Hi(7*/CJY) = Hj(jO-) 
(E 7-(E)) 

and by (2.4), applied to the map Ye Spec(R) (R integral closure of R in 
L) we have H)(O)-) = 0. Q.E.D. 

(2b) Proof of Theorem (2.3). 

LEMMA (2.5). co = O(X), where SC is the unique effective divisor sup- 
ported on E such that for every effective divisor D supported on E we have 

(2.6) (X D)- -(D. D) - 2X(D) 

(where X(D) = ho(OD)- h'((9D), h'(.) being the length of the R-module 
Hi(Y. *)). 

Proof. It is clear that co = O(X) for some effective divisor JC supported 
on E. If (2.6) holds for XYC, then the "uniqueness" statement follows from 
the negative definiteness of the intersection matrix ((Es-Ej)). 

f: Ye-- Spec(R) can be realized as a succession of n blow-ups, where n 
is the number of irreducible components of E. We proceed by induction on 
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n. There being nothing to prove if n = 0, it suffices, then, to show that if 
(2.5) holds for Y, and if g: Y' o Y is obtained by blowing up a closed point 
y e Y, then (2.5) also holds for Y'. 

Let E1, .-., En, be the (reduced) irreducible components of E, let 
Eo = g-r1(y) and let EN' be the proper transform of Ej on Y', i.e., Ei' = g-'(E) - 

SiE,, where si = 1 if y lies on Ej and si = 0 otherwise (1 ? i ? n). Then 
Eo, E1, *--, En are the irreducible components of E' = (f og)-1({M). 

Setting wy = O('X), wy, = O((X'), we have (by the definition of w) 

C= g'(X) + Eo. 

Now g-'(X) EO' = 0 [RS, bottom of page 227], and (Eo.Eo)= -X(Eo'), so that 

(C'. Eo) = (Eo'.* Eo') =-(Eo'* Eo) - 2x(Eo). 

Furthermore, for 1 ? i ? n we have 

(XIC'. E') = (g-'(X) - Ei') + (EoJ. Ei') 
= (X Ej) + si(Eo'. Ei') ([ibid.]) 

The inductive hypothesis gives 

(XU E= - (Ei E) - 2X(E) . 

Since g maps E,' isomorphically onto Ej, therefore 

X(Ei) = X(Ei'). 

Finally, 

(E,'* Ei') = (g-'(Ei) - E,')-si(Eo * E,') 
- (E * Es) - s(EoJ. Et') ([ibid.]) . 

Combining all these equalities, we get 

'* E,') =-(Et'* Et')- 2X(E'). 

Thus 

(2.7) (X'*D') =-(D' D') - 2X(D') 
holds (on Y') if D' is any one of the irreducible components of E'. Since 
both sides of (2.7) are additive in D' (cf. [RS, middle of page 249]), (2.7) must 
hold for any effective D' supported on E'. Q.E.D. 

LEMMA (2.8). Let X be as in (2.5). Then for any effective divisor D on 
Y supported in E, the R-module HI(Y, OfAD)) has length 

%D = 1 (I- DID). 
2 

Proof. We have an exact sequence 
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0 -, -Y O(D) , 0D(D) - 0. 

Since H'(&y) = 0 (because R is rational, ?(la)), and H2(&y) 0 0 (because the 
fibres of f have dimension < 1), therefore we have an isomorphism 

H1(C(D)) ~,Hl(OD(D)) . 

Furthermore, the restrictions of &Y and O(D) to U Y - E are both equal 
to 01u, and we see from the natural commutative diagram 

0 = HY.(C9(D)) H?(Y, O(D)) HO(U, O(D)) 

HO( Y Cy) > H? U, Oy) 

R H0(U(9Q') 

that 7 is bijective, whence 

(2.9) HO(OD(D)) C H'((Dl) - 0. 

It follows that 

\D =- ho(0D(D)) + hl(0D(D))= -x(OD(D)) 

But 

(D.D) = x(OD(D)) - X(D) 
([RS, top of page 223]), and by (2.5) 

(X C.D)=-(D.D) - 2X(D) 
so that 

(UC - DD)=-2[(D-D) + X(D)] 
= -2X(OD(D)) 
=2)D . Q.E.D. 

COROLLARY (2.10). H'(Y, w) = 0, and hence HE(@) = I. 

Proof. Since c =(XJC), (2.8) shows that H'( Y, w) = 0. Setting U= Y- E= 
Spec(R) - {m}, we have H'( U, 0) = I [10, Propositions 4.10 and 4.13]. Final- 
ly, we have an exact sequence 

0 = H'(Y, )- H1(U, )c) > HE(@) > H2(YC) = 0. 

H'(U, u) Q.E.D. 

We proceed now with the proof of (2.3). Since Yis obtained from Spec(R) 
by a sequence of blow-ups, there is an effective divisor D on Y supported 
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in E such that the invertible 0,-ideal 0(- D) is very ample. So, with 
/9(p) = O(-pD) (p = ?1, ?2, ...), there is for any coherent 0,-module 
,F an exact sequence 

(_MY8 a' > 0( n)t fi IT > 

with suitable positive integers s, t, m, n (m > n). Here n can be chosen as 
large as we please. For any R-module M, set 

M = HomR(M, HEe(w)) = HomR(M, I) (cf. (2.10)). 

We have then a commutative diagram with exact rows 

E(09(_M)s) 
2 H(09( _n)t) >2 (,T) 

(2.11) - 0 

Hom(0(-m)', W)* Hom(@(-n)t, W)* Hom(2, w)* - 0. 

We want to show that 

(2.12) For any sufficiently large n the natural map 

a: HE2(0(- n)) >Hom(O(-n), w)* 
is bijective. 

In view of (2.11), (2.12) will imply that for any coherent 9Y the natural 
map 

HE~y Homff, w)* 
is bijective. We can then prove (2.3) as follows: 

If g is the kernel of fi, we have a commutative diagram 
H(09(- n)t) > HE(W) 2 HEg >H(0(- n)t) 

(2.13) 1 1 P 
Ext'(O9(_n)t, t)* o Extlff, a))* > Hom(t, w))* o Hom(O(-n)t, a)) 

with exact rows, the last two vertical arrows being isomorphisms, and the 
first two arising from Yoneda pairings. If n is sufficiently large, then 

Ext'(O(- n)t, )) = H'(w X0 0(n))t = . 

Furthermore, for any n > 0, 

(2.14) HE'(O(-n)t) = 0 . 

(This special case of Theorem (2.4) can be proved directly as follows: 0(1), 
being very ample, is generated by its global sections; since 0(1) C 9,, we 
conclude that 

(2.15) ((1) = n(9 
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for some ni-primary ideal n in R. Then, as in the first part of the proof of 
(2.4) (?(2c) below), we see that 

H (0(- n)) =lm HO((D( - n -t)/O,) 
t 

but, with r = n + t, 

H (9(-n - t)/ Ho() =H (0D(,rD)) = 0 (cf. (2.9)) *) 

Now from (2.13) we deduce that 

HE TF) >Extl(Sf, cw)* 

is bijective, proving (2.3). 

It remains to prove (2.12). Set w(n) = w 0 ((n), so that 

Hom(0(-n), w) = HO(Y, a(n)) . 

The restrictions of w(n) and O(- n) to U Y - E are both equal to 0, We 

have exact sequences (cf.(2.14)) 

O=HE'(O(-n)) HI(Y, C'(-n)) >H'(U, 0'(-n)) H'((D(-n)) H (Y. 0( 0)) 

H'(U, Ou)zI (cf. proof of (2.10)) 

and 

0 = NH?(w)(n)) H?(wo(n)) > H?(U, w(n)) = HO(U, Ou) = R 

from which we derive a commutative diagram 

0 - H1(O(-n)) - I-> H}(O(-n)) - 0 

0 > (R/HO(o(n)))* - R* H?(w(n))-* 0 , 

where I--> R* is the natural isomorphism, and a is the map of (2.12). To 
show that 3 is bijective, we must show that 3' is bijective, i.e. (since 3' is 
clearly injective) that the R-module (R/HO(a(n)))* has the same length as 
H1(C(-n)), viz. (by (2.8)) 

1 E- nD -nD). 
2 

Note that any finite-length R-module M has the same length as M* [26, 
page 526, Theorem 4.21. Without loss of generality, assume that n is large 
enough so that 

co = (X7C) C I(-n) (cf. (2.15)); 



DESINGULARIZATION OF TWO-DIMENSIONAL SCHEMES 183 

and that furthermore, H'( Y, c(n)) = 0. Replacing D by nD, we may assume 
that n = 1, so that 0(-n) = ((D), w(n) = O(9 - D) and 

H'((:X - D))= 0. 

It suffices then to show that the R-module R/Ho(O(X - D)) has length 
1/2(UC - DID). 

The exact sequences 

0 > HO(?(X - D)) H?(O-) ,H(O,-*) H'(O(C - D)) = 0 

R 
and 

0 = H - O H-(ODX) H2(O(X -D)) = 0 
show that the length of R/Ho(O(C - D)) is X(D - C). Now, by (2.6), 

(XD-D -C)=-(D- JC.D- X) - 2X(D- J), 

i.e., 

2X(D - C)= -(D - CD - SC) - (UCD - C)= -(DD - JC) 

=-(:K-D DD) 
and the conclusion follows. Q.E.D. 

(2c) Proof of Theorem (2.4). When X is non-singular, the proof of 
(2.4) is quite short (cf. [32, page 21, Prop. (2.6)]). (And the general case is 
easily reduced to the non-singular case whenever there exists a desingular- 
ization X' -- X! ) Our proof is basically the same as that of loc. cit; its length 
is due to the unavoidable technical complications resulting from the presence 
of singular points on X. 

(I) We first recall some terminology. (For more details cf. [4].) A 
fractionary Ox-ideal 5 is a non-zero coherent Ox-submodule of the sheaf of 
rational functions on X. For such an 5, we set 5' - Ox); 5' is also 
a fractionary Ox-ideal. We say that 5 is divisorial if 5-=i' for some frac- 
tionary ideal g, or equivalently, 5 = 5". Note that when 5 C Ox, 5" is locally 
the intersection of those primary components of 5 which belong to height 
one primes. 

(II) We have 

HE(2) = lim Ext'(Ox/ntOx, 2) 
t 

= lim HO( K_1 '(Ox/ntOx, p)). 
t 
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(The last equality comes from the canonical exact sequence 

H1(, Ext' > HO( Ev ) >H2(wt 

Since 
Yi (Ox/ntex 2) =0 - -> '(OX, 0) 

therefore 

X, '(Oxf/nttix, he) = ca(flt(@x S)/as'((@x, S) 

= (t/OX) (lt = CJrn$(Ut0x, A)) . 

So it will suffice to show: 

(2.16) For every divisorial fractionary ideal 5 2 Ox such that 5/(x is 
supported in E, we have 

H0(2 04 /Qx) = 0. 

Let 91, **, 9iP be the defining ideals of the irreducible components 
E1, *.., E". (The C9i are locally prime, of height one.) We will show that: 

(2.17) If J # Ox (5 as in (2.16)) then, for some i, 
E. C Supp(5/Ox) 

and 
HO(2 0 /(Pi)") 0.= ? 

Since Q(9ij.5)"9DOx, (2.16) follows from (2.17) by an obvious induction. 

(III) Now 5/(9Xj)" is the extension by zero of a torsion-free rank one 
(DE-module 5i. Let 2i be the restriction of 2 @Oex OE to EP (so that Si is an 
invertible sheaf on EP). In order to prove (2.17) let us assume that whenever 
E. C' Supp(5/Qx) we have 

H?(Ejj 2i 0 Hi) ? 0, 

and then derive a contradiction. 
Let w: Z -- X be obtained by blowing up 5, and let f =5 O0, so that jf 

is an invertible (9k-module containing (0,. Let E, * , E',, be the irreducible 
components of ir-'(E). Set jj -%j where sj: E5 ' Z is the inclusion, and set 

Sa (Z osj)*2 . 

Then, I claim, 

H?(Ej' 2' j ) # 0 
for all j such that Ej 

- 
Supp(g/O,). Indeed, if w(E') is a single point, then 

the (non-zero) sheaf j. ?g gj is generated by its sections over Ej. If, on the 
other hand, w(Ej) Ei, then 7r induces a birational map Ejf E%, and 4iOE, is 
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a torsion-free rank one 0,Ej-module which is a homomorphic image of the in- 
vertible sheaf 4j, so that in fact 4j = 5i0E'; furthermore, Ej C Supp(5/0,), so 
H0(2* 0 Al) # 0, and consequently H0(S' 0 Sf) ( 0. 

Thus we have an exact sequence 
0 > - E'. >j 9 J X j > 0 

where 9 has support of dimension < 0, and so 

degree(S2 0 4j) = X(( 0 6j) - X(?Ej) = h0(g) > 0. 
By assumption Si has degree - 0 on E,; hence [RS, page 214, (10.2)] 2S has 
degree ? 0 on Ej, and [ibid.] 

degree(j^) = degree(2' 0 4j) - degree(S) > O , 
i.e., 

(2.18) X(J^) - X(E'.) _ 0. 

Now 4 = O(C) for some effective Cartier divisor C on Z (C # 0). From 
(2.18) we will deduce that 

(2.19) (C C) = X(4!) - X(Oz/k-f) > 0 

(cf. [RS, top of page 223] for the first equality); and finally (2.19) will be 
shown to be impossible. 

(IV) To deduce (2.19) from (2.18) we can use devissage (cf. [18, page 
298, Corollaries 1 and 21); or argue explicitly as follows: 

For any closed subscheme D of C, set JSD = 4 ??XD, and 

X(D) = Ex 
where x runs through all non-closed points of D, and X(0DX) is the length 
of the Artin ring (0D,. We show by induction on X(D) that 

X(4D) - X(D) > 0, 

this being obvious when X(D) = 0. (For D - C we get (2.19).) 
If X(D) > 0, let JO be the defining ideal in (DD of one of the one-dimensional 

reduced irreducible subschemes E of D; and let d = (0): P. We have an 
exact sequence 

(2.20) 0 - T G- > CD 0 
where 

X(D) = X(D) - r 
with r > 0 (r is the generic rank of the E-module dr). Since 4 is invertible, 
we can tensor (2.20) with (5 and take Euler characteristics to conclude that 
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[XgD) - X(D)] - [X(cNJ) - X(01] = [X( (g 0 ) - X(d)]d 
By the inductive assumption, X(J,)- X(Oy) > 0, and by (2.18), X(gE)-X(OE) > ? 
so it will suffice to show that 

(2.21) X(g 0 &) - X(a) = r(X(g_) - X(E))e 

But since a is generically (on E) isomorphic to Or, [RS, page 214, Lemma 
(10.1)] (cf. also footnote following Theorem (2.4) above) gives 

X(C 0 Cf) - ( (g, Or) = X(Gt) - X(or) 
which is just a rearrangement of (2.21). 

(V) It remains to be shown that (C. C) < 0 for any effective non-zero 
Cartier divisor C on Z with support in Z ?A (A/n). (Note that if Z is non- 
singular this is just the well-known "negative-definiteness of the intersection 
matrix.") 

From [RS, page 223, Prop. (13.1), d)] we obtain 

X(nC) =-(C. C) (2) + X(C).n (n ? 0) 

so we need to show that 

lim - X(nC) > 0 . 

The exact sequence (for n > 0): 
A 

o - H?(0(-nC)) - H0(Oz) -> H0(@cq) - H1(0(-nC)) > H1(Oz) > H1(Onc) > 0 

shows that 

h1(Onc) <~~ hl(Oz), 
h'(O,,c) ? x(A/H'(O(- nC)) 

=xlength of an A-module, hi(-) = A(Hi(-))); so it suffices to show that 

lim inf 1- X(A/H'(O( - nC)) > 0. 
boo0 n2 

Let E be an irreducible component of C, let S = (DZ,E (a one-dimensional 
local domain whose maximal ideal contains n), let 3 be the integral closure 
of S (so that 3 is a semi-local Dedekind domain [4, page 31, Cor. 2]), and let 
v be a discrete valuation whose valuation ring Rv is the localization of S at 
one of its maximal ideals. Let 

P= {a e A I v(a) ? n} - 
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Then P,,: H(O(- nC)); so it will suffice to show: 

(2.22) lim inf I2 X(A/P4) > 0 . 
boo+0 n2 

Set P1 -n (a maximal ideal in A). There exist elements a, , in A such 
that v(a) = v(^) = r (say), and the image of a/,3 in the residue field of R, is 
transcendental over A/rn. For any integer a > 0, if F(U, V) e A[ U, V] is a 
homogeneous polynomial of degree a, whose image F(U, V) in (A/m)[U, V] 
is non-zero, then 

v(F(x, f)) = ar . 

(Otherwise we would have v(F(a/fl, 1)) > 0, contradicting the just-mentioned 
transcendence property of a/,f.) Hence 

VPar/Par~i) ? a + 1 

(For, ParIPar,, is an A/rn-vector space in which the images of the elements 
cKij (i + j = a) are linearly independent.) Thus 

X(ParIP(a+i)r) > a + 1 
and so for any integer b > 0, 

X(AIPbr) > 1 + 2+. +b _ b(b + 1) 
2 

Hence, for any integer n- br + c (b > 0, r > c > 0) we have 

n2 \(A/P.) > 2 ( 2 )> 2r2 ( n ) 

and (2.22) is proved. Q.E.D. 

(2d) Appendix: Duality with supports. We outline the proof of a 
duality theorem which combines local and global Grothendieck duality. (') 
The theorem contains (2.3), and is given here for completeness; as indicated 
in the remarks preceding (2.3), this appendix is not needed elsewhere in the 
paper. 

Let (A, m) be a local ring such that X = Spec(A) admits a residual 
complex Rd. For example A could be essentially of finite type over a Goren- 
stein local ring [11, pages 299, 306]. We may assume that R is normalized 
[11, page 276]. Let f: Y-e X be a proper morphism, let E = f-'{m} be the 
closed fibre, and let Ry = foRt (so that R> is a residual complex on Y [11, 
page 3181). Let n be the Krull dimension of Y, and let 

WY/AA= H-"(Ry). 
A related result is given in [11a, page 48, Prop. (5.2)]. 
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Remarks. 1. If all the local rings 0y y of closed points y are n-dimen- 
sional and Cohen-Macaulay, then R [-n] (=Rr shifted n places) is an in- 
jective resolution of WY/A. 

2. With the notation of (2.3), we have 

WY = (OYIR - 

This follows from (2.5); or it can be shown directly from the definitions 
involved. 

THEOREM. With the preceding notation, let I be the infective hull of 
the A-module A/m; and let FE denote "sections supported in E." Then for 
any coherent 0y-module Y (or, more generally, any complex in Db(Y) [11, 
page 85]) there is an isomorphism (in the derived category of the category 
of A-modules) 

RIF(~Y) ?2>* HomA(Homoy(if, Ry), I) . 

Hence, if Y is locally Cohen-Mcacaulay, of pure dimension n, there exist 
isomorphisms (for all i) 

HAY) , HomA(Ext Ay (S.F dWY/A), I) 

Proof. The duality theorem [11, page 379] gives an isomorphism 

Hom,%Yff, Ry) i, Homo.(Rfg*T, R). 

The complex RfOSS may be taken to be of the form f*(5V), where 5, is a 
quasicoherent infective resolution of IF; since f*(,V) is quasi-coherent, with 
coherent cohomology (f being proper), we can apply local duality [11, page 
278] to get an isomorphism 

RFm(Rf*,7F) ?"? HomA(Homo9X(Rf*SJ, Ri), I). 

Finally, since FE = Fm o *,, we have 

R F(Rf* f) = RFE(fl, 

and the assertion follows. 

3. Reduction to pseudo-rational singularities 

We want to prove Theorem* of Section (la). Let us first see how 
Theorem (2.2) can help us to do this. 

Let R be a complete two-dimensional normal local ring. There exists a 
complete two-dimensional regular local ring R _ R such that R is a finite 
R-module. Let K (resp. L) be the fraction field of R (resp. R). It clearly 
suffices to show that there exists an iterated blow-up f: Ye- Spec(R) (i.e., f 
is obtained by successively blowing up closed points) such that the normal- 
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ization Y of Y in L has only pseudo-rational singularities. (Note that 
since R is complete, Y is finite over Y, hence proper over Spec(R).) 

What we want, then, is that for any proper birational map h: Z . 
with Z normal, the canonical map H'(Of) H'(Oz) should be bijective (cf. 
(iii) in Lemma (1.3)). The following lemma allows us to restrict our atten- 
tion to those Z which are of the form Y1, Yf, --I Y being an iterated blow-up. 

LEMMA (3.1) ("Elimination of indeterminacies"). For any Z - Y as 
above, there is an iterated blow-up YI1 -- Y such that the normalization If 
of YIf in L dominates Z, i.e., there is a commutative diagram 

F, ,Z 0 y 

Y1? .... . - y 

(iterated blow-up). 

Proof. Note that all the maps involved are of finite type. Let E1, ... * *, 
be those irreducible curves on Z whose image on Y is a single point, and let 
v..., vn be the corresponding discrete valuations of L. Because of Zariski's 
"Main Theorem," we need only arrange that the restriction of each vi to K 
be the valuation associated to an irreducible curve on Y1; and this is possible 
by [38, page 392]. Q.E.D. 

Thus, we need an iterated blow-up f: Y -+ Spec(R) such that for every 
iterated blow-up Y1 Y, we have 

B\(H'(Oy-)) > BH(r) 

where "X" denotes "length" (of an R-module). But by Theorem (2.2) (and 
Matlis duality [26, page 526, Theorem 4.2]), 

~\(H (Or-)) = ~\(ClCy) . 

So the problem becomes one of "maximizing" X(C/Cy). 
Specifically, it suffices to show: 

(3.2) There exists an iterated blow-up f': Y' Spec(R) and an integer 
N such that for any iterated blow-up g: Ye-- Y', and with C, Cy as in 
Theorem (2.2), we have that mNC C Cy (m = maximal ideal of R). 

For then the R-module C/Cy has length bounded by that of C/mNC, and 
the length of H'( Y, Cy) is bounded by the same integer (independent of Y!). 
So among all iterated blow-ups g: Ye--I Y', there exists one for which 
H'( Y, 0y) has maximal length, and then, by the preceding remarks, Y has 
only pseudo-rational singularities. 
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Remark (not used hereafter). (3.2) will be proved as it stands; but ob- 
serve that if Y', N are as in (3.2), and if YU Spec(R) is any iterated blow- 
up, then, as in (3.1), there is a commutative diagram 

iterated blow-up 

YO _ Spec(R), 
and it follows that 

nNC (-C Cy' 
(i.e., (3.2) holds with Y' = Spec(R)). 

* * * 

As a first step toward the proof of (3.2), we gather together some 
elementary observations: 

LEMMA (3.3). The following conditions are equivalent: 
(i) There exists d = 0 in R such that dC C Cy for all non-singular Y 

proper and birational over Spec(R). 
(ii) ny Cy = 0, where the intersection is over all Y as in (i). 
(iii) There exists a non-zero K-linear map T': L -- K such that for any 

two-dimensional regular local ring S with R _ S _ K, we have 

T'(S _ co~s 
where S is the integral closure of S in L, and cos is as at the beginning of 
Section 2. 

Proof. (i) (ii): Since R is a finite R-module, it is clear that C # 0, so 
dC 0. 

(ii) = (iii): Recall that C, Cy are defined with respect to some fixed non- 
zero K-linear map T: L K (cf. Section 2). Set T' = IeT, where 

o0qefnlC, . 
Every S is of the form 0Y,, for some Y as in (i) and y e Y; by definition of 
Cy, we have 

T([eCyV) (J),-, Y 
i.e., 

T'(S)?-w us 

(iii) (i): Let T: L K be as above. Then T' = pT for some O p e L. 
If Cy is defined for T' in the same way that Cy is defined for T, then C, = pCy, 
and similarly C= pC'. Hence we may assume that T' = T. 

Let (e1, e2, .**, en) be a K-vector space basis of L, with each ej e R. Let 
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d be the determinant of the matrix (T(efej)). Then d / 0, and d e R (since 
T(R) C wO., R). Given Y as in (i), and a closed point y e Y, set S =Oy 
For any s = EI& ajej e S (ax e K), we have T(sej) e as, i.e., 

E =1a cT(ejej) e aos (j = 1, 2, ***, n) 

Then Cramer's rule gives daxi e as, so that ds e If aoe,. Since ef G R, there- 
fore T(Ce.) c o -R (definition of C), and so 

T(dCS) _ T(C(Ei (seD)) C (os. 

Thus 

T(dCWOy) Coy, 
for all closed points y e Y, and hence also for all y e Y; i.e., dC _ Cy- Q.E.D. 

A non-zero K-linear map T': L K as in (3.3) (iii) willl be called a good 
trace. 

If either R has characteristic zero or R has a perfect residue field, then 
by a theorem of Nagatal, R can be chosen so that L is separable over K; 
and then the usual trace map Tr: L K is a good trace, since for all S 
we have 

0 * Tr(S>ZS (c.s 
Thus the conditions in (3.3) hold in this case. 

In the remaining case, when R contains a field and the residue field of 
R is not perfect, then for any choice of R there still exists a good trace L "-+ K; 
the proof of this fact will occupy most of Section 4. 

The rest of Section 3 will be devoted mainly to a proof of: 

(3.4) The equivalent conditions in (3.3) imply (3.2) (and hence Theorem*). 

To review: after proving (3.4) we will be done, except in the equichar- 
acteristic, non-perfect residue field case, where we need Section 4 to ensure 
that the conditions in (3.3) do indeed hold. Actually, Section 4 will provide 
another proof (independent of the rest of Section 3) for (3.2) in the equi- 
characteristic case. In fact if R contains a field, then for any fixed choice of 
R we will show the following (cf. Corollary 4.7): for any height one prime 

i in R, there exist e,, e2, ... , e", and a good trace T: L K such that 

d = det(T(eiej)) 0 p . 

Since dCc n fC, (cf. proof of (3.3)), it follows that the annihilator of 
con c, is m-primary, and so (3.2) holds with Y' = Spec(R). 

1 Cf. Mem. Coll. Sci. Univ. Kyoto, Ser. A. Math. 28 (1953), page 276, Theorem 3. 
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In the equicharacteristic, perfect residue field case, we can also replace 
(3.4) by the following argument: 

Exercise: Assume that R contains a field, and that the residue field k of 
R is perfect. Let q be a height one prime in R. Then R can be chosen so that 
R is etale over R at q (cf. [3, page 123, Satz 4.1.12] or [EGA IV, (18.11.10)]); 
in other words, R is a localization of 

R[ U]/P(U) = R[u] CR 

where P(U) is a monic polynomial such that P'(u) X q (P' is the derivative 
dP/d U). Show that 

(use the fact that P'(u)S : SS[u] for all S). As in the preceding remark, 
deduce (3.2). 

Remark (not used elsewhere). The purpose of Sections 3 and 4 is to prove 
Theorem*; but conversely the main results in these sections follow from 
Theorem* (and Theorem (2.2)). That is, let R, K, L be as in (2.2), let R be 
the integral closure of R in L, and suppose that there exists a proper bira- 
tional map Z oo+ Spec(R) such that Z has only pseudo-rational singularities. 
Then there exists an iterated blow-up Y, - Spec(R) such that Y' dominates 
Z (cf. (3.1)), and Y, has only pseudo-rational singularities (cf. (1.4)). 

Furthermore, it is easily seen that there exists a non-zero K-linear map 
T: L -- K such that T(0-1) C owl ; and this T is a good trace. (Indeed, for any 
iterated blow-up Y' Y1, Theorem (2.2) implies that C,, Cr1, and since 
1 C C,1, therefore T(0,1,) (--wr,, .. . m) 

We proceed now with the proof of (3.4). Let d # 0 be in R. For any 
iterated blow-up Y e-- Spec(R), let d, be the "proper transform on Y of the 
curve d = 0,- i.e., 

dy = {y C YI (Z ? /d~y, I . 

(d, is the closed subset of Y defined by the coherent 01n-ideal Vd0y: moy.) 
We shall prove below: 

LEMMA (3.5). There exists an iterated blow-up Y' - Spec(R) such that, 
if w: Y' Y' is the normalization in L, then each closed point in 7-r(d,,) 
is a pseudo-rational singularity of Y'. 

(3.4) can be deduced from (3.5) as follows: Fix a d as in (3.3) (i), and let 
Y' be as in (3.5). From the definition of dy, it follows easily that there is an 
integer N such that, for all y' e Y' - d we have 
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(3.6) MNOY1dEy,, 
After enlarging N if necessary, we may assume that 

(3.7) mN(CICy,) = 0. 

(This can easily be deduced from the definition of Cy, or from Theorem 
(2.2).) 

Now let g: Ye- Y' be any iterated blow-up. Let us show that mNCCCy 
(thereby proving (3.2)); in other words, for any p e L, if T(pR) C R then, 
for all y e Y 

T(mN,~y) Ci (w 

(where Oy is the integral closure of Oy,, in L, and w1, is the stalk wy ,). 
There are two cases to consider. First, if y' = g(y) e Y' - d, then (3.6) 

implies that mNfiV _ dpeO.; since dp e dC _ Cy, we have 

T(ra-,vpY) C T(CrOy)_ TV (o 

Second, suppose that y' = g(y) e dy. Let g,: Z -o Y' be the iterated 
blow-up obtained from the iterated blow-up g by omitting those blow-ups 
for which the point blown up does not lie over y'. Then g factors as 

and we have 

OY = (y,8 = (Z,92(y) 

so we may as well assume that g, = g. Then, if ir: Y' Y' is the normal- 
ization in L, the map of normalizations 9: Y Y' induces an isomorphism 

Y - -'i'(y') ? ? t Y_ =-1 

so that R1'. (0j) is concentrated on i-'(y'). Since y' e dy, all the points of 

ir1(y') are pseudo-rational singularities of Y', and so R'.,*(O-) = 0. This 
implies that the canonical map H'(Y', Opy,) -- H'( Y, y-H) is bijective, whence 
(Theorem (2.2)), the R-modules C/Cy, and C/Cr have the same length; since 
Cy _ Cy, we conclude that 

Cy, = Cy. 

From (3.7) we now obtain ml(C/Cy) = 0, and hence, again, T(m'fO,) c W1. 

It remains to prove (3.5). Let p1, ..., pr be the height one primes in R 
containing d, and let vs (1,<iGr) be the valuation with valuation ring Raw. 
Each R/p, is a one-dimensional local domain whose integral closure in its 
field of fractions K, is a semi-local Dedekind domain [4; page 30]; so the valu- 
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ations zvyj of Ki whose valuation ring contains R/pi are discrete, of rank 
one, and finite in number. Each of these valuations gives rise to a rank two 
discrete valuation wij composite with vi. (The valuation ring of wij is the 
inverse image of that of iij under the natural map Rp z Ks.) 

LEMMA (3.8). Let Ye- Spec(R) be an iterated blow-up, and let y be a 
closed point of d,. Then (D, is dominated by one of the valuations wij (i.e., 
wij(a) > 0 for any a e Cy and wij(a) > 0 if a is a non-unit). 

Proof. One checks that y e d, if and only if (,y C R4i for some pi as 
above; then R4i is actually the localization of (Dy at some height one prime 
q with q n R = pi, and the conclusion follows from the fact that O,, /q is 
dominated by some 'iTQi. Q.E.D. 

Let vijk be the finitely many extensions of wij to L; the vij, are rank 
two discrete valuations of L. So Proposition (1.33) gives: 

COROLLARY (3.9). Let 

Spec(R)=Zo < Z, < Z2 < ... 

be such that for each n > 0, Zn,1 is obtained from Zn by blowing up the 
centers zajk on Zn, of all the valuations vij, and then normalizing (zj5kn is 
the unique (closed) point on Zn, whose local ring is dominated by vijk). Then 
for some n, ziin, is a regular point of Zn for all i, j, k. 

Now, by (3.1), we can find an iterated blow-up Y' -- Spec(R) such that, 
w: Y' Y' being the normalization in L, there is a proper birational map 
h: Y' ZonZ. By (3.8) and [38, page 31, Theorem 13], each closed x e v-1(d,,) is 
the center on Y' of some vi,. Hence h(x) = Zijkn is regular, hence rational, 
and so (Corollary (1.4)) x is pseudo-rational. Q.E.D. 

4. Existence of good trace maps 

(4a) Differentials and traces .................................... 195 
(4b) Admissible base fields ...................................... 201 

Let k be a field of characteristic p > 0. Let R be a formal power series 
ring in two variables over k, R = k[[ U1, U2]]; let K be the fraction field of 
R, and let L be a finite algebraic field extension of K. In Section (4a) we 
prove the existence of a "good trace" map T: L ) K (cf. remarks following 
(3.3)). In fact, we shall show (Corollary (4.7)) that for each height one prime 
p in R, there exists such a T which is "unramified at p" (cf. remarks follow- 
ing (3.4) for the significance of this result). 

T will appear as the trace map between certain modules of differentials 
over an "admissible" field ko C k. (The existence of such ko is established in 
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Section (4b); difficulty occurs only when [k: kP] -= o, since otherwise kP is 
admissible.) The notion of "trace of a differential" is studied extensively by 
Kunz in [21];' we include in (4a) an exposition of those parts of [21] which 
are needed for the desired results on good traces. 

(4a) Differentials and traces. Let k be a field and let C be the category 
of complete local k-algebras with residue field finite over k. Let $ be the 
category of reduced k-algebras B for which there exists an R e Y and a 
k-algebra homomorphism R -* B such that B is essentially of finite type over 
R (i.e., B is R-isomorphic to a ring of fractions of some finitely-generated 
R-algebra). 

Let p > 0 be the characteristic of k. When p > 0 let kP be the field con- 
sisting of pth powers of elements of k; and when p = 0 let kP = k. We shall 
say that a field kIc is a base field (under k) if kP _ kI _ k and [k: kI] < A. 

For any such kIc0 and any R e IS, there is a kIc-derivation dR of R into a 
finitely generated R-module Q(R/Ikc) which is universal for kIc-derivations of 
R into finitely generated R-modules [3, page 47, Satz 2.1.5]. 

Given R B as above, there is a "universal extension" of dR to a deri- 
vation dB: B Q(B/Ikc). Explicitly, if "Qk" denotes "universal module of 
k0-differentials," and I is the kernel of the natural surjection Qk0R -k Q(R/Ikc) 
then we have a natural commutative diagram of B-module maps, with exact 
rows and columns: 

B ?RI - B @RQk0R - B ?RQ(R/ko) 0 
_ 1 1. 

B @RI Qk0B - Q(B/ko) - 0 

(4.1) 
QRB QRB 

I I 
0 0 

(QRB is the universal module of R-differentials of B). The middle row defines 
Q(B/Ikc), and dB is the composition of -Y with the universal derivation B e-* QkOB. 
The last column shows that Q(B/ko) is a finitely generated B-module. 

By [3, page 60, Satz 2.3.10], the pair (Q(B/ko), dB) depends only on the 
k-algebra B (and not on the choice of R o-e B). 

I I hope to present elsewhere a treatement-based on Grothendieck's residue symbol- 
which is more general (it applies to relative complete intersections, rather than just pairs of 
fields) and more uniform (for example, all finite field extensions-separable or not-are dealt 
with simultaneously). 
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Example (4.2). Suppose p > 0, and let R u-* B be as above, with R the 
formal power series ring k[[ U1, *.., Usj]. Then Q(B/1kc) is the universal 
module of kI[ UP1, *.., Ufl]-differentials of B (and dB is the universal 
ko[[ UlP ... , U.Pfl-derivation). 

Now let R = k[[ U1, U2]], let K be the fraction field of R, and let S be a 
two-dimensional regular local ring with R C S CZ K. Our next task is to bring 
out a connection between differentials and the S-module Co, (cf. Section 2). 

Let ko be a base field, with [k: ko] = pe (e = 0 if p = 0). Then Q(R/ko) is 
free, of rank e + 2, with free generators, say, 21, ,2Y * * *,+2 (cf. (4.2)). For 
any B in the category A, and any integer n > 0, we set 

Q"(B/ko) = A.BQ(B/k0) 

(where "A" denotes "exterior power"). Then, since (as is easily seen) 

Q(K/ko) = KORQ(R/ko) Y 

therefore 

Qe+2(K/ko) = Kt, A ~2A ... A e+2 

We have a canonical map of S-modules 

Qe+2(S/ko) > Qe+2(K/ko) = K SQe+2(S/ko) 

whose image we denote by 

(OSl A '2 2A 
... /A\ 2e+2 

so that 4 =s S is an S-submodule of K. 

LEMMA (4.3). Let S, us be as above, and let us be as in Section 2. Then 

Proof. There is a quadratic sequence 

R = Ro < R1 < ... < R, = S 
For 0 ? i ? n, let co' = co'. and aOi =oR . We proceed by induction. For 
i = 0, we have 

0ho R= to 
Now assume, for some i with 0 ? i < n, that co' _ oi. Rj, is a localization 
of Ri[x/y] for suitable generators x, y of the maximal ideal mi of R,; hence 
(cf. (4.1)) the Rj+j-module Q(Rij /Iko) is generated by the natural image of 
Q(Ri/ko) and by 

d(x/y) = y-'(dx - (x/y)dy) 

(d: R+j - Q(Ri+l/ko) being the canonical derivation). It follows that 
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C-. 

By definition (Section 2) 
(0 = (m R +)-1)') = y-1R o 

and hence Wi+1 =C (w+1 Q.E.D. 
We can now describe the construction of some good traces. Once again, 

let R = k[[ Ul, UJ]], with fraction field K, and let L be a finite field extension 
of K. In Section (4b) (Lemma (4.11)), we will show that for some base field 
k, with, -ay, [k: ko] = pe, the L-vector space Q(L/ko) has dimension e + 2. 
(Here e = 0 when p = 0.) Such a ko is said to be admissible for L (Definition 
(4.10)). If L is separable over K, then any base field is admissible for L; 
and when p > 0 and L is not necessarily separable over K, then k. is admis- 
sible for L if and only if L is linearly disjoint from kF'-'[[ U1, U2]] over R (cf. 
(4.8) and (4.9)). (In particular, k" is admissible if [k: kP] <oo.) In any case 
we see that if ko is admissible for L, then ko is also admissible for any 
field L' with K C L' C L. 

Now let K_ L'- L" c L be fields such that either 
(a) L" is separable over L', or 
(b) L" is purely inseparable, of degree p, over L'. 

Then [(cf. [20a, pages 286-288]) there exists a surjective L'-linear "trace" 
map 
(4.4) r: 0,1+2(L"/ko) QG+2 (L'Iko) 
satisfying: 

(a') if L" is separable over L', so that (as is easily checked) Q(L"/ko)= 
L" @l' Q(L'/ko), then 

(4.4a) r = Tr 0 1: L" @L' QG+2(L'/ko) - L' @L' Qg+2(L'/ko) 

where Tr: L" -O L' is the usual trace map, and 1 is the identity map of 
Q"+1(L'1k ); 

(b') if L" = L'(a), with a V L', all e L', then, for any a2, * . -. ae+2 in L', 
and 

X c= do + cia + * * * + op~laP-l (ci e L') 

we have 
(4.4b) z-(Xd"ad"a2 ... d"a.+2) -c_1d'(aP)d'a2 ... d'ae+2 

(where d' = dLI: L'-+ g(L'/ko) is the canonical derivation, and similarly 
d" = dL,,. Note that d'(a'l)? 0, since otherwise Q(L"/ko) would have dimension 
e + 8). 

Next let 
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K= LOcL1cL2c ..- cLm = L 
be fields such that L1 is separable over Lo, and for 1 ? i < n, Li,, is purely 
inseparable, of degree p, over Li (when p = 0, we take m = 1). Let 

Zi: Qe+2(LsIko) > Qe+2(Li-1ko) (O < i ? m) 

be as in the preceding discussion. 
Choose yi, 2, * . . . Ye+2 in R such that dyl, dy2, * , dye+2 generate Q(L/kO) 

(d: L -* Q(L/ko) being the canonical derivation). Let T: L - K be the unique 
K-linear map such that for all X e L we have 

(4.5) T(O)X1%2 *. de+2 = (Z1Z2 ... Zm)(XdYidY2 ... dYe+2). 

(Here, as before, { , $e+2} is a free basis of Q(R/lko).) T # 0, since each zf 
is surjective. 

Claim: T is a good trace. 
For justifying the claim, some more notation will be convenient. Let 

A be any subring of L such that A contains R and A is essentially of finite 
type over R. Let LO be the fraction field of A. We denote by Q*(A) the 
image of the canonical map Qe+2(Alko) Qe+2(L#Iko). 

The following key technical result (and its proof) are essentially con- 
tained in [21] (Satz 2.15). 

LEMMA (4.6). Let z be as in (4.4). Let A be a Dedekind domain with 
fraction field L', such that R ( A and A is essentially of finite type over R; 
and let A be the integral closure of A in L" (A is a finite A-module, since 
R is complete). Then: 

(a) z(Q*(A)) *(A) 
(b) (i) If L" is purely inseparable over L', then for X e L" we have 

(4.6') [z(Q*(A))c Q*(A)] X e A .1 
(ii) If L" is separable over L', and if Q(A/ko) is a torsion-free A-module, 

then (4.6') holds for all X e L". 

For convenience, a proof of (4.6) is given below. But first let us see 
how (4.6) (a) can be used to show that T is a good trace. If S is any two- 
dimensional regular local ring with R C S _ K, q is a height one prime ideal 
in S, and S is the integral closure of S in L, then, with dy1, dy2, ..., dye+2 
as in the definition of T, we have 

Sdyidy2 ... dye+2 C Q*(Sq) 

from (4.6)(a) and (4.3) we obtain 
I In other words, r generates the A-module HomA(Q*(A), Q*(A)). 
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z(.)Q*(s4) C Q*(Sq) Q*(S)4 C (()S)q(e122 ... ~e+2) y 

and conclude that 

T(S)_ ()q 
But since wA is invertible, wo, is the intersection of all its localizations of the 
form ((s)q; so 

T(S)C 5 

and we are done. 
Using 4.6(b) we can get even more: as indicated in the remarks after 

(3.4), the following result can replace (3.4) in the equicharacteristic case. 

COROLLARY (4.7). With previous notation, let p be a height one prime 
ideal in R. Then there exist elements el, *.**, en e R (n = [L: K]), and a good 
trace T: L -- K, such that the determinant det(T(eiej)) lies in R -p. 

Proof. Choose a free basis el, *.. , e' of the R.-module R, (integral closure 
in L); and let r e R - p be such that 

ej = reieR (1 <?i <n). 
Then for any K-linear map T: L K, 

det(T(eiej)) = r2"det(T(e'e,)) 

so it will suffice to find a good trace T such that det(T(e'e.)) is a unit in R,. 
(Recall that for a good trace T, we have 

T(eje6) e T(R) C OR =R. 
and hence 

det(T(e'e')) e RP . 
We have first to modify the base field ko. Let 

K=Lo0'LIc *cL. = L 

be as before, and let R' be the integral closure of R in L1. In Section 4b 
(Proposition (4.12)) we will show that, by shrinking ko if necessary, we can 
arrange that for all height one primes p in R, the R'-module Q(R'/ko) is 
free (R = R' ?R R4,). This extra condition on k, allows us to assume that 
(4.6') holds for A Rp, A = R, (cf. (4.6)(b)(ii)). 

Now let Qf = Qf(R!) be the image of the canonical map 

Q(Rp/ko) -- Q(Llko) L 

Then clearly Qf is locally, hence globally, a free R,-module of rank e + 2 
(R. is a semi-local Dedekind domain); and 
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Q*(R ) = A4+2(Qf) 

Choose ye , Ye?2 e R such that {dy, * * *, dy,+2} is a free R,-basis of QO, and 
let T be the corresponding good trace (cf. (4.5) and the argument following 
(4.6)). Then from (4.6') it follows (by an obvious induction on m) that, for 

(512 
** 

m)SQ(R))C Q*(R,) 
i.e. (since Q*(R,) R4,dy1dY2 ... dye+2 and Q*(Rp) = Rpi ... ge +2) 

T(xfR4) C- Ro A R 
Thus, for c1, c2, ** , cn e K, we have 

T(Ef citese) e R for all j = 1, 2, * - n, 
ci e R, for all i 1, 2, ***, n. 

In particular if (ci) is the inverse (over K) of the matrix (T(e'e;)), then 
c.i e R4 for all 1, i. Thus det(T(e'e;)) is a unit in R,. Q.E.D. 

Finally, we outline the proof of (4.6). Localizing at the maximal ideals 
of A, we reduce easily to the case where A is local. Suppose first that L" 
is purely inseparable, of degree p, over L'. As in the proof of (4.7), we let 
Qf(A) be the image of Q(A/1k) Q(L'/k0), so that Qf(A) is a free A-module 
of rank e + 2, and 

Q*(A) = Ae+2Qf(A) 

Qf(A) is defined similarly. 
Let d'a1, d'a2, ** , d'ae? 2 generate Qf(A), where a, e A (1 _ i < e l 2) and 

d': L'-- Q(L'/k0) is the canonical derivation. It is easily seen that A = Ata], 
with a" e A. Hence Q(L"/k0) is generated by d"a, d"al, , d"ae+2, subject 
to the single relation 

d"1(a p) +2 bid"ai = 0 
where the bi e A are determined by 

d'(aP) = ,+' bid'ai 

Clearly Qf(A) = Qf(A[ca]) is also generated (over A) by d"ca, d"al, *.. , d"ae?2 
subject to E bid"ai = 0. Since Qf(A) is free of rank e + 2, the bi must 
generate the unit ideal in A, whence some bi, say, b1, is a unit in A. Thus, 
we may assume that a, -c ; and we have 

Q*(A) = Ale Qf(A) - Ad"axd"a2 d"ae2 . 

From this and from (4.4b) we find (keeping in mind that A = Atal) that 
(4.6') holds, and this proves (4.6) for the purely inseparable case. 
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Assume next that L" is separable over L'. As above, let {d'a1, 
d'a., -*, d'a,+2} be a free basis of the A-module Qf(A/k0) and similarly let 
{dpra1, d"ct2, ., d"ae+2} be an A-free basis of Qf(A/k,). Then 

Pr= +2 cigd"cag (cig e A) 

and if A is the determinant det(cig), then A # 0, and 

Q*(A) =Ad''cra**l datz2 = -1 (A(&A Q*(A)); 

furthermore, AADthe Kahler different b of A over A, and AA = b if Q(A/ko) 
is torsion-free. (Indeed, if Q,(A), QW(A) are the torsion submodules of Q(A/k0), 
Q(A/k0) respectively, and if f, is the Oth Fitting ideal of the cokernel of the 
natural map A ?AQt(A) --Q (A), then one shows easily that b =Afo.) 

The desired conclusions follow now from (4.4a) and the well-known 
equality of Kdhler and Dedekind differents, which tells us that for X C L, 

Tr(Xb-'A) - A e =. e A 

("Tr" denoting the usual trace map L" -* L'). Q.E.D. 

(4b) Admissible base fields. 

LEMMA (4.8). Let K ( L be two fields of characteristic p > 0, with L 
finitely generated (as a field) over K, of transcendence degree, say, t. Let 
Ko be a field between KP and K, such that [K: Ko] = pf < 00. Then the 
dimension D of the L-vector space QKL (Kdhler differentials of L over K.) 
satisfies D ? t + f, with equality if and only if KoP` and L are linearly 
disjoint over K. 

Proof. Let K c F - L, with F a purely transcendental field extension 
of K, of transcendence degree t (so that [L: F]< x- and [F: KFP] = pt). 

K KFP Fly L 

Ko- KoFP KoLP 

KP- FP LP 

Clearly K and FP are linearly disjoint (l.d.) over KP. So, first of all, K and 
KoFP are l.d. over Ko, i.e., 

jKFP: KOFP] =[K: K01]=f 
whence 

[F: KoFP] = IF: KFP] [KFP: KoFP] pt+f 

and secondly, K, and FP are l.d. over KP, whence 
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(K0 and LI 1.d. over KP) (KoF" and LI 1.d. over Fv). 

Now 

[KoLv: KoFv] < [Lv: FP] - [L: F] 
and 

[L: KOL"][KOL": KoFv] = [L: F][F: KoFv] (=[L: KoFv]) 
so 

[L: KoLv] > [F: KoFv] = pt+f (see above) 

with equality (KOF" and LP l.d. over Fv); 
i.e., (as above) (K0 and LI l.d. over KP) 
i.e., (Kor-1 and L l.d. over K). 

But [L: KoLP] = pD (cf. [37, page 127]), SO (4.8) is proved. 

Now let k be a field of characteristic p 2 0, and let h: R -B e 8 be as 
before (beginning of ?(4a)). By [3, page 63, Satz 2.3.13] the integral closure 
iR of R in B is a subring of B which depends only on B; furthermore, R is 
finite over R. Let n(B) be the Krull dimension of the semi-local ring R. 
Note that B has a k-subalgebra R' which is k-isomorphic to a formal power 
series ring k[[ U1, ***, UJ] (n = n(B)), and over which B is essentially of 
finite type. (Take R' to be a subring of the complete local ring h(R), with 
h(R) finite over R'.) 

If B is a domain, let t(B) be the transcendence degree of B over R (or 
over R') where R, R' are as above. 

COROLLARY (4.9) (cf. [3, page 87, Lemma 3.1.3]). Let L e Z3 be a field, 
n = n(L), t = t(L). Let ko be a base field, i.e., kv C ko C0 k and [k: ko] = (say) 
pe <oo (when p = 0 set e = 0). Then the L-vector space Q(L/ko) has dimension 
>n + t + e, with equality if ko = k" (=k when p = 0). 

Proof. We have just seen that L is essentially of finite type over a 
k-subalgebra R -k[[ U1, ... UJ"]. When p>O, in view of example (4.2), we 
can apply (4.8), with K the fraction field of R and Ko the fraction field of 
ko[[ Up, ... *, UP]] (so that [K: KJ] = pn+e). (Note that if ko = k1 then K0 = Kr.) 

Now suppose that p = 0, or, more generally, that L is separable over 
the fraction field K of R. Q(R/k) is a free R-module of rank n (generated 
by dU1, ..., d U). It will suffice to show that the sequence 

0 > L ?RQ(R/k) - Q(L/k) - QRL - 0 

(cf. (4.1)) is exact, since QRL has dimension t. We need only check that * is 
injective, i.e., that the dual map 
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A*: HomL(Q(L/k), L) - HomL(L @R Q(R/k), L) 
= HomR(Q(R/k), L) 

is surjective; but this surjectivity follows easily from the fact that every 
derivation of R into L extends to a derivation of L into L (because L is 
separable over K). Q.E.D. 

DEFINITION (4.10). Let B e 3 be a regular local ring, n = n(B), t =t(B), 
and let ko be a base field, so that kP ko k, and [k: ko] < oo, say [k: ko] = per 
(When p = 0, set ko = k and e 0.) We say that ko is admissible for B if 
the B-module Q(B/ko) is free of rank n + t + e. 

In Section (4a), the following two results, (4.11) and its generalization 
(4.12), were needed. (Note that (4.12) was used only in the proof of Corol- 
lary (4.7), and hence is not required for proving the existence of a good 
trace.) 

LEMMA (4.11) (cf. also [EGA O0, g(21.8)] and [16, page 96, Folgerung 3.8]). 
Let R be the formal power series ring k[[ U1, . . . UnJ], let K = k(( U1, *** UJ)) 
be the fraction field of R, and let L 2 K be a finitely generated field extension 
of K. Then any base field k* contains a base field ko such that ko is admis- 
sible for L. 

Remark. (4.11) is trivial when [k: kP]j< co (since then kP is admissible, 
cf. (4.9)). 

Proof of (4.11). We may assume that p > 0. For any base field ko C k*, 
set Go = kl'((Ul, .., U)). Recall (cf. (4.8) and proof of (4.9)) that ko is 
admissible for L if and only if Go and L are linearly disjoint over K. Let F 
be a field between K and L such that F is purely transcendental over K and 
[L: F] < c; since Go and F are linearly disjoint over K, it will suffice to find 
kI such that GOF and L are linearly disjoint over F. 

For any field of the form Go, set 

v(Go) = [GOL: GOF] ? [L: F]. 
(Equality holds here if and only if GOF and L are linearly disjoint over F.) 
Clearly there exists k, such that, for all fields Goa = kP'((U, ...,I U)) with 
a base field ka C ko we have v(Ga) = v(Go). If we can show that the inter- 
section of all the fields GaF is F, then it will follow that i = >(Go) = [L: F] 
(proving (4.11)!); for, if C = (Cl . * *, C,) (Ci e L) is a vector-space basis of GL 
over GOF, then r is a basis for GaL over GaF, whence any C e L is of the form 

= a, + * * * a,,C,, (aiefna GaF =F) I 
and so [L: F] ? v. 
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Let us show then that fa GaF = F. Let F = K( VI1, ..., Vt) (Vi-inde- 
terminates), and let a e F'- F: 

a = fig Vf P. gP E R[ V1, .. * * Vjw) 
We want to find Ga with a X GaF. For this, we can replace a by agP, so we 
may assume that aP e R[ VK ... V] = R[V]. Note that R[V]P-'n G0F is 
integral over-hence equal to- 

k-[[ Ul ...**, UJ]][V1, *., V] = (say) Ro[ V] 
So either a X GOF, in which case we are done, or a e R0[ V]. 

If aeR0[ V], set a = A(U1, *-., Un, V1, *.., Vt) where A is a power 
series in U and V, at least one of whose coefficients, say ao, does not lie in k 
(since a X F). If {bp} is a p-basis of ko over kP(aP), and k- = kP({b}), then 
[ko: ka = p, and ao X kr', so 

a i kP-'[[ Ul ..., UJ]][ V1, ..., V] = RoV] n GaF. Q.E.D. 

Let X be a reduced scheme of finite type over a power series ring 
k[[ U1, * - *, Uj]]. For any base field k', there is a coherent Ox-module Q(X/k') 
whose stalk at any x e X is Q((xx/k') (cf. (4.1)). We say that k' is admissible 
for X if k' is admissible for Ox,, for each x e X such that Ox,, is regular (cf. 
(4.10)). For example, if X is irreducible, then k' is admissible for X if and 
only if the restriction of Q(X/k') to X-Sing(X) (Sing(X) = singular locus 
of X) is locally free of rank n + t + e, where 

n = n(X) (=n(Ox, ) for any x e X), 
t = t(X) (=t(Ox,$) for any xeX), 

[k: k'] = pe (e = 0 if p = 0) . 

PROPOSITION (4.12). Let X be as above, and let k* be a base field. Then 
k* contains a base field ko such that ko is admissible for X. 

Remark. For [k: kP] <co, we can take ko = kP (=k when p = 0); cf. 
(4.15) below. 

Proof. If a base field is admissible for X, then, by (4.13) below, so is 
any smaller base field. Moreover it is clear that a base field which is admis- 
sible for each irreducible component of X is also admissible for X. Hence 
we may assume that X is irreducible. 

For any base field k' with [k: k'] = (say) pe (e = 0 when p = 0), let Sx(kc') 
be the set of points of X where Q(X/k') is not locally free of rank n(X) + t(X) + e 
(see above). Since Q(X/k') is a coherent Ox-moduley Sx(k') is closed in X. X 
being noetherian, there is a base field ko _ k* such that Sx(ko) is minimal 
among closed sets of the form Sx(k'), k'_k*. From (4.13) below, it follows 
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then that for any base field k' _ ko, we have S,(k') = S,(ko). 
This ko is admissible for X; otherwise there would be a regular point x 

of X with x e Sx(ko), and by (4.11), a base field k' C ko such that k' is admis- 
sible for the residue field of Ox,; but then by (4.14) below, k' would be 
admissible for Ox, i.e., 

x X Sx(k') = Sx(ko) 

a contradiction. 
It remains to prove (4.13) and (4.14). 

LEMMA (4.13). Let B e 5 be a local domain, n = n(B), t = t(B). Let 
k'c0ko be two base fields with [[k: ko] = pe, [k: k'] = pe+f (e = f = 0 when p = 0). 
If the B-module Q(B/ko) is free of rank n + t + e, then Q(B/lk') is free of rank 
n + t + e + f. (In particular, if B is regular and ko is admissible for B, 
then also k' is admissible for B.) 

Proof. If p = 0 then k'- = k, so assume p>0. Let B be essentially 
of finite type over k[[ U1, ** , Uj] C B. There exists a p-basis s = ( *, 

of ko over i', and f is also a p-basis of kj[ UP, ** , UP]] over k'[[ Usp, ... , UP]I]; 
hence (cf. (4.2)) the kernel of the natural surjection Q(B/k') ) Q(B/k0) is 
generated by di,, . * *, d~f (where d: B Q-+ 2(B/k') is the canonical map). Since 

Q(B/k0) is free of rank n + t + e, therefore Q(B/k') has a generating set 
with <?n + t + e + f members. But Q(L/k') = L ?B Q(B/k') (L = fraction 
field of B) has dimension> n + t + e + f over L (cf. (4.9)); hence Q(B/k') is 
free of rank n + t + e +f. Q.E.D. 

LEMMA (4.14). Let B e 3 be a regular local ring, with residue field F. 
If a base field ko is admissible for F, then ko is also admissible for B. 

Proof. Let B be essentially of finite type over R = k[[ U1, * * , UJ.,] C B 
(n = n(B)). Let m be the maximal ideal of B, and let p = m n R. Then 

no = n(F) is the dimension of R/p, and to = t(F) is the transcendence degree 
of F over R/p. By assumption, the F-vector space Q(F/ko) has dimension 
no + to + e (where pC = [k: ko] if p > 0, and e = 0 if p = 0). 

t = t(B) is the transcendence degree of B over R. Let a be the Krull 
dimension of B. Since R is complete, hence universally catenary, we have 
the "dimension formula" 

n - no + t = 1 + to 0 

so that the dimension of Q(F/ko) is 

no + to + e = n + t + e - . 

Now a is the dimension of the F-vector space m/n2, and we have a canonical 
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exact sequence 

n/rn2 - Q(B/ko) ?B F- > Q(F/ko) - 0 

(use (4.1) and the similar exact sequence for Qk). Thus Q(B/ko) 0B F has 
dimension ?<n + t + e, whence (Nakayama's lemma) Q(B/ko) is generated by 
<n + t + e elements. But if L is the fraction field of B, then the L-vector 
space Q(L/ko) =L @B Q(L/ko) has dimension >n + t + e (cf. (4.9)); it follows 
that Q(B/ko) is a free B-module of rank n + t + e, i.e., ko is admissible for 
B. Q.E.D. 

From (4.9) and its proof, we deduce: 

COROLLARY (4.15). With B, F as above: 
(a) If [k: kiv]< oc (where k1 =k if p = 0) then kP is admissible for B. 
(b) If F is separable over the fraction field of some k-subalgebra 

Ro=k[[ V1, *..., V,0]] ( Vi-indeterminates; no n(F)), then k is admissible for 
B. 
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