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Introduction. In this appendix we outline a theory of
"invariant divisors" which includes as a special case the
theory of linear systems with base conditions presented in
the foregoing chapter two. Let us first sketch roughly
the main features; precise definitions and statements appear
in the indicated sections. Given a field K and a subring
A, an invariant divisor of K/A 1is a divisor on the Zariski-
Riemann space of K/A (cf. §2). If V is a model of K/A,
say normal and noethérian with function field K, then all
information about invariant divisors is contained in the
monoid of complete fractionary ideals on V (§2).

Fach invariant divisor D of K/A is represented in
the formv CH’ where C 1is a divisorial cycle on V and H
is a "base divisor"; corresponding to the set of all positive
invariant divisors linearly equivalent to D we have the
set of all C'H such that C!' 1is linearly equivalent to
C and C' "satisfies the base conditions imposed by H"
(883-4). When V 1is locally factorial, the correspondence

D& C gives a decomposition of the group of invariant

H
divisors into a direct sum of the group of divisorial cycles
on V and the group of base divisors on V, so that
!
Cg * Clpe H+H! |
Some additional information about the group of base

= (C + C')

divisors is obtained by introducing "virtual multiplicities

at infinitely near local rings" (§5 ). This leads to complete



ii.
results when V 1is a non-singular surface (Theorem 6.1);

for higher dimensions little seems to be known.

The group of base divisors is generated by the submonoid
consisting of those base divisors which appear "effectively"
as base divisors of linear systems without fixed components
on V (§4). In the case of non-singular surfaces, these are
precisely the base divisors whose virtual multiplicities
satisfy the "proximity inequalities" (Theorem 6.2).

The "invariant" aspect of our theory takes the following
form: if V¥ 1is another model of K/A, and if some
invariant divisor D 1is represented by CH on V and by
C*yx on V¥, then we say that the pair (C*, H*) is the
transform on V¥ of (C, H); the properties of the pair
(C, H) which are invariant under the transformation

(C, H) » (C*, H*) are simply the properties belonging to D.

In order to keep prerequisites to a minimum, we have
avoided explicit use of the language of sheafs and ringed
spaces. Instead we give in §1 an ad hoc treatment of the
basic facts required later on, all in the context of models
(ef. [65 Ch, VI, $17]1). Accordingly, some statements appear

in somewhat less than full generality.

The idea of using valuation theory and complete ideals
to simplify the discussion of linear systems with base conditions
appears first in [5]. For further developments cf. [41, [3],

and [6; Appendices 4 and 57.



1. Preliminaries on models and complete modules.

We fix once and for all a field K and a subring A of K.
For any ring B of the type A[F] with F a finite subset
of K, the set of (not necessarily noetherian) local rings

7(B) = {Bp]p runs through all prime ideals of B}

is called an affine model (over A); a model V (over A)

is a finite union of affine models such that each valuation

ring of K/A dominates at most one member of V;(l) such

a V 1s proper (or complete) over A 1if each valuation ring
of K/A does dominate a (necessarily unique) member of V.
If {fo, fl"‘“’fr} is a non-empty finite subset of X, with

no f; =0, and if V., = ?/(A[fo/fi, fl/fi,..., fr/fi]), then

U Y v, is a proper model, called the projective model (over A)

i=0 1
determined by {fo,~fl,..,,fr}. We topologize any model V

by taking as a basis of open sets the collection of all those
subsets of V which are affine models; V 1is then gquasi-

compact and irreducible (i.e. any two non-empty open subsets

of V have non-empty intersection).
For any model V a (quasi-coherent) V-gubmodule (of K)

is defined to be a family {JR}ReV where, for each local ring

(1)A valuation ring of K/A 1is a valuation ring which contains
A and has field of fractions K. A local ring S8 dominates
a local ring R if R'C S and every non-unit in R 1is a
non-unit in 8.
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ReV, JR is an R-submodule of K, the family being subject

to the following "cohesiveness" condition:

(C): There exists an open covering {U.] of V,

i‘iel

and a family {Fi} of subsets of K such that,

iel
for each i e I, if R e U; then Jp = F;R (= the

R-module generated by Fi)‘

If the families {Ui}, {Fi}, in (C) can be chosen so that
each Fi is a finite set, we say that the V-submodule is

of finite type. One important finite type V-submodule is the

family {R}p_y» which will always be denoted "av". If F
is a non-empty subset of K, we will write "FOv" for the

V-submodule {FR} which is the V-submodule generated by F.

ReV?
For any non-empty open subset U of V, and any V-

submodule g = {JR}, set

(U, ¢) = n  Jg;
2 8=y R

an element of T(U, ¢) 1is called a section of £ over U.

g 1is said to be generated by global sections (over V) if

g 1is of the form FOy. (Necessarily then F < I'(V, g) and
&= F(V: d(-l)ov)'

PROPOSITION 1.1. If V = 7(B) is an affine model, then

every V-submodule ¢ = {JR} is generated by global sections.

&

Thus if R = Bp e V (p a prime ideal in B) we have, with
J=T(, ¢),



Jp=JR=7J = {j/blj ¢ I, b ¢ B-p}.

Moreover ¢ 1is of finite type if and only if J is a finitely

generated B-module.

Proof. We must show that g = FG, with F finite if
& 1is of finite type; the last assertion will follow since

then

FB = FB,

e P

N
R \ R P
Now V has the basis of open sets {Vf} (0 # £ ¢ B) where
Ve = (B[1/f]) = {Bp|f ¢ p}; hence in view of (C) and the

quasi-compactness of V. 1t suffices to prove:

LEMMA 1.2. V and g being as in 1.1, if s ¢ I'(V,, &),

then f£%s e I(V, J) for every sufficiently large n.

Proof. If ¢ 1is generated by J =T(V, g) then 1.2 is

¢

clear, since

J,= 3. = {3/f%5 ¢ 3, m > 0}.

r(vf’ GQ) =f 2 . P

But, by (C), each R ¢ V has an open affine neighborhood U
such that the U-submodule gU = {JR}ReU is generated by

global sections (over U); since s ¢ T(Ves &) € INQU fy) we
conclude that " s ¢ I'(U, &y) =T(U, g) for sufficiently large

n; 1.2 follows because V, being quasi-compact, has a finite

covering by such U,



For any model V, the product of two V-submodules
g = {JR}, £ = {LR} is the family {JRLR}. (JRLR is the
R-module generated by all the products Xy, X € JR’ y € LR.
The verification of (C) for {JRLR} is straightforward).

§ 1s invertible if there exists £ such that g£ = Gy The
invertible V-submodules form, under multiplication, an

abelian group Inv,(V) with identity element Oy

We can specify invertihle V-submodules in the following

way: let {Vi} be an open covering of V, and for each i

iel
let fi # 0 be an element of K; assume that for each i,J3
and R eV, N Vj we have f.R = fJR (in other words for

each 1i,j, fi/fj eT(V, nV ¢y)); then for each R we can

3°
unambiguously set JR = fiR for any 1 such that R ¢ Vi;
the family {JR} is clearly an invertible V-submodule.
Conversely if £ = {LR} is an invertible V-submodule, then
one sees that £ 1s of finite type and that for each local
ring R, LR is generated by a single element of K; it
follows without difficulty that £ isrgiven by a family

{Vi, f.}. as above. Since V is quasi-compact, we may

iiel
even assume I to be finite.

A family D = {V,, fi} with fi/fj € P(Vi n vj, ov) for
all i,j 1is called a "K-valued divisor" (or simply "K-divisor")
on V, two such divisors being considered equal if they define
(as above) the same invertible V-submodule. The invertible

submodule corresponding to the divisor D 1is denoted "JV(D)";



5.

also, we set Oy(D) = (JV(D))'l. The one-one correspondence

I)é—)d%(D) allows us to endow the set DivK(V) of K-divisors

on V with the structure of an abelian group, isomorphic to

Ian(V)°
Now let
r r
e bvs B et s/t /ey)

be a projective model, It is clear that the family

{Vi, fin}o i<y is a K-divisor for each integer n; the

corresponding invertible V-submodule is denoted "Gy(n)". For

n >0, Gv(n) is generated by its global sections: indeed
fin e T(V, Ov(n)) for all 1. Moreover:

PROPOSITION 1.3. For any finite-type V-submodule g, the

V-submodule g(n) = g6y(n) 1is generated by finitely many

global sections for all sufficiently large n.

Proof. Let s ¢ T(Vi, $). By Lemma 1.2, applied to Vj
_ n
and Vi N Vg (=(Vj)fi/fj), S(fi/fj) € T(Vj, §) for all
n > nj(s); hence for n > max {nj(s)} we have sfin € F(Vj, 2(n))
. J
for all j, i.e. sfin e T(V, #(n)). Proposition 1.3 now

follows easily from Proposition 1.1 (with V = Vi, 1=1,2,...,1).

We close this preliminary section with some remarks about
complete V-submodules and finiteness conditions. If T is

any subring of K, and J is a T-submodule of K, then the

completion J! of‘J in K is defined to be the T-submodule



J' =n JR (R runs through all valuation
rings of K/T),

J is complete if J = J'; clearly J' itself is complete.
It is shown in [§; Theorem 1, p. 350] that an element z of
K is in J' if and only if =z satisfies a relation of the

form

From this 1t follows that if M is a multiplicatively closed
subset of T, with O ¢ M, then the completion of the TM—module

Iy is (J')M,_ i.e. completion commutes with localization.

Let V be a model and let ¢ = {Jp} be a V-submodule.
The preceding remarks imply that ¢' = {(JR)'} is also a V-

submodule; ¢' 1is called the completion of ¢. ¢' may not

be of finite type, even if ¢ 1is. For this reason, we will
need to consider integral domains T which have the following

property:

(F): For any integral domain S which contains and
is finitely generated over T, the integral closure
of 8 in any finite algebraic extension of the
field of fractions of S 1is a finitely generated

S-module.(e)

(2) (F) is satisfied for example if T is a ring of fractions of
a finitely generated extension of a field,of a complete
local domain, or of a Dedekind domain of characteristic zero.



LEMMA 1.4, Let T be a subring of K satisfying (F)

and such that K 1is a finitely generated field extension

of the fraction field L of T. Then for any finitely

generated T-module J < K, the completion J' is also

finitely generated over T.

Proof. In the polynomial ring X[X], we have the graded
subring & = T[JX] which is an integral domain, finitely
generated over T. The integral closure S of S in K[X]
is a graded ring [2; ch. V, §1, no. 8] and S is a finitely
generated S-module, since K(X) 4is finitely generated over
L so that the fraction field of § is a finite algebraic
extension of that of S. Moreover, the above relation for
Zz says that J'X 1is the set of all homogeneous elements of

degree 1 in 8. The conclusion follows easily,(3)

COROLLARY 1.5. Suppose that condition (F) holds with

T = A, and that K is a finitely generated field extension

of the fraction field of A. If V is a model over A

cand g 1is a finite type V-submodule, then the completion

' is also of finite type.

As an application of 1.4, we have:

PROPOSITION 1.6. If A 1s a noetherian ring such that

(F) holds for T = A, if V is a proper model over A, and

if g2 = {JR} 1s a finite type V-submodule, then T(V, g¢) is

a finitely generated A-module.

(3) If T is noetherian we can dispense with the remark that E
is a graded ring. This simplification is of interest in
connection with Proposition 1.6, for example.
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Proof. Let {Ui, F.}

;3i.7 be as in (C), with each F,

finite; since V 1is quasi-compact we may assume I to be
finite. Let J be the A-module generated by the finite set
UieI Fi’ let Kl be the common fraction field of all members

of V, and let K2 = Kl(J). Then Jp € JR for every R e V,.

wherice

(v, g) € n JRc n JS

ReV S

where S runs through all valuation rings of KE/A' The
result follows now from Lemma 1.4, with T replaced by A
and X by K2.
2, AInvariant divisors, Let V, W be proper models
such that W dominates V, i.e. each S ¢ W dominates a

member d(S) (necessarily unique) of V; we have then the

"domination map" d = dy; v which is a continuous map of W
k4

onto V. The inverse image §6,; of a V-submodule ¢ = {JR}

is the W-submodule {Jd(S)S}SeW (here condition (C) of §1
is straightforward). Clearly (glgg)OW = (glOW)(QQOW); we'
deduce at once a homomorphism of groups InVK(V) - Ian(W)

and correspondingly a. homomorphism

-1

4 2 Divp(V) - DivK(w).

The inverse image d_lD of a divisor D = {Vi’ fi} is found

-1
to be {dW}V(Vi)’ £},
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If W 1s dominated in turn by a proper model X, then

-1 -1
x,w © dy,y = 4

dominated by a third, namely their join [6; pp. 120-121].

d ilv; moreover any two proper models are
3
Thus we have a filtered inductive system of groups and

homomorphisms; we set

Div(K/A) = 1lim Divy (V) (V runs through all
v proper models over A).

We call the elements of the group Div(K/A) "invariant divisors".
Although one can proceed with the theory on the basis of
the preceding definition, it is more satisfactory in some
ways to reinterpret the notion of "invariant divisor" by means
of the Zariski-Riemann space Z of K/A. Z is the topological
space whose points are the valuation rings of K/A, with basis
of open sets {UF}, where F runs through all finite subsets
of K (including the empty one) and Up consists of all
those valuation rings which contain F. Z-submodules (of K)
are defined in the same way as V-submodules were in §1. Note
however that since the local rings belonging to Z are

valuation rings with field of fractions - K, every non-zero

finite type Z-submodule g(q) is invertible. Indeed, by

suitably refining the covering stipulated in condition (c)
(81), one sees that ¢ = {JR}ReZ is given by an open covering

{Vi}i€I of Z and a family {fi}iSI (0 # f,oe K) such that

(4)9 = {JR} is "non-zero" irf In # O for some R; the set of
all such R 1is open and closed, whence JR # 0 for all
R e Z,
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Jo = fiR for all R ¢ Vi° Here again since Z 1is quasi~

R
compact [é; p. 1131 we may assume I to be finite.

We define the group DivK(Z) as we did the groups
Dive(V) (§1). For any proper model V, we have the domination
map dv:Z - V and, as above, the associated homomorphism
%l: Divy (V) - Divg(Z). Passing to the limit, we obtain a
canonical homomorphism

d

d: Div(K/A) = Divy(Z).

PROPOSITION 2.1. d is an isomorphism.

}
(I finite) be such that dy'(D) =0 (i.e. f, is a unit in

To show that d is injective, let D = {V., f

50 £ ¢ Divy (V)

iel
every valuation ring which dominates (an element of) Vi)‘
Let W be the join of V and all the projective models
wli) o rv(Alf£;1) v W(A[l/fi]), If S e W, then S dominates
V;, for some i, and S contains either £, or l/fi;

since both f; and l/fi are unlts in any valuation ring of

1

K dominating S8, f, 1is also a unit in S. Hence d% y(D) = 0,
2

~

i.e. d 1is injective. For the éurjectivity let

D' = {U,, = A Divp(Z) (I' finite); we may assume that
each Ui 1s a basic open set, Ui = UFi, so that Ui is
the inverse image of an open set on soue proper model (for

eXample the projective model over A determined by

(F; - {0}) U {1}); 4if W dis the join of these models and
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all the models W(Jk) = W(A[gj/gk]) U W(A[gk/gj]) (jsk e 1)
then for every 1 ¢ IT, Ui is the inverse image of an
open set V:.L on W, and moreover for each S € W and for
each pair Jj,k, S contains either gj/gk or gk/gj. It
follows easily that the family {Vi, gi} defines a divisor

on W whose inverse image on Z is D'. g.e.d.

Thus we may identify "invariant divisors" with "K-divisors

on 2z", or as we shall say from now on, "Z-divisors".

Let V, Z be as above (with V proper). For each finite
type non-zero V-submodule ¢, the Z-submodule g, is of
finite type, hence invertible; thus g0, = OZ(D) for some
Z-divisor D, which we denote "div,(g)". It follows immediately

from the definitions that div,(g,) = div,(g#,) if and only

if 4, and Jo have the same completion. It is also clear

that

divz(g3g4) = divz(g3) + divy () -

Moreover, any Z-divisor D 1s of the form

D = divy(gs) - div,(gg) -

where g5 = FOV’ I =‘GGV, with finite sets F, G. For, by
Proposition 2.1 and its proof, D is the inverse image on
Z of a divisor DW on some projective model W; if

£ = GW(DW) then, by Proposition 1.3, for some suitably large
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n we have £(n) = FOy, Oy(n) = 6oy (F, G finite), and

the assertion follows since £ = £(n).0w(n)~l.

In summary:

PROPOSITION 2.2. Let Gy be the monold whose elements

are the completions of finite type non-zero V-submodules of

K, with product N = completion of MmN The preceding

considerations give rise to an injective homomorphism of

monoids Gy — Divyp(Z) such that the group Divg(Z) 1is

generated by the image of gv.

We see then that the group of invariant divisors is
completely determined by Cy (for any V). It may be
‘observed that under the conditions of Corollary 1.5 the members
of G, are themselves finite-type V-submodules, and that
the homomorphism of 2.2 takes any ¢ ¢ Cy to divz(g); in

this case, moreover, gv = gw where W 1is the derived normal

model (=integral closure) of V in K [6; ch. VI, §18].

5. Linear systems. We assume henceforth that A is a

noetherian ring such that condition (F) of §1 holds for

T = A and that K is finitely generated over the fraction
field of A. Replacing A by its integral closure in K
we may further assume, without loss of generality, that A

is integrally closed in K. We have then:

PROPOSITION 3.1. If ¢ 1is an invertible Z-submodule,

then T'(Z, g) is a complete finitely generated A-module.
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(Completeness is straightforward; for the rest, the

proof of 1.6 applies mutatis mutandis).

A relatively principal Z-divisor is one of the form

div,(4), where ¢ is an invertible ¥(A)-submodule. The

relatively principal Z-divisors form a subgroup P of

DivK(Z). Two Z-divisors Dl’ D2 are relatively linearly

equivalent (notation: D, ® D,) if their difference is

relatively principal, i.e. if they lie in the same coset of P.

For any Z-divisor D and non-zero finite type W(A)—

submodule M, we define a non-empty set A(D, M) < D + P,

AD, m) = {D - aiv,(4) | &£ ean invertible %(A)-
submodule, g_m}(5).

A set of the form A(D, %) 1is called a virtual linear system.

Note that the members of A(D, M) correspond one-one with

the invertible & < 7: this follows at once from the fact

that, A being integrally closed in K, every inVertible
7(A)-submodule is complete. Note also that these £ correspond

one-one with projective rank one A-submodules of the finitely

generated A-module T (%¥(A), ) (Proposition 1.1, ang
cf. [2; ch. II, §5, no. 31

Skor two V-submodules (or Z-submodules) g = {dgd, £ = {Lgls

" <" means "Jp C L. for all R e V (resp. R e 2)".
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It is readily seen that A(D;, My) = A(D,, m,) if
and only if there is an invertible ¥(A)-submodule ¢
such that D, = D; + div,(g) and My = Mg (use Proposition 1.1).
Thus the set A(D, M) uniquely determines (and, conversely,

is determined by) two things:

(1) the Z-divisor D-div,(m), which we call the fixed

part (or excess) of A(D, M);

(ii) the equivalence class of 7 for the following
equivalence relation -
My =My ® My, = Mg for some invertible ¥ (A)-

submodule g.

Since, for invertible ¥(A)-submodules J,

27 e -1
N ‘>O’2f(A) < nd

we see that the elements of A(D, M) correspond one-one with
those members of the equivalence class of M which contain
Cor(a)-

We say that A(D, ) is reduced if it has no fixed part
(i.e. D = divy(m)). The linear system A(div,(m)s m)
(which depends only on the equivalence class of %) is called

the reduced linear system associated with A(D, 7).

The group DivK(Z) is (partially) ordered by the

relation



15.

We say that a linear system A(D,m) is real if all its
members are positive (i.e. > 0). For this to be so,
it is necessary and sufficient that the fixed part
D - divy,(m) be positive; in particular any reduced linear
system is real. Another necessary and sufficient condition
for reality is that M < M, where 7, is the 7(A)-submodule
generated by T(Z,0,(D)).

For given D, Wb is complete and of finite type
(Proposition 3.1). If my # (0), then the set |D| of all
positive divisors which are relatively linearly equivalent

to D 1is a real linear system, namely

1D‘ = A(Dst)

|D] is called the complete linear system determined by

D. We emphasize that |D| is a real linear system if and
only if my # 0 (otherwise |D| 1is empty)

The connection between complete linear systems and
complete modules is expressed in the following remark:

ILet V be a proper model over A and let 4 be a

finite type V-submodule, with completion '. Then the

elements of |div,(4)| correspond one-one with the pro-

jective rank one A-submodules of T(V,d').
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(In view of the preceding discussion, it is sufficient

to note that, with D = div,(4),

I‘(?/.(A)ﬁ WID) = T(Z, JGZ) = F<Va JY))'

L, Divisorial cycles and base divisors. With A and

K as in 83, we can fix a proper model V such that V is

noetherian and normal, with function field XK (i.e. K e V,

or, equivalently, K 1s the common fraction field of the
Amembers of V). In this case, finite type V-submodules are

usually called fractionary Gv—ideals. For any non-zero

. s . -1
fractionary Oy-ideal ¢ = {Jglp . we define ¢ to be

the family {R:J where R:Jp = {x ¢ K|x I € R}.

R}ReV
(If 4§ happens to be invertible there i1s no conflict with

earlier notation, i.e. Jz(R:Jz) = R for all R e V). One
checks that g—l is a complete fractionary Gy-ideal; a
fractionary O,~-ideal of the form g’l is called divisorial.
Every invertible fractionary @v—ideal 1s divisorial.

A divisorial cycle on V is a formal sum Z)nT T,

where T runs through all discrete valuation rings which are
members of V, and for each T, O, is a rational integer,
with Np = O for all but a finite number of T. For each
non-zero fractionary Gv—ldeal f = {IR}ReV we define the

divisorial cycle
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(where Vip is the normalized discrete valuation associated
with T, and vq(Ip) = minf{vg(x)|x e Ip}). For each divisorial
cycle C, there is then precisely one divisorial ideal

0,(C) such that cyey(Gy(C)) = C (ef. [2; ch. VII, §11).
1

For example if C = cycy(#), then Oy(-C) = 4~ and

Cy

with € the Z-divisor

(C) = (J-l)-l. We will find it convenient to associate

din(C) = ~divz(6v(~0)}.

If ¢,(C) 4is invertible, we have simply div,(C) = din(OV(C)).

For any Z-divisor D = {Vi’ fi} .and any valuation v
of K/A we define v(D) to be v(f;) for any i such that
V, contains the valuation ring RV; clearly v(fi) does
not depend on the choice of 1, and v(D) does not depend on
the choice of the family {Vi, fi} defining D. With D we

associate a divisorial cycle on V, namely

cycy(D) =2 vp(D).T

For example, 1f £ 1s a non-zero fractionary Gv-ideal then

cch(divz(J))'= cycv(J).

Now clearly

cch(Dl + D2) = cycv(Dl) + cch(Dz)
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i.e. ”cycv" is a homomorphism from the group Divy(2)
into the group AV of divisorial cycles on V. This
homomorphism is surjective: in fact for any divisorial

cycle C we have
cyey(divy(C)) = c. e (%)

Thus, since Ay 1s a free abelian group, DiVK(Z) is the

direct sum of the kernel of cycy and another subgroup

isomorphic to AV'
We call the elements of the kernel of cycy base

divisors (with respect to V).

Since the group of base divisors is a direct summand

of DivK(Z), there exist group-theoretic right inverses for

the map cycy; but (in spite of (%)) div, may not be such
an inverse, since din(C + C!) # div,(C) + din(C’) in
general. However, the product of a divisorial fractionary

ideal with an invertible fractionary Ov—ideal is again

divisorial, and it follows easily that if, say, C = cycv(J)

where 4 is invertible then indeed, for any C?',

div,(C + C') = div,(C) + div,(C').

In case V is locally factorial (i.e. every local ring

belonging to V 1s a unique factorization domain) then

every divisorial ideal is invertible. Thus:
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PROPOSITION 4.1. If V is locally factorial (and

noetherian, with function field X) then divy Ay = Dive(Z)

is a group homomorphism such that CyCy o divz = ldentity.

Even if V 1is not locally factorial, (*) says that

divz is a set-theoretic right inverse of Cycy, SO we can
still associate to each pair (C, H) (C a divisorial cycle

on V, H a base divisor w.r.t. V) the divisor

Cy = divy(C) + K

and obtain a one-one correspondence between such pairs and
Z-divisors. [The Z-divisor D corresponds to the'pair
(cch(D), D—divz(cch(D))}. When V is locally factorial

(but not necessarily otherwise!) Cy *+ Clyy = (C +C)

H! H+H!

(for all ¢, C', H, H!'),

PROPOSITION 4.2. For any non-zero fraétionary Gv-ideal

4, we have din(J) = Cy, where

C = cyc. (), H = din(JJ-l).

o

(For, din(JJfl) is clearly a base divisor, and by

definition

: . -1 . : -1 .
divy(C) + H = ~div,(L77) + divy(J4) + div,(47) = divy(4)).
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We shall say that a base divisor H is effective

(relative to V) if it is of the form div,(#) for some

fractionary Oy-ldeal 3 for such an <, 4.2 shows that
. -1 -1

cycy(d) = 0, i.e. &7 = Oy (so that 4 =44~ C @v).

PROPOSITION 4.3. With notation as in 2.2, the complete

fractionary ideals ¢ such that g“l = OV form a submonoid

of Gy. The injective map defined in 2.2, namely.

1 —>div takes this submonoid onto the set of all effective
¢ Zyﬁ

base divisors, and every base divisor is a difference of two

effective base divisors.

Proof. 1In view of 1.5 and the preceding remarks, the
first two assertions are straightforward. Because of 2.2

and 4.2 any base divisor B is of the form

+ Hy - divg(C,) - H,

where Cl and C2 are divisorial cycles, and Hl and H2

are effective base divisors. Since cch(B) = 0, (¥) shous

that Cl == 02. | g.e.d.

Effective base divisors play a special role in the theory
of linear systems for reasons given below (Proposition 4.4
and subsequent remark). First recall that two Z-divisors
C

c! are relatively linearly equivalent if and only if

H? H'

divy(C) + H = div,(C') + H' + divy, (<)
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(£ an invertible %(A)-submodule), i.e.

C=C' + cycy(40y); H = H'.

Hence it makes sense to speak of the base divisor (w.r.t., V)

of a linear system of Z~divisors.

PROPOSITION 4.4, The base divisor of any reduced linear

system is effective. Conversely, if V is a projective

model, then any effective base divisor G is the base divisor

of some reduced linear system.

Proof. A typical member of a reduced linear system is
of the form divy,(M), M a finite v(A)-submodule; but by
4.2,

divz(m) = dinOﬁ&v)z Cq

with an effective H. Conversely, if G is effective then

for some fractionary Oy-ideal ¢

¢ = divz(gg"l) div,(g(n)g(n)™t);

and for large n, 4(n) =N Gy for suitable 7

¢

(Proposition 1.3), so that G is the base of |aiv,(m)].
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It can be shown that for any base divisor
H there is an effective base divisor H® < H such that for
any effective base divisor G < H we have .also G < H®.
Moreover, for any divisorial cycle C on V, we have

Cyq > 0 if and only if C e > 0. When V is projective
ge =

H
over A, this last property also characterizes the effective

. e
divisor H~.

By definition Cp > O if and only if v(din(C)) > -v(H)
for all valuations v of K/A. In classical terminology,
this relation would be expressed as: "the divisorial cycle
C satisfies the base conditions imposed by H."

We conclude this section by relating the linear systems
of §3 to "linear systems_of divisorial cycles, with base
conditions". Linear systems of divisorial cycles are defined
and discussed in a manner entirely similar to that of 83.
Expressions like "div,(4)", "aiv,(4)", "div,(m)" are
replaced everywhere by "cyc (4¢,)", ”cycv(gcw)”, ”cch(WzGV)"

(respectively). The order relation for divisorial cycles is:

NS

my T >2in, T e W > ng, for all T.

The only other remark is that for a divisorial cycle C, the

7(A)-submodule Mo = T(V, 0,(C)) need not be complete.
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PROPOSITION 4.5. Let |C|; be the set of all divisorial

cycles C' such that: C' = C and C' satisfies the base

conditions imposed by H. Then ]C[H is a real linear

system, and the complete linear system }CHI consists of

all Z-divisors C'y with C' e [Clg.

Proof. The remarks preceding 4.4 show that Clyr = Cy
if and only if C' = C and H! = H; this shows that the

members of |C are as asserted. We see then that |C|y

"
is a linear system:

Cly = A(Cy M, ).
Cly = A(C, Mo

Finally, the members of |C|H are positive divisorial cycles
because Vv(H) = O for every v whose valuation ring is a

member of V.

5. Virtual multiplicity and infinitely near local rings.,

Let A, K be as in §3 and let R 2 A be a regular local
ring of dimension > 2, with maximal ideal m and field of

fractions K. Let ordR be the order valuation determined

by R, i.e. the discrete valuation such that for O # x ¢ R,
ordp(x) = max{n|x ¢ m“}. TLet Zp © Z be the Zariski-Riemann
space of K/R; topologically, ZR is a subspace of Z. Any
Z-divisor D defines, by restriction, a ZR—diviSOr DR; the
operation of restriction is a group homomorphism, and two

Z-divisors which are linearly equivalent relative to A
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restrict to ZR~divisors which are equivalent relative to
R. As in the preceding section, we may associate to each
Zg-divisor its base divisor w.r.t ¥(R) (for this it is

not essential that R satisfy condition (F) of §1). We

define the virtual multiplicity at R of a Z-divisor D,

vR(D) is symbol, by

V(D) = -ord; (base divisor w.r.t. ¥(R) of Dp).

Since regular local rings are factorial, we find, from

the above discussion and the remarks preceding 4.2 and 4.4:

PROPOSITION 5.1, Let D, D' be two Z-divisors.

(1) If D=D' (relative to A) then wvp(D) = vp(D').

(ii) VR(D +D') = v (D) + v D')..

R R

The above definition is closely related to the notion of
"weak transform" of an ideal, namely: 1let V be a proper
model over A such that R dominates some T ¢ V, and let
D = divz(é), £ = {IS}SeV being a non-zero finite type V-
submodule; let ITR = XIR’
ideal in R whose elements have no non-unit common divisor;

where x ¢ K, and IR is an

if JR is the %(R)-submodule generated by IR,

sees that the base of Dp m.r.t. ¥(R) is div, (<L

then one

R)

Next, we recall that a quadratic transform of R 1is a

local ring of the form R[mx_l]p, where x ¢ m, x ¢ m23
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and p is a prime ideal in the ring R[mx"l] such that

m< p. We say that a local ring S is infinitely near

to V 1f dim 8 > 1 and if there exists a sequence
R=R <R <ooo<R=S

such that, for each 1 =0, 1,..., n-1, Ri+l is a quadratic
transform of Ri' Such an S 1is necessarily regular, and

the residue field of S has transcendence degree

dim. R - dim. S over that of R (cf. [1; Lemma 10, p. 334]).

There is a unique one-dimensional quadratic transform of S,

namely the valuation ring of ordS.

We say that a valuation of K/R 1is a prime divisor with

respect to R if v dominates R and the residue field of

v has transcendence degree dim.R - 1 over that of R.

Such a v 1is necessarily discrete, of rank one [;; Th. 1, p. 330].
If S 1is infinitely near to R then ordS is a prime divisor
w.r.t. R. Conversely, any prime divisor v is of the form

ords, where S8 1is found as follows: let RO = R, and

having defined Ri for some 1 > 0, with dim. Ri > 2,

let Ri+ be the unique quadratic transform of Ri dominated

1
by v3; then this process stops after a finite number of

steps, i.e. for some integer N, RN+1 will be the valuation

ring of v (cf. [1; Prop. 3, p. 336]1); finally, let

S =R We obtain in this way a one-one correspondence

N.
between infinitely near local rings and prime divisors.
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LEMMA 5.2. Let D;s D, be two Zp-divisors. If

v(Dy) = V(D2> for all prime divisors v (w.r.t. R) then
Dy =Dy
Proof. We may assume D2 = 0, Dl is the inverse image

on Z of a divisor Dw on some proper model W over R
(Proposition 2.1). Every valuation v which ébminates a
one-dimensional member of W is a prime divisor (theorem of
Krull-Akizuki [2; ch. VII, §2, no. 5] and because regular
local rings satisfy the "dimension formula", cf. [6; p. 3261).

Now if v(Dl) = v(Dw) = 0 for all such v, then by Krull's

principal ideal theorem DW = 0, 1l.e. D1 = 0,

PROPOSITION 5.3. Let H be a base divisor on ZR

(w.r.t. R), and let S be infinitely near to R, with

"quadratic sequence"

R = RO < Rl < ...< R, = S.

Let m; be the maximal ideal of R, (0 < i < t) and let

V; be the virtual multiplicity of H at Ry- Then

ordg(H) = - 2

viord,(m. ).
120 1 Syl

Using 5.2 we get:

COROLLARY 5.4. If H, and H, are two base divisors

1 2
on ZR, then Hl = H2 if and only if Hl and H2 have the

same virtual multiplicity at every local ring infinitely near

o R.
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Proof of 5.3. Because of 4.3, we may assume that
H = div, (4#), where < 1is generated over ¥7(R) by an
R

in R such that I is not contained in any

0 0
-1

height one prime of R. For 0 <1 <t let Iy = %y "I5Ryo

lideal T

where Xs is the greatest common divisor in Ri of the

elements of I R;,. We see then that v, = ordRi(Ii), and

that

v % v
IR 0 1 t-1 ¢

ot T Yo Y1 eV t
where each y, is such that miRi+l = ¥;Ri g (0 <1i<t).
The conclusion follows.

We conclude with some remarks about the effective

multiplicity vRe(D) at R of any Z-divisor D such that

ID] is non-empty. By definition vﬁa(D) is the virtual
multiplicity of any member of the reduced linear system
associated with |D| (cf. §3). The additivity property
(ii) of Proposition 5.1 need not hold for effective multi-
plicities. The following remark (which can be made precise
by the introduction of sufficiently many transcendentals,
a la Kronecker), gives a "geometric" interpretation of
effective multiplicity:

Let V be as in §4, and such that R dominates some

member of V. Let |[C be a reduced linear system of

gl
Z-divisors. Then the virtual multiplicity at R of any member
of ]CH] is equal to the multiplicity at R of the "proper

transform" of the "generic" member of lC[H (cf. Proposition 4.5.)
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6. Base divisors on non-singular surfaces.

Suppose now that the model V of §4 is a non-singular
surface, i.e. that the members of V are regular local
rings of dimension < 2, with equality for at least one

member. In this case, if U4 = {IR} is a fractionary Oy-ideal

with 471 = o,

a finite number of) R ¢ V. Hence, and in view of 4.3, the

then Ip =R for almost all (i.e. all but

study of base divisors on V is reduced to that of complete
ideals in two-dimensional regular local rings. The theory of
such ideals is due to Zariski [5; and 6, Appendix 5].

From now on R will be a two-dimensional regular local

ring which is a member of V. Then any two-dimensional
regular local ring S with R C S < K is infinitely near
to R [1; Th. 3, p. 343]. For any ideal J in S such
that 8:J = S we can define a Z-divisor D = div,(J)

by the condition that &Z(D) = {JQ}QeZ where JQ = JQ if
Q vdominates S and J. =Q otherwise. If I is an ideal

Q

in R with R:I = R, then the transform I of I in

S
S 1s defined by

IS = XIS

where x 1s the greatest common divisor in S of the elements
of IS. As indicated in the remarks following 5.1, the
integer ordg(Ig) is then the virtual multiplicity at S

of the divisor div,(I).
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It can be seen that Iq =8 (i.e. IS is a principal
ideal in 8). for almost all S. Consequently, every base
divisor w.r.t. V has virtual multiplicity zero at almost
all §S. Moreover, for any S, if Mg is the maximal
ideal of S, then the base divisor div,(mg) is found to
have virtual multiplicity one at S and zero at all other

local rings infinitely near to R. With 5.1, this gives us

the structure of the group of base divisors w.r.t. V, namely:

THEOREM 6.1. By associating to each base divisor its

virtual multiplicities at all local rings infinitely near to

(some member of) V, we obtain an isomorphism between the

group of base divisors w.r.t., V and the free abelian group

on the set of all such infinitely near local rings.

We say that an effective base divisor (w.r.t. V) is
simple if it is not a sum of two other non-zero effective base
divisors. There is a one-one corresgpondence SHHS
between local rings infinitely near to V and simple base

divisors, such that HS is the largest effective base divisor

whose virtual multiplcity at S 1is one and at any other local

ring infinitely near to S 1is zero. (In view of the relation

. between base divisors and complete ideals, this can be

deduced from the considerations of [6; p. 391]). It follows

that the simple base divisors form a free basis for the group

of base divisors.
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Our final result, given without proof, provides more
information about this situation. For any two distinct

two-dimensional regular local rings S ¢ T with fraction

field K we say that T is proximate to S if the valuation
ordS is non-negative on T. For such a pair the residue N
field of T 1is a finite algebraic extension of that of

S, and we denote the degree of this field extension by

[T:S]. If S dominates some member of V, and H 1is a

base divisor w.r.t. V, we define an integer

eq(H) = vg(H) -.% LT:8] vip(H)

where T runs through all local rings proximate to S,

and vg(H), vp(H) are the virtual multiplicities of H at

S, T respectively.

THEOREM 6.2. For any base divisor H and infinitely

near (to V) local ring S let Hys eg(H), be as above.

Then eS(H) = 0 for almost all S, and

(H) . H

H=2 e .
S S St

Moreover, H is an effective base divisor if and only if

e.(H) >0 for all S (i.e. the virtual multiplicities of

5
H satisfy the ”proximity inequalities”).




