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Duality and Flat Base Change on Formal Schemes

Leovigildo Alonso Tarrio, Ana Jeremias Lépez, and Joseph Lipman

ABSTRACT. We give several related versions of global Grothendieck Duality
for unbounded complexes on noetherian formal schemes. The proofs, based on
a non-trivial adaptation of Deligne’s method for the special case of ordinary
schemes, are reasonably self-contained, modulo the Special Adjoint Functor
Theorem. An alternative approach, inspired by Neeman and based on recent
results about “Brown Representability,” is indicated as well. A section on
applications and examples illustrates how our results synthesize a number of
different duality-related topics (local duality, formal duality, residue theorems,
dualizing complexes,. . ).

A flat-base-change theorem for pseudo-proper maps leads in particular to
sheafified versions of duality for bounded-below complexes with quasi-coherent
homology. Thanks to Greenlees-May duality, the results take a specially nice
form for proper maps and bounded-below complexes with coherent homology.
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1. Preliminaries and main theorems.

First we need some notation and terminology. Let X be a ringed space, i.e., a
topological space together with a sheaf of commutative rings Ox. Let A(X) be the
category of Ox-modules, and Aq(X) (resp. Ac(X), resp. Az(X)) the full subcat-
egory of A(X) whose objects are the quasi-coherent (resp. coherent, resp. lim’s of
coherent) Ox-modules.’ Let K(X) be the homotopy category of A(X )-complexes,
and let D(X) be the corresponding derived category, obtained from K(X) by
adjoining an inverse for every quasi-isomorphism (= homotopy class of maps of
complexes inducing homology isomorphisms).

For any full subcategory A (X) of A(X), denote by D (X) the full subcat-
egory of D(X) whose objects are those complexes whose homology sheaves all lie
in A (X), and by DF(X) (resp. D7 (X)) the full subcategory of D (X) whose
objects are those complexes F € D (X) such that the homology H™(F) vanishes
for all m < 0 (resp. m > 0).

The full subcategory A (X) of A(X) is plump if it contains 0 and for every ex-
act sequence M7 — My — M — M3 — My in A(X) with M1, My, M3 and My
in A (X), Misin A (X) too. If A_(X) is plump then it is abelian, and has a
derived category D(A_(X)). For example, A.(X) is plump [GD, p. 113, (5.3.5)]. If
X is a locally noetherian formal scheme,? then Az(X) C Aqc(X) (Corollary 3.1.5)—
with equality when X is an ordinary scheme, i.e., when Oy has discrete topology
[GD, p.319, (6.9.9)]—and both of these are plump subcategories of A(X), see
Proposition 3.2.2.

Let K7, Ko be triangulated categories with respective translation functors
Ty, T [H1, p. 20]. A (covariant) A-functor is a pair (F, ©) consisting of an additive
functor F': K; — Ky together with an isomorphism of functors © : F'T7, =~ Ty F
such that for every triangle A -~ B - C' - T} A in K, the diagram

Fu Fv ©o Fw

FA FB FC ToFA

is a triangle in Ks. Explicit reference to © is often suppressed—but one should
keep it in mind. (For example, if A (X) C A(X) is plump, then each of D _(X)
and D¥ (X) carries a unique triangulation for which the translation is the restriction
of that on D(X) and such that inclusion into D(X) together with © :=identity is a
A-functor; in other words, they are all ¢riangulated subcategories of D(X). See e.g.,
Proposition 3.2.4 for the usefulness of this remark.) Compositions of A-functors,
and morphisms between A-functors, are defined in the natural way.®> A A-functor
(G,¥): Ko — K, is a right A-adjoint of (F,0) if G is a right adjoint of F' and
the resulting functorial map FG — 1 (or equivalently, 1 — GF') is a morphism of
A-functors.

We use R to denote right-derived functors, constructed e.g., via K-injective
resolutions (which exist for all A(X)-complexes [Sp, p.138, Thm. 4.5]).? For a

1 “lim” always denotes a direct limit over a small ordered index set in which any two elements
have an upper bound. More general direct limits will be referred to as colimits.

2Basic properties of formal schemes can be found in [GD, Chap. 1, §10].

3See also [De, §0, §1] for the multivariate case, where signs come into play—and A-functors
are called “exact functors.”

1A complex F' in an abelian category A is K-injective if for each exact A-complex G the
abelian-group complex Hom% (G, F) is again exact. In particular, any bounded-below complex of
injectives is K-injective. If every A-complex F admits a K-injective resolution £ — I(E) (i.e.,
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map f: X — Y of ringed spaces (i.e., a continuous map f: X — Y together with
a ring-homomorphism Oy — f.Ox), Lf* denotes the left-derived functor of f*
constructed via K-flat resolutions [Sp, p.147, 6.7]. Each derived functor in this
paper comes equipped, implicitly, with a © making it into a A-functor (modulo
obvious modifications for contravariance), cf. [L4, Example (2.2.4)].% Conscientious
readers may verify that such morphisms between derived functors as occur in this
paper are in fact morphisms of A-functors.

1.1. Our first main result, global Grothendieck Duality for a map f: X — Y
of quasi-compact formal schemes with X noetherian, is that, D(Az(X)) being the
derived category of Az(X) and j: D(Az(X)) — D(X) being the natural functor, the
A-functor Rf.oj has a right A-adjoint.

A more elaborate—but readily shown equivalent—statement is:

THEOREM 1. Let f: X — Y be a map of quasi-compact formal schemes, with
X noetherian, and let j: D(Az(X)) — D(X) be the natural functor. Then there
exists a A-functor f*: D(Y) — D (Az(X)) together with a morphism of A-functors
T:RfJf* — 1 such that for all G € D(Az(X)) and F € D(Y), the composed map
(in the derived category of abelian groups)

RHom®_ (G, /*F) L RHom®y(RLG, Rf f*F)
2T, RHomYy)(RLG, F)
is an tsomorphism.

Here we think of the Az(X)-complexes G and f*F as objects in both D(Az(X))
and D(X). But as far as we know, the natural map Homp4,(x)) — Hompy) need
not always be an isomorphism. It is when X is properly algebraic, i.e., the J-adic
completion of a proper B-scheme with B a noetherian ring and J a B-ideal: then
J induces an equivalence of categories D(Az(X)) — Dg(X), see Corollary 3.3.4. So
for properly algebraic X, we can replace D(Az(X)) in Theorem 1 by Dgz(X), and
let G be any A(X)-complex with Az(X)-homology.

We prove Theorem 1 (= Theorem 4.1) in §4, adapting the argument of Deligne
in [H1, Appendix] (see also [De, §1.1.12]) to the category Az(X), which presents
itself as an appropriate generalization to formal schemes of the category of quasi-
coherent sheaves on an ordinary noetherian scheme. For this adaptation what is
needed, mainly, is the plumpness of Az(X) in A(X), a non-obvious fact mentioned
above. In addition, we need some facts on “boundedness” of certain derived functors
in order to extend the argument to unbounded complexes. (See section 3.4, which
makes use of techniques from [Sp].)®

a quasi-isomorphism into a K-injective complex I(E)), then every additive functor I': 4 — A’
(A’ abelian) has a right-derived functor RI': D(A) — D(A’) which satisfies RI'(E) = I'(I(E)).
For example, RHom% (E1, E2) = Hom® (E1, I(E-2)).

5We do not know, for instance, whether L f*—which is defined only up to isomorphism—can
always be chosen so as to commute with translation, i.e., so that © = Identity will do.

6A A-functor ¢ is bounded above if there is an integer b such that for any n and any complex £
such that H'E = 0 for all i < n it holds that HI(¢€) = 0 for all j < n + b. Bounded below and
bounded (above and below) are defined analogously. Boundedness (way-outness) is what makes
the very useful “way-out Lemma” [H1, p. 68, 7.1] applicable.
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In Deligne’s approach the “Special Adjoint Functor Theorem” is used to get
right adjoints for certain functors on Aqc(X), and then these right adjoints are ap-
plied to injective resolutions of complexes. . . There is now a neater approach to dual-
ity on a quasi-compact separated ordinary scheme X, due to Neeman [N1], in which
“Brown Representability” shows directly that a A-functor F on D(Ay (X)) has a
right adjoint if and only if F' commutes with coproducts. Both approaches need
a small set of category-generators: coherent sheaves for Aq(X) in Deligne’s, and
perfect complexes for D(Aq(X)) in Neeman’s. Lack of knowledge about perfect
complexes over formal schemes discouraged us from pursuing Neeman’s strategy.
Recently however (after this paper was essentially written), Franke showed in [Fe]
that Brown Representability holds for the derived category of an arbitrary Grothen-
dieck category A.7 Consequently Theorem 1 also follows from the fact that Ag(X)
is a Grothendieck category (straightforward to see once we know it—by plump-
ness in A(X)—to be abelian) together with the fact that Rf.cj commutes with
coproducts (Proposition 3.5.2).

1.2. Two other, probably more useful, generalizations—from ordinary schemes
to formal schemes—of global Grothendieck Duality are stated below in Theorem 2
and treated in detail in §6. To describe them, and related results, we need some
preliminaries about torsion functors.

1.2.1. Once again let (X, Ox) be a ringed space. For any Ox-ideal J, set
Iz M= lim Homo(Ox/J", M) (M e A(X)),

n>0
and regard I’; as a subfunctor of the identity functor on Ox-modules. If N° C M
then I; N = I;; M NN; and it follows formally that the functor I, is idempotent
(L, I; M = I; M) and left exact [St, p. 138, Proposition 1.7].

Set A7 (X):= I;(A(X)), the full subcategory of A(X) whose objects are the
J-torsion sheaves, i.e., the Ox-modules M such that I;; M = M. Since I is
an idempotent subfunctor of the identity functor, therefore it is right-adjoint to
the inclusion ¢ = i7: Ay (X) — A(X). Moreover, A7(X) is closed under A(X)-
colimits: if F' is any functor into Az (X) such that ¢F has a colimit M € A(X),
then, since ¢ and I; are adjoint, the corresponding functorial map from iF to the
constant functor with value M factors via a functorial map from ¢F to the constant
functor with value I, M, and from the definition of colimits it follows that the
monomorphism I’; M — M has a right inverse, so that it is an isomorphism, and
thus M € A7(X). In particular, if the domain of a functor G into A7 (X) is a
small category, then ¢G does have a colimit, which is also a colimit of G; and so
A7(X) has small colimits, i.e., it is small-cocomplete.

Submodules and quotient modules of J-torsion sheaves are J-torsion sheaves.
If J is finitely-generated (locally) and if N' C M are Ox-modules such that A
and M/N are J-torsion sheaves then M is a J-torsion sheaf too; and hence
Az (X) is plump in A(X).® In this case, the stalk of I; M at z € X is

Uy M), = lim Homo, ,(Ox,o/ T}, Ma).

n>0

"So does the closely-related existence of K-injective resolutions for all A-complexes. (See also
[AJS, §5].)

8Thus the subcategory A 7(X) is a hereditary torsion class in A(X), in the sense of Dickson,
see [St, pp. 139-141].
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Let X be a locally noetherian scheme and Z C X a closed subset, the support
of Ox/J for some quasi-coherent Ox-ideal J. The functor I} := I’; does not
depend on the quasi-coherent ideal 7 determining Z. It is a subfunctor of the left-
exact functor I, which associates to each Ox-module M its subsheaf of sections
supported in Z. If M is quasi-coherent, then I;(M) = I,(M).

More generally, for any complex € € Dgo(X), the D(X)-map RI;€ — RILE
induced by the inclusion I} — I, is an isomorphism [AJL, p. 25, Corollary (3.2.4)];
so for such & we usually identify RIZE and RI,E.

Set Az(X) := A7(X), the plump subcategory of A(X) whose objects are
the Z-torsion sheaves, that is, the Ox-modules M such that [; M = M; and set
Aqez(X) = Aqe(X) N Az(X), the plump subcategory of A(X) whose objects are
the quasi-coherent Ox-modules supported in Z.

For a locally noetherian formal scheme X with ideal of definition J, set Iy := I3,
a left-exact functor depending only on the sheaf of topological rings Oy, not on
the choice of J—for M € A(X), IyM C M is the submodule whose sections are
those of M annihilated locally by an open ideal. Say that M is a torsion sheaf
if M =M. Let Ay(X) := Ayg(X) be the plump subcategory of A(X) whose
objects are all the torsion sheaves; and set Aqct(X) := Age(X) N Ay (X), the full
(in fact plump, see Corollary 5.1.3) subcategory of A(X) whose objects are the
quasi-coherent torsion sheaves. It holds that Ay (X) C Az(X), see Corollary 5.1.4.
If X is an ordinary locally noetherian scheme (i.e., J = 0), then Ay(X) = A(X)
and Aget(X) = Age(X) = Az(X).

1.2.2. For any map f: X — Y of locally noetherian formal schemes there are
ideals of definition I C Oy and J C O such that IOy C J [GD, p.416, (10.6.10)];
and correspondingly there is a map of ordinary schemes (= formal schemes hav-
ing (0) as ideal of definition) (X, Ox/d) — (Y,0y/T) [GD, p. 410, (10.5.6)]. We say
that f is separated (resp. affine, resp. pseudo-proper, resp. pseudo-finite, resp. of
pseudo-finite type) if for some—and hence any—such J, J the corresponding scheme-
map is separated (resp. affine, resp. proper, resp. finite, resp. of finite type), see
[GD, §§10.15-10.16, p. 444 ff.], keeping in mind [GD, p.416, (10.6.10)(ii)].° Any
affine map is separated. Any pseudo-proper map is separated and of pseudo-finite
type. The map f is pseudo-finite < it is pseudo-proper and affine < it is pseudo-
proper and has finite fibers [EGA, p. 136, (4.4.2)].

We say that f is adic if for some—and hence any—ideal of definition J C Oy,
JOx is an ideal of definition of X [GD, p.436, (10.12.1)]. We say that f is proper
(resp. finite, resp. of finite type) if f is pseudo-proper (resp. pseudo-finite, resp. of
pseudo-finite type) and adic, see [EGA, p.119, (3.4.1)], [EGA, p.148, (4.8.11)]
and [GD, p. 440, (10.13.3)].

9n [Y, Definition 1.14], pseudo-finite-type maps are called “maps of formally finite type.” The
proof of Prop.1.4 in [Y] (with A’ = A) yields the following characterization of pseudo-finite-type
maps of affine formal schemes (cf. [GD, p. 439, Prop. (10.13.1)]): The map f: Spf(B) — Spf(A)
corresponding to a continuous homomorphism h: A — B of noetherian adic rings is of pseudo-
finite type < for any ideal of definition I of A, there exists an A-algebra of finite type A’, an
A’-ideal I’ D TA’, and an A-algebra homomorphism A’ — B inducing an adic surjective map
A7 = B where A is the I’-adic completion of A’.
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1.2.3. Here is our second main result, Torsion Duality for formal schemes.
(See Theorem 6.1 and Corollary 6.1.4 for more elaborate statements.) In the as-
sertion, Dye(X):= RIY ™ (Dyet (X)) is the least A-subcategory of D(X) containing
both Dyc(X) and RI¥~(0) (Definition 5.2.9, Remarks 5.2.10, (1) and (2)). For
example, when X is an ordinary scheme then ]SqC(DC) = Dy (X).

THEOREM 2. Let f: X — Y be a map of noetherian formal schemes. Assume
either that f is separated or that X has finite Krull dimension, or else restrict to
bounded-below complezes.

(a) The restriction of Rfi: D(X) — D(Y) takes Dgct(X) to Dgct(Y), and it
has a right A-adjoint f*: D(Y) — Dget(X).

(b) The restriction of RERIY takes Dye(X) to Dyet(Y) C Dye(Y), and it has
a right A-adjoint f*: D(Y) — Dyc(X).

REMARKS 1.2.4. (1) The “homology localization” functor
Ay (=)= RHom®* (RIZ Oy, —)

is right-adjoint to RIy, and Ax'(0) = RI{~'(0) (Remarks 6.3.1). The A-functors
f* and f are connected thus (Corollaries 6.1.4 and 6.1.5(a)):

fP=Axfs, fE =RIRSM

(2) In the footnote on page 70 it is indicated that RIY ~!(0) admits a “Bousfield
colocalization” in D(X), with associated “cohomology colocalization” functor RIY;
and in Remark 6.3.1(3), Theorem 2 is interpreted as duality with coefficients in the
corresponding quotient Dye(X)/RIY™(0) & Dye(X)/(Dge(X) NRIEL™1(0)).

(3) The proof of Theorem 2 is similar to that of Theorem 1, at least when the
formal scheme X is separated (i.e., the unique formal-scheme map X — Spec(Z) is
separated) or finite-dimensional, in which case there is an equivalence of categories
D(Aqet(X)) — Dget(X) (Proposition 5.3.1). (As mentioned before, we know the
corresponding result with “¢” in place of “qct” only for properly algebraic formal
schemes.) In addition, replacing separatedness of X by separatedness of f takes a
technical pasting argument.

(4) For an ordinary scheme X (having (0) as ideal of definition), Iy, is just the
identity functor of A(X), and Dgyct (X ) = Dge(X). In this case, Theorems 1 and 2
both reduce to the usual global (non-sheafified) version of Grothendieck Duality.
In §2 we will describe how Theorem 2 generalizes and ties together various strands
in the literature on local, formal, and global duality. In particular, the behavior of
Theorem 2 vis-a-vis variable f gives compatibility of local and global duality, at least
on an abstract level—i.e., without the involvement of differentials, residues, etc.
(See Corollary 6.1.6.)

1.3. As in the classic paper [V] of Verdier, the culminating results devolve
from flat-base-change isomorphisms, established here for the functors f* and f* of
Theorem 2, with f pseudo-proper—in which case we denote f* by f.
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THEOREM 3. Let X, Y and U be noetherian formal schemes, let f: X — Y be
a pseudo-proper map, and let u: U — Y be flat, so that in the natural diagram

X xy U=V - X

gl lf

U —-1Y

the formal scheme 'V is noetherian, g is pseudo-proper, and v is flat (Proposi-
tion 7.1).
Then for all F € D(;FC(H) := Dyc(Y) N DT (Y) the base-change map Bx of Defi-
nition 7.3 is an isomorphism
Br: RIGV* f'F = ¢ ROW'F = gw'F.
6.1.5(b)
In particular, if u is adic then we have a functorial isomorphism v*f'F == g'u*F.

This theorem is proved in §7 (Theorem 7.4). The functor RI} has a right
adjoint Ay, see (15). Theorem 3 leads quickly to the corresponding result for f*
(see Theorem 8.1 and Corollary 8.3.3):

THEOREM 4. Under the preceding conditions, let
BE: v f*F — g*w'F (FeDL®Y))
be the map adjoint to the natural composition
Rg. R f*F = Rg.g'u*F — u*F.
Thm. 3
Then the map Av(B%) is an isomorphism

Av(B): Ay f*F = Ayg*uF 61502 g

Moreover, if w is an open immersion, or if F € DJF(Y), then B} itself is an
isomorphism.

The special case of Theorems 3 and 4 when w is an open immersion is equiv-
alent to what may be properly referred to as Grothendieck Duality (unqualified
by the prefix “global”), namely the following sheafified version of Theorem 2 (see
Theorem 8.2):

THEOREM 5. Let X and Y be noetherian formal schemes and let f: X — Y be
a pseudo-proper map. Then the following natural compositions are isomorphisms:

R, RHom% (G, f*F) — RHom$y(RERILG, RERILf*F)
— RHom$(RERIYG, F) (G € Dgc(X), F € DL (Y));

RfLRHomS(G, f'F) — RHom$(R£G, REf'F) — RHom$(R£G, F)
(G € Dget(X), F € DL(Y)).
Finally, if f is proper and F € DS (Y), then f*: DF(Y) — DI (X) is right-

adjoint to Rf.: DF(X) — D (Y), and RIY in Theorem 5 can be deleted, see
Theorem 8.4.
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In this—and several other results about complexes with coherent homology—an
essential ingredient is Proposition 6.2.1, deduced here from Greenlees-May duality
for ordinary affine schemes, see [AJL]:

Let X be a locally noetherian formal scheme, and let € € D(X). Then for all
F € D.(X) the natural map RIYE — & induces an isomorphism

RHom*(E, F) = RHom®*(RIYE, F).

In closing this introductory section, we wish to express our appreciation for
illuminating interchanges with Amnon Neeman and Amnon Yekutieli.

2. Applications and examples.

Again, Theorem 2 generalizes global Grothendieck Duality on ordinary schemes.
This section illustrates further how Theorem 2 provides a common home for a
number of different duality-related results (local duality, formal duality, residue
theorems, dualizing complexes. ..). For a quick example, see Remark 2.3.8.

Section 2.1 reviews several forms of local duality. In section 2.2 we sheafify
these results, and connect them to Theorem 2. In particular, Proposition 2.1.6 is
an abstract version of the Local Duality theorem of [HUK, p.73, Theorem 3.4];
and Theorem 2.2.3 (Pseudo-finite Duality) globalizes it to formal schemes.

Section 2.3 relates Theorems 1 and 2 to the central “Residue Theorems” in [L1]
and [HuS] (but does not subsume those results).

Section 2.4 indicates how both the Formal Duality theorem of [H2, p. 48, Propo-
sition (5.2)] and the Local-Global Duality theorem in [L3, p.188] can be deduced
from Theorem 2.

Section 2.5, building on work of Yekutieli [Y, §5], treats dualizing complezes
on formal schemes, and their associated dualizing functors. For a pseudo-proper
map f, the functor f# of Theorem 2 lifts dualizing complexes to dualizing complexes
(Proposition 2.5.11). For any map f: X — Y of noetherian formal schemes, there
is natural isomorphism

RHom% (Lf*F, f*G) = f*RHom}(F,G) (FeD; (Y), Ge DY),

(Proposition 2.5.13). For pseudo-proper f, if Y has a dualizing complex R, so that
f*R is a dualizing complex on X, and if DY := RHom®*(—,R) and D* are the
corresponding dualizing functors, one deduces a natural isomorphism (well-known
for ordinary schemes)

e ~pr*Lpie (£ e DY),

see Proposition 2.5.12.
There are corresponding results for f* as well.

2.1. (Local Duality.) All rings are commutative, unless otherwise specified.

Let ¢: R — S be a ring homomorphism with S noetherian, let J be an S-
ideal, and let I'; be the functor taking any S-module to its submodule of elements
which are annihilated by some power of J. Let E and E’ be complexes in D(S),
the derived category of S-modules, and let F' € D(R). With ® denoting derived
tensor product in D(S) (defined via K-flat resolutions [Sp, p. 147, Proposition 6.5]),
there is a natural isomorphism F @ RIJE’" =~ RI;(E ® E’), see e.g., [AJL, p. 20,
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Corollary(3.1.2)]. Also, viewing RHom%(E’, F') as a functor from D(S)°P x D(R)
to D(S), one has a canonical D(S)-isomorphism

RHom},(E @ E', F) ~ RHom$(E, RHom}(E', F)),

see [Sp, p.147; 6.6]. Thus, with ¢¥: D(R) — D(S) the functor given by
©f(—):= RHom%(RI}S, —) = RHom%(RI;S, RHom%(S, —)),
there is a composed isomorphism

RHom}(E, p{F) > RHom}(E @ RI}S, F) -~ RHom}(RL)E, F).

Application of homology H? yields the (rather trivial) local duality isomorphism
(2.1.1) HomD(s)(E,cp}‘F) — Hompg)(RIJE, F).

“Non-trivial” versions of (2.1.1) include more information about ¢¥%. For ex-
ample, Greenlees-May duality [AJL, p.4, (0.3).s] gives a canonical isomorphism

(2.1.2) OfF = LA ;RHom% (S, F),

where A ; is the J-adic completion functor, and L denotes “left-derived.” In partic-
ular, if R is noetherian, S is a finite R-module, and F' € D.(R) (i.e., each homology
module of F is finitely generated), then as in [AJL, p. 6, Proposition (0.4.1)],

(2.1.3) o'F = RHom%(S, F) ©g S (S = J-adic completion of S).
More particularly, for S = R and ¢ = id (the identity map) we get
idfF=F®rR (FcD.(R)).

Hence, classical local duality [H1, p. 278 (modulo Matlis dualization)] is just (2.1.1)
when R is local, ¢ = id, J is the maximal ideal of R, and F' is a normalized dualizing
complex—so that, as in Corollary 5.2.3, and by [H1, p. 276, Proposition 6.1],

Homp)(RI} E, F') = Hompr)(RI} E, RI; F) = Homp r)(RI; E, T)
where I is an R-injective hull of the residue field R/J. (See also Lemma 2.5.7.)

For another example, let S = RJ[[t]] where t := ({1,...,tq) is a sequence of
variables, and set J:= tS. The standard calculation (via Koszul complexes) gives
an isomorphism RI}S = v[—d] where v is the free R-submodule of the localiza-
tion Sy, ..+, generated by those monomials ¢7*.. .tZd with all exponents n; < 0, the
S-module structure being induced by that of S, +,/S D v. The relative canonical
module Wg))/r = Homg(v, R) is a free, rank one, S-module. There result, for
finitely-generated R-modules F', functorial isomorphisms

(2.1.4) Cere F = Homp(v[—d], F) = wpq) rld] ©r F = R[[t] @ F[d];
and when R is noetherian, the usual way-out argument [H1, p. 69, (ii)] yields the

same for any F' € D (R).

Next, we give a commutative-algebra analogue of Theorem 2 in §1, in the form
of a “torsion” variant of the duality isomorphism (2.1.1). Proposition 2.2.1 will
clarify the relation between the algebraic and formal-scheme contexts.

With ¢: R — S and J an S-ideal as before, let A;(S) be the category of
J-torsion S-modules, i.e., S-modules M such that

M=T;M:={meM|J"m=0 for somen >0}
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The derived category of A;(S) is equivalent to the full subcategory D;(.S) of D(S)
with objects those S-complexes E whose homology lies in A;(.S), (or equivalently,
such that the natural map RI;E — FE is an isomorphism), and the functor RI} is
right-adjoint to the inclusion Dy (S) < D(S) (cf. Proposition 5.2.1 and its proof).
Hence the functor ¢} : D(R) — Dy(S) defined by
¢; (=):= RIJRHom% (S, —) = RI}S ® RHomp(S, —)

is right-adjoint to the natural composition Ds(S) — D(S) — D(R): in fact, for
E € D;(S) and F € D(R) there are natural isomorphisms
(2.1.5) RHom%(E, ¢ F) = RHomg(E,RHom%(S, F)) = RHomy(E, F).

Here is another interpretation of ¢ F. For S-modules A and R-modules B set

HOHlR“](A, B) = ]:‘]HOHlR(A, B),
the S-module of R-homomorphisms « vanishing on J"A for some n (depending
on a), i.e., continuous when A is J-adically topologized and B is discrete. If E is
a K-flat S-complex and F' is a K-injective R-complex, then Hom%(E, F) is a K-
injective S-complex; and it follows for all E € D(S) and F' € D(R) that
RHom} ;(E, F) = RIyRHom%(E, F).
Thus,
¢ F = RHomy ;(S, F).
A torsion version of local duality is the isomorphism, derived from (2.1.5):
HomDJ(S)(E7 RHom;%)J(S, F)) = Hompg)(E, F) (E € Dy(9), F € D(R)).
Apropos of Remark 1.2.4(1), the functors ¢ and o} are related by

LA;RHom% (S, F) = ofF =~ LA ;o) F,
(2.1.2)

RI; RHom$% (S, F) = ¢fF = RIyQiF.

The first relation is the case E = RIS of (2.1.5), followed by Greenlees-May duality. The
second results, e.g., from the sequence of natural isomorphisms, holding for G € D;(.5),
E € D(S), and F € D(R):

Homps)(G, RIyRHom% (E, F)) = Homps)(G, RHom% (E, F))
= Hompr)(RI} S ®s G @s E, F)
= Homps)(G, RHom%(RI E, F))
= Homps)(G, R[yRHom} (RI) B, F)),
which entail that the natural map is an isomorphism

RI;RHom}(E, F) = RI;RHom}(RIYE, F).

Local Duality theorems are often formulated, as in (c¢) of the following, in terms
of modules and local cohomology (H$:= H*RI}) rather than derived categories.

PROPOSITION 2.1.6. Let ¢ : R — S be a homomorphism of noetherian rings,
let J be an S-ideal, and suppose that there exists a sequence u = (u1,...,uq) in J

such that S/uS is R-finite. Then for any R-finite module F':
(a) H*@}F =0 for all n < —d, so that there is a natural D(S)-map

h: (H @i F)[d] — ©JF.
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(b) If 7p: RI;Q*F — F corresponds in (2.1.1) to the identity map of p¥F,*°
and [ = f:}l’J(F) is the composed map

R (H- %t F)[d] 2 R ot F 755 F,

then (H=9Q4F, [') represents the functor Homp(g)(RI; E[d], F) of S-modules E.
(c) If J Cv/uS then there is a bifunctorial isomorphism (with E, F as before):
Homg(E, H %p*F) =~ Homp(HYE, F).

PROOF. If ¢ is the obvious map from R to the u-adic completion S of S,
then in D(S), p#F = ¢*F since RI}S = RI}S. In proving (a), therefore, we may
assume that S is u-adically complete, so that ¢ factors as R — R[[t]] 2 S with
t = (t1,...,tq) a sequence of indeterminates and S finite over R[[t]]. (¢ is the nat-
ural map, and x(t;) = u;.) In view of the easily-verified relation ¢¥ = x* 01/1:R[[t]],
(2.1.3) and (2.1.4) yield (a). Then (b) results from the natural isomorphisms

Homg(E, H 4% F) \ﬁb Homps)(E[d], ¢ F) (;Ti) Hompgr)(RI;E[d], F).

Finally, (c) follows from (b) because HYE = H!¢F = 0 for all i > d (as one sees
from the usual calculation of H! ¢ F via Koszul complexes), so that the natural map
is an isomorphism Hompg)(RI;E[d], F) = Homg(H}E, F). O

2.1.7. Under the hypotheses of Proposition 2.1.6(c), the functor Hom z(H¢E, R)
of S-modules E is representable. Under suitable extra conditions (for example, Sa
generic local complete intersection over R][t]], Hiibl and Kunz represent this functor
by a canonical pair described explicitly via differential forms, residues, and certain
trace maps [HiK, p. 73, Theorem 3.4]. For example, with S = R[[t]], J = tS5, and
v as in (2.1.4), the S-homomorphism from the module Q p of universally finite
d-forms to the relative canonical module w RI[t]]/R = HomR( R) sendlng the form
dtq...dtg to the R- homomorphlsm v — R which takes the monomial tl Sty Tto1
and all other monomials t7. .. t;? to 0, is clearly an isomorphism; and the result-
ing isomorphism QS/R[ | == ¢IR does not depend on the d-element sequence t
generating J—it corresponds under (2.1.1) to the residue map

RI, QG pld] = HQE p — R

(see, e.g., [L2, §2.7]). Thus Hompg(HE, R) is represented by ﬁg/R together with the
residue map. The general case reduces to this one via traces of differential forms.

2.2. (Formal sheafification of Local Duality). For f: X — Y as in Theorem 2
in §1, there is a right A-adjoint f* for the functor Rf: Dgct(X) — Dget(Y). Fur-
thermore, with j: D(Az(X)) — Dgz(X) the canonical functor, we have
RARIY3D(A(X RARIZ D, (X R* c Dy Dz(Y).

FREGDUN) ¢ RERED(X) € RED(X) ¢ Dild) © Delt)
It results from (15) and Proposition 3.2.3 that R RIYj: D(Az(X)) — Dz(Y) has
the right A-adjoint RQ f*:= RQRHom®* (RIF O, f).

10 Tp may be thought of as “evaluation at 1”: RHom% ;(S, F) — F.
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If, moreover, X is properly algebraic (Definition 3.3.3)—in particular, if X is
affine—then j is an equivalence of categories (Corollary 3.3.4), and so the functor
RfRIY: De(X) — Dg(Y) has a right A-adjoint.

For affine f, these results are closely related to the Local Duality isomorphisms
(2.1.5) and (2.1.1). Recall that an adic ring is a pair (R, I) with R a ring and I an
R-ideal such that with respect to the I-adic topology R is Hausdorff and complete.
The topology on R having been specified, the corresponding affine formal scheme
is denoted Spf(R).

PROPOSITION 2.2.1. Let ¢: (R,I) — (S,J) be a continuous homomorphism
of noetherian adic rings, and let X := Spf(S) 4 Spf(R) =:Y be the corresponding
(affine) formal-scheme map. Let ky: X — X := Spec(S), ky: Y — Y := Spec(R)
be the completion maps, and let ~ = ~5 denote the standard exact functor from
S-modules to quasi-coherent Ox -modules. Then:

(a) The restriction of Rf, takes Dycy(X) to Dyei(Y), and this restricted functor
has a right adjoint f*: Dqct(Y) — Dqet(X) given by
fOF = ki (e RE(Y, F))” = i (RHomy, ; (S, RT(Y, 7)™ (F € Dger(V)).

(b) The restriction of RfRIY takes Dz(X) to Dz(Y), and this restricted func-
tor has a right adjoint f¥: De(Y) — Dg(X) given by

feF = rx(¢fRT(Y, 7))~ = rx(RHomy (RI;S, RT(Y, 7)™ (F € De(Y)).
(c) There are natural isomorphisms

RI(X, fF) = ¢fRI(Y, F)  (F € Dyet(¥)),
RI(X, ffF) = ¢yRU(Y, F)  (F € De(Y)).

PRrROOF. The functor ~ induces an equivalence of categories D(S) — Dy (X),
with quasi-inverse RIy := RI'(X, —) ([BN, p. 225, Thm. 5.1], [AJL, p. 12, Propo-
sition (1.3)]); and Proposition 3.3.1 below implies that k% : Dqc(X) — Dz(X) is an
equivalence, with quasi-inverse (RTy Ky, —)~ = (R, —)~. 1

It follows that the functor taking G € D(S) to k%G is an equivalence, with
quasi-inverse RIy: Dz(X) — D(S), and similarly for Y and R. Moreover, there
is an induced equivalence between D;(S) and Dget(X) (see Proposition 5.2.4). In

particular, (c) follows from (a) and (b).
Corresponding to (2.1.5) and (2.1.1) there are then functorial isomorphisms

HomD(DC)(ga ftX]:) - HomD(H)(’ig (RFXS)NR7 -7:) (5 € DQCt (:X:), Fe cht (y))7
Homp (€, fEF) == Hompy)(ky (R RIE)VE, F) (€ € De(X), F € De(Y));

and it remains to demonstrate functorial isomorphisms

K (RIE)™ = RLE (€ € Dygar (X)),
kG (RLRIE)™T = RERIYE (€ € De(X)),

the first a special case of the second.

My checking this note that x,., has an exact left adjoint, hence preserves K-injectivity.
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To prove the second, let E := RI}.E, let Z := Spec(S/J) C X, and let
fo: X — Y be the scheme-map corresponding to ¢. The desired isomorphism
comes from the sequence of natural isomorphisms

RLRIVE = RERIYKLE

= RfkxRILE (Proposition 5.2.4(c))
= Ky Rfo.RILE (Corollary 5.2.7)

=~ kyR fo«(RI;E)™ ([AJL, p.9, (0.4.5)])
=~ ry(RIE)™E.

(The last isomorphism—well-known for bounded-below E—can be checked via the
equivalences RI and RI, which satisfy R}, R fo. & RIy (see [Sp, pp. 142-143,
5.15(b) and 5.17]). O

Theorem 2.2.3 below globalizes Proposition 2.1.6. But first some preparatory
remarks are needed. Recall from 1.2.2 that a map f: X — Y of noetherian formal
schemes is pseudo-finite if it is pseudo-proper and has finite fibers, or equivalently,
if f is pseudo-proper and affine. Such an f corresponds locally to a homomorphism
¢: (R,I) — (S, J) of noetherian adic rings such that ¢(I) C J and S/J is a finite
R-module. This ¢ can be extended to a homomorphism from a power series ring
R][[t]]:= R][[t1,12,...,t.]] such that the images of the variables t; together with ¢(I)
generate J, and thereby S becomes a finite R[[t]]-module. Pseudo-finiteness is
preserved under arbitrary (noetherian) base change.

We say that a pseudo-finite map f: X — Y of noetherian formal schemes has
relative dimension < d if each y € Y has an affine neighborhood U such that
the map ¢y : R — S of adic rings corresponding to f~!U — U has a continu-
ous extension R[[t1,...,tq)] — S making S into a finite R[[t1,...,tq]]-module, or
equivalently, there is a topologically nilpotent sequence u = (uq,...,uq) in S (i.e.,
lim, oo ul =0 (1 <i < d)) such that S/uS is finitely generated as an R-module.
The relative dimension dim f is defined to be the least among the integers d such
that f has relative dimension < d.

For any pseudo-proper map f: X — Y of noetherian formal schemes, we have
the functor f*: D(Y) — D(X) of Corollary 6.1.4, commuting with open base change
on Y (Theorem 4). The next Lemma is a special case of Proposition 8.3.2.

LEMMA 2.2.2. For a pseudo-finite map f:X —Y of noetherian formal schemes
and for any F € DF(Y), it holds that f*F € DI (X).

PRrooF. Since f* commutes with open base change, the question is local, so
we may assume that f corresponds to ¢: (R,I) — (S,J) as above. Moreover,
the isomorphism (gf)* = f*¢* in Corollary 6.1.4 allows us to assume that either
S = R][t1,...,tq]] and ¢ is the natural map or S is a finite R-module and J = IS.
In either case f is obtained by completing a proper map fo: X — Spec(R) along a
closed subscheme Z C fo_lspec(R/I). (In the first case, take X to be the projective
space B¢ O Spec(R[t1,...,td]), and Z := Spec(R[t1,...,tal/(I,t1,...,ta)).) The
conclusion is given then by Corollary 6.2.3. O
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THEOREM 2.2.3 (Pseudo-finite Duality). Let f: X — Y be a pseudo-finite map
of noetherian formal schemes, and let F be a coherent Oy-module. Then:

(a) H*f*F =0 for all n < —dim f.

(b) If dimf < d and X is covered by affine open subsets with d-generated
defining ideals, then with fy, = f.Iy and, for i € Z and J a defining ideal of X,

R'fy,:= H'Rfy, = HRLRIY = lim H'RfRHom®(Ox /3", —), "
there is, for quasi-coherent Oy -modules E, na functorial isomorphism
fHomy (€, H™*f*F) = Homy (R fy,E, F).
(Here H=4f*F is coherent (Lemma 2.2.2), and by (a), vanishes unless d = dim f.)

PROOF. Since f# commutes with open base change we may assume that Y is
affine and that f corresponds to a map ¢: (R,I) — (S,J) as in Proposition 2.1.6.
Then there is an isomorphism of functors

JRQyf* = kY (¢JRT(Y,-))",
both of these functors being right-adjoint to RfRIY : Dg(X) — De(Y) (Proposi-
tion 2.2.1(b) and remarks about right adjoints preceding it). Since f*F € Df(X)
(Lemma 2.2.2), therefore, by Corollary 3.3.4, the natural map is an isomorphism
JRQf*F = f*F; and so, since k% is exact, Proposition 2.1.6 gives (a).
Next, consider the presheaf map associating to each open U C Y the natural
composition (with V:= f~U):

Homvy (&, H 4 f*F) bylé) Homp vy(&[d], f*F) 6%:} Homp ) (RARIXE[d], F)
— Homy (R, E, F).
To prove (b) by showing that the resulting sheaf map
fiHomx (€, H™* f*F) — Homy (R f3..E, F)

is an isomorphism, it suffices to show that R'fy,£ = 0 for all i > d, a local problem
for which we can (and do) assume that f corresponds to ¢: R — S as above.

Now RIYE € Dyt (X) (Proposition 5.2.1), so Proposition 5.2.4 for X := Spec(S)
and Z:= Spec(S/J) gives RIYE = k5E with & := ko RIYE € D;rcz(X). Since X
has, locally, a d-generated defining ideal, we can represent RIy.€ locally by a lim of
Koszul complexes on d elements [AJL, p.18, Lemma 3.1.1], whence H'RI}E =0
for all i > d, and so, ky, being exact, H'€y = 0. Since the map fo:= Spec(p)
is affine, it follows that H'R fo.& = 0, whereupon, ky being flat, Corollary 5.2.7
yields

R'fx,€ = HRfr5E = H' kiR fo. €0 = kiH'Rfo.E0 =0 (i > d),
as desired. (Alternatively, use Lemmas 3.4.2 and 5.1.4.) O

12The equalities hold because X being noetherian, any lim of flasque sheaves (for example,
lim Hom(Ox /3", E) with £ an injective Ox-module) is fi-acyclic, and lim commutes with f..
(For an additive functor ¢: A(X) — A(Y), an A(X)-complex F is ¢-acyclic if the natural map
¢F — RoF is a D(Y)-isomorphism. Using a standard spectral sequence, or otherwise (cf. [L4,
(2.7.2)]), one sees that any bounded-below complex of ¢-acyclic Ox-modules is ¢-acyclic.
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2.3. Our results provide a framework for “Residue Theorems” such as those
appearing in [L1, pp. 87-88] and [HuS, pp. 750-752] (central theorems in those
papers): roughly speaking, Theorems 1 and 2 in section 1 include both local and
global duality, and Corollary 6.1.6 expresses the compatibility between these duali-
ties. But the dualizing objects we deal with are determined only up to isomorphism.
The Residue Theorems run deeper in that they include a canonical realization of
dualizing data, via differential forms. (See the above remarks on the Hiibl-Kunz
treatment of local duality.) This extra dimension belongs properly to a theory of
the “Fundamental Class” of a morphism, a canonical map from relative differential
forms to the relative dualizing complex, which will be pursued in a separate paper.

2.3.1. Let us be more explicit, starting with some remarks about “Grothendieck
Duality with supports” for a map f: X — Y of noetherian separated schemes
with respective closed subschemes W C Y and Z C f~'W. Via the natural
equivalence of categories D(Agc(X)) — Dqc(X) (see §3.3), we regard the func-
tor f7*: D(Y) — D(Az(X)) = D(Aqe(X)) of Theorem 1 as being right-adjoint to
Rf.: Dgc(X) — D(Y).'® The functor RI} can be regarded as being right-adjoint
to the inclusion Dz(X) — D(X) (cf. Proposition 5.2.1(c)); and its restriction
to Dqgc(X) agrees naturally with that of RI},, both restrictions being right-adjoint
to the inclusion Dgycz(X) < Dgc(X). Similar statements hold for W C Y. Since
Rf.(Dqcz(X)) C Dw(Y) (cf. proof of Proposition 5.2.6), we find that the functors
RI,f* and RI, f*RI}, are both right-adjoint to Rfi: Dgcz(X) — D(Y), so are
isomorphic. We define the local integral (a generalized residue map, cf. [HUK, §4])

p(G): RERI*G —REG (G eD(Y))
to be the natural composition
RARILf*G = RARILf*RIG — R fRILG — R G.

Noting that for 7 € Dy (Y") there is a canonical isomorphism RIjj, F =~ F
(proof similar to that of Proposition 5.2.1(a)), we have then:

PROPOSITION 2.3.2 (Duality with supports). For £ € Dqcz(X), F € Dy (Y),
the natural composition
Homp,, (x)(& RI; f*F) —— Homp,, (v)(RLE RLERI f*F)
E— HOmDW(y)(Rf*(€7 .7:)

) ] ) p(F)
is an isomorphism.

This follows from adjointness of Rfi and f*, via the natural diagram
RERILf*G —— RES*G

”(g)l l (G e D(Y)),
RE,G —— G

whose commutativity is a cheap version of the Residue Theorem [HuS, pp. 750-
752].

Again, however, to be worthy of the name a Residue Theorem should in-
volve canonical realizations of dualizing objects. For instance, when V' is a proper

L3por ordinary schemes, this functor f* is well-known, and usually denoted f' when f is
proper. When f is an open immersion, the functors f* and f!(: f*) need not agree.
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d-dimensional variety over a field k and v € V is a closed point, taking X = V|
Z = {v}, W =Y = Spec(k), G = k, and setting wy := H-4f*k, we get an Oy, ,-
module wy,, (commonly called “canonical”, though defined only up to isomorphism)
together with the k-linear map induced by p(k):

HY(wy.,) — k,
a map whose truly-canonical realization via differentials and residues is indicated
in [L1, p. 86, (9.5)].

2.3.3. With preceding notation, consider the completion diagram

X,z =X TN ‘e

fl lf

Yyw =: Y T Y
Duality with supports can be regarded more intrinsically—via f rather than f—
as a special case of the Torsion-Duality Theorem 6.1 (22 Theorem 2 of §1) for f:
First of all, the local integral p is completely determined by x{(p): for G € D(Y),
the natural map RIj,G — ky, kR I, G is an isomorphism (Proposition 5.2.4); and
the same holds for RLRI; f*G — ky, k{RLRIL f*G since as above,

RRI,f*G € Rf.(Dyez(X)) C Dy (Y)
—and so p = ky,ky(p). Furthermore, x{j(p) is determined by the “trace” map
' R ﬁ & — 1, as per the following natural commutative diagram, whose rows are
isomorphisms:

kyRERILfXG Y RfRYRI f* ky, k4G Ty Rf [ kG MLW;) Rf fURI kGG

w0 | K

kYR G = RIjkyG

5.2.4

(To see that the natural map RI;f*G — RI;f*ky, k3G is an isomorphism, re-
place RI, f* by the isomorphic functor RI, f*RI;;, and apply Proposition 5.2.4.)
Finally, we have isomorphisms (for £ € Dy.z(X), F € Dy (Y)),

Homp x)(&, RI, f*F) == Hompx)(kxE, kXRI,f* Ky, k5 F) (5.2.4)
= Homp)(K3cE, [ 5F) (6.1.6)
— Hompyy(REAKYE, k5 F) (6.1)
—= Hompy)(kyRAE, K§F) (5.2.7)
. Hompy)(RLE, F) (5.2.4),

whose composition can be checked, via the preceding diagram, to be the same as
the isomorphism of Proposition 2.3.2.

2.3.4. Proposition 2.3.6 expresses some homological consequences of the fore-
going dualities, and furnishes a general context for [L1, pp. 87-88, Theorem (10.2)].
For any noetherian formal scheme X, £ € D(X), and n € Z, set

H2(E):= H"RI(X, RELE).
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For instance, if X = X =, X is the completion of a noetherian scheme X
along a closed Z C X, then for F € D(X), Proposition 5.2.4 yields natural isomor-
phisms

RI(X,RI¥x*F) = RI(X, k. RIyK*F)
~ RI(X, ke*RILF) = RI(X,RILF),
and so if F € Dy (X), then with HY the usual cohomology with supports in Z,
HY (" F) =2 HY (F).

Let J C Ox be an ideal of definition. Writing T'y. for the functor I'(X, —), we

have a functorial map
Y(E): R(Ty o I¥)E — Ry o RIYE (€ € D(X)),

which is an isomorphism when £ is bounded-below, since for any injective Oy-
module Z, lim; of the flasque modules Hom(Ox /3", T) is Ty-acyclic. Whenever
~(€) is an isomorphism, the induced homology maps are isomorphisms

li_m> Ext™(Ox /3", ) = HY (£).

If £ € Dgc(X), then RIFE € Dy (X) (Proposition 5.2.1). For any map
g: X — Y satisfying the hypotheses of Theorem 6.1, for G € D(Y), and with
R:=H°(Y, Oy), there are natural maps

Homp(x)(RIXE, g;'G) —~ Hompx)(RIYE, g7 RIG) (6.1.5(b))
(6) — Hompy)(Rg-RIxE RIHG)
— Homg(HYE, HYG)

where the last map arises via the functor H*"RI'(Y, —) (n € Z).

In particular, if g = f in the completion situation of §2.3.3, and if £ := r%.&o,
G = k{60 (&0 € Dye(X), Go € Dyc(Y)), then preceding considerations show that
this composed map operates via Duality with Supports for f (Proposition 2.3.2),
i.e., it can be identified with the natural composition

HOHlD(X)(RFZE(), R[‘Zflxgo) 2%5 HOmD(y)(Rf* RFZE(), RFWgo)

— HOHlHo (Y,0y) (Hrzlgo, Hrvlv Qo)

2.3.5. Next, let R be a complete noetherian local ring topologized as usual by
its maximal ideal I, let (S, J) be a noetherian adic ring, let ¢: (R,I) — (5,J) be
a continuous homomorphism, and let

Y:= Spf(S) L Spf(R) =: V

be the corresponding formal-scheme map. As before, g: X — Y is a map as in
Theorem 6.1, and we set h:= fg. Since the underlying space of V is a single point,
at which the stalk of Oy is just R, therefore the categories of Oy-modules and of
R-modules are identical, and accordingly, for any £ € D(X) we can identify Rh.&
with RI'(X, &) € D(R).

Let K be an injective R-module, and K the corresponding injective Oy-module.
There exist integers r, s such that H(f*K) = 0 for all i < —r (resp. H{(h*K) =0
for all i < —s) (Corollary 6.1.4). Set wy:= H™"(f*K) (resp. wx:= H*(h*K)).
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PROPOSITION 2.3.6. In the preceding situation wy represents—uia (6)—the
functor Homgs(Hy &, Hy (f*K)) of quasi-coherent Ox-modules £. If wy is the only
non-zero homology of f*KC, this functor is isomorphic to Homg(Hy &, Hywy).

Proof. There are natural maps
1 (wy) = T (wy[r)) = HY(FK) = Homp, (5, K)
where the last isomorphism results from Proposition 2.2.1(a), in view of the identity
RIJf* = f (Corollary 6.1.5(a)) and the natural isomorphisms
RI(Y,x3G) < RI(Y, ky,x3G) = RI(Y, G) = G (GeDI(9)),

for G:= RHom}, ;(S,RL(V,K)). (In fact RT(Y,x5G) = G for any G € D(S), see
Corollary 3.3.2 and the beginning of §3.3.) In case wy is the only non-vanishing
homology of f#/C, then h is an isomorphism too.

The assertions follow from the (easily checked) commutativity, for any quasi-
coherent Ox-module &, of the diagram

6.1.5(a
Homy (€, wx) = Hompx)(£[s], g* F*K) 615@), Homp x)(RIYE[s], g f*K)

| Jo

Homp vy(RARIZE[s], K) Homg (Hy (E[s]), HyY (*K))
Hompg(HEE, K) —— Homg(H{&, Hompg, ;(S, K))

2.3.7. Now let us fit [L1, pp. 87-88, Theorem (10.2)] into the preceding setup.

The cited Theorem has both local and global components. The first deals with
maps ¢: R — S of local domains essentially of finite type over a perfect field k,
with residue fields finite over k. To each such ring 7" one associates the canonical
module wr of “regular” k-differentials of degree dim7. Under mild restrictions
on ¢, the assertion is that the functor

HomR(HrdéI;SG, Hﬂ:RwR) (m:= maximal ideal)

of S-modules G is represented by the completion wg together with a canonical map,
the relative residue

% H?,i‘sf“s@ = Hﬂg‘sws — H%?RwR.
This may be viewed as a consequence of concrete local duality over k (§2.1.7).
The global aspect concerns a proper map of irreducible k-varieties g: V — W
of respective dimensions s and r with all fibers over codimension 1 points of W
having dimension s — r, a closed point w € W, the fiber E := g~!(w), and the
completion Vi= V) p. The assertion is that the functor

HomR(H’ég, H:anR) (R: OW,w)

of coherent Op-modules G is represented by the completion Wy along E of the
canonical sheaf wy of regular differentials, together with a canonical map

0: HIS(;{\/ = H%WV — H:anR.
Moreover, the local and global representations are compatible in the sense that

if v € E is any closed point and ¢, : R — S:= Oy, is the canonical map, then the
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residue p, := p,, factors as the natural map H;, ws — Hpwy followed by 6. This
compatibility determines 6 uniquely if the p, (v € E) are given [L1, p.95, (10.6)];
and of course conversely.

Basically, all this—without the explicit description of the w’s and the maps p,
via differentials and residues—is contained in Proposition 2.3.6, as follows.

In the completion situation of §2.3.3, take X and Y to be finite-type separated
schemes over an artinian local ring R, of respective pure dimensions s and r, let
W = {w} with w a closed point of Y, write ¢ in place of f, and assume that
Z C g~ 'W is proper over R (which is so, e.g., if g is proper and Z is closed).
Let K be an injective hull of the residue field of R, and let K be the corresponding
injective sheaf on Spec(R) = Spf(R). With f: Y — Spec(R) the canonical map,
and h = fg, define the dualizing sheaves

wx = H*h'K, wy:=H"f'K,

where h' is the Grothendieck duality functor (compatible with open immersions,
and equal to h* when h is proper), and similarly for f'. Tt is well-known (for
example via a local factorization of h as smoothofinite) that h'K has coherent
homology, vanishing in all degrees < —s; and similarly f'KC has coherent homology,
vanishing in all degrees < —r.
Let -
f:Y:=Spt(Ow ) — Spf(R) =V

be the completion of f. We may assume, after compactifying f and g—which does
not affect f or § (see [Lii]), that f and g are proper maps. Then Corollary 6.2.3
shows that h*K = n}h!IQ and so kx being flat, we see that

(7) H;C(.UX = WY

where wy is as in Proposition 2.3.6; and similarly kjwy = wy.

Once again, some form of the theory of the Fundamental Class will enable us
to represent wx by means of regular differential forms; and then both the local
and global components of the cited Theorem (10.2) become special cases of Propo-
sition 2.3.6 (modulo some technicalities [L1, p.89, Lemma (10.3)] which allow a
weakening of the condition that wy be the only non-vanishing homology of f#lC).

As for the local-global compatibility, consider quite generally a pair of maps

X, LxLy

of noetherian formal schemes. In the above situation, for instance, we could take p
to be g, X1 to be the completion of X at a closed point v € Z, and ¢ to be the
natural map. Theorem 2 gives us the adjunction

Rp.

Dyt (X) —— Daet(¥)-

Py
The natural isomorphism R(pq). == Rp.Rg. gives rise then to an adjoint isomor-
phism ¢;p; == (pq){; and for £ € Dye(Y) the natural map R(pq).(pg); & — &
factors as

R(pq)«(pq); € = Rp.Ra.q;'pi € — Rp.pi' € — E.

This factorization contains the compatibility between the above maps 6 and p,,
as one sees by interpreting them as homological derivatives of maps of the type
Rp.p; € — & (with £:= RIJ f*K). Details are left to the reader.
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REMARK 2.3.8. In the preceding situation, suppose further that ¥ = Spec(R)
(with R artinian) and f = identity, so that h = g: X — Y is a finite-type sepa-
rated map, X being of pure dimension s, and kx: X — X is the completion of X
along a closed subset Z proper over Y. Again, K is an injective R-module, K is
the corresponding Oy-module, and wy := H *¢'K is a “dualizing sheaf” on X.
Now Proposition 2.3.6 is just the instance ¢ = s of the canonical isomorphisms,
for £ € Dgc(X), ¢ € Z (and with HY := H*RI'(X, RIY), see §2.3.4, and §:= gokx):

Homp (x)(€[i], §*K) _-=> Hompy)(RGRIZEi], k) = Homp(Hy &, K) =: (Hy £).
If X is Cohen-Macaulay then all the homology of ¢'KC other than wx vanishes, so

all the homology of §* = k%.¢'KC other than wy = kiwx vanishes (see (7)), and
the preceding composed isomorphism becomes

Exti (€, wx) == (HEE).
In particular, when Z = X (so that XX = X)) this is the usual duality isomorphism
Exty (&, wx) = H{(X,E).

If X is Gorenstein and F is a locally free VOx—module of finite rank, then wx is
invertible; and taking &:= Homx (F,wx) = F ® wyx we get the isomorphism

H (X, F) = (HE(F@wx)),

which generalizes the Formal Duality theorem [H2, p. 48, Proposition (5.2)].

2.4. Both [H2, p.48; Proposition (5.2)] (Formal Duality) and the Theorem in
[L3, p.188] (Local-Global Duality) are contained in Proposition 2.4.1, see [AJL,
§5.3].

Let R be a noetherian ring, discretely topologized, and set

Y := Spec(R) = Spf(R) =: Y.

Let g: X — Y be a finite-type separated map, let Z C X be proper over Y, let
k: X =X,z — X be the completion of X along Z, and set g:= gor: X — Y.
Assume that R has a residual complez R [H1, p.304]. Then the corresponding
quasi-coherent Oy-complex Ry := R is a dualizing complez, and Rx := ¢'Ry is a
dualizing complex on X [V, p. 396, Corollary 3|. For any F € D.(X) set

Fl.= R’Homfx(}—, Rx) € De(X),
so that F = F"" = RHom% (F', Rx).

PROPOSITION 2.4.1. In the preceding situation, with I'z(—) := T'(X, I,(-))
there is a functorial isomorphism

RI(X,5*F) = RHom%(RIL F',R)  (F € D(X)).

PRrROOF. Replacing g by a compactification ([Lii]) doesn’t affect X or RI'z, so
assume that g is proper. Then Corollary 6.2.3 gives an isomorphism k*Rx = §*Ry .
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Now just compose the chain of functorial isomorphisms

RI(X,x*F) 2 RI(X, s*RHom% (F',Rx)) (see above)
~ RI(X, RHom% (*F', k" Rx)) (Lemma 2.4.2)
=~ RHom% (+*F', *Ry)) (see above)
=~ RHomy (Rg.RIXK*F', Ry) (Theorem 2)
~ RHom}, (Rg.RILF', Ry) (Proposition 5.2.4)

AJL, footnote, §5.3]

R
~ RHom} (R F', Ry)
( AJL, p.9, (0.44). [

[
~ RHom$,(RI, F', R) [

LEMMA 2.4.2. Let X be a locally noetherian scheme, and let k: X — X be its
completion along some closed subset Z. Then for G € Dqc(X) of finite injective
dimension and for F € D.(X), the natural map is an isomorphism

K*RHom% (F,G) = RHom%(k*F,k*G).

Proor. By [H1, p. 134, Proposition 7.20] we may assume that G is a bounded
complex of quasi-coherent injective Ox-modules, vanishing, say, in all degrees > n.
When F is bounded-above the (well-known) assertion is proved by localizing
to the affine case and applying [H1, p. 68, Proposition 7.1] to reduce to the trivial
case F = OF (0 < m € Z). To do the same for unbounded F we must first show,
for fixed G, that the contravariant functor RHom% (k*F, £*G) is bounded-above.
In fact we will show that if H*F = 0 for all i < ig then for all j > n — ig,

HIRHom% (k*F, k*G) = H' k. RHom% (v*F, £*G) = H' RHom% (F, k«k*G) = 0.
The homology in question is the sheaf associated to the presheaf which assigns

Homp ) (Fly [, (k467G ;) = Homp ) (Fyy (3], RQu (kst™G) )

to each affine open subset U = Spec(A) in X. (Here we abuse notation by omit-
ting jy; in front of R, see beginning of §3.3).
Let U:= x~'U, and A:=T'(U, Ox), so that |y factors naturally as

U = Spf(A) 5 U, == Spec(A) £ Spec(A) = U.

The functors RQy k. and k.RQy;,, both right-adjoint to the natural composition
Dy (U) £ Dy (U1) — D(Uy), are isomorphic; so there are natural isomorphisms

RQy (5" 0y = RQukeriy m1k* (Gly) = kRQu k1. w1k (Gly) = Kk*(Gy)

and the presheaf becomes U — Homp ) (F|y [—4], k«k*(Gy))-
The equivalence of categories Dyc(U) = D(Aq(U)) = D(A) indicated at the
beginning of §3.3 yields an isomorphism

Homp 1) (Fly (4], k«k*(G])) = Hompay(F[—j],G ®4 A)

where F is a complex of A-modules with H*F = 0 for i < 4, and both G and G®Afl
are complexes of injective A-modules vanishing in all degrees > n (the latter since
A is A-flat). Hence the presheaf vanishes, and the conclusion follows. (|
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2.5. (Dualizing complexes.) Let X be a noetherian formal scheme, and write
D for D(X), etc. The derived functor I':= RIJ: D — D (see Section 1.2.1) has a
right adjoint A = Ay := RHom®*(RI{O,,—). This adjunction is given by (15), a
natural isomorphism of which we’ll need the sheafified form, proved similarly:

(8) RHom®* (M, AR) = RHom®*(I'M,R).

There are natural maps I' — 1 — A inducing isomorphisms A" =5 A =5 AA,
I'r = I = I'A (Remark 6.3.1(1)). Proposition 6.2.1, a form of Greenlees-
May duality, shows that A(D.) C De. (Recall that the objects of the A-subcategory
D. C D are the complexes whose homology sheaves are all coherent.)

Let D be the essential image of I'|p_, i.e., the full subcategory of D such that
£ eD; & &=TF with F € D.. Proposition 5.2.1 shows that D C Dgc. It
follows from the preceding paragraph that

EeD! < I'¢ = & and A€ €D,
FeD, < F = AF and I'F € D_.

(In particular, D¥ is a A-subcategory of D.) Moreover I' and A are quasi-inverse
equivalences between the categories D, and D_.

DEFINITION 2.5.1. A complex R is a c-dualizing complex on X if
(i) R € DF(X).
(ii) The natural map is an isomorphism Ox > RHom*(R,R).
(iii) There is an integer b such that for every coherent torsion sheaf M and for
every i > b, Ext'(M,R):= H' RHom®*(M,R) = 0.
A complex R is a t-dualizing complex on X if
(i) R € D (X).
(ii) The natural map is an isomorphism Ox - RHom*(R,R).
(iii) There is an integer b such that for every coherent torsion sheaf M and for
every i > b, Ext'(M,R):= H'RHom®*(M,R) = 0.
(iv) For some ideal of definition J of X, RHom®(Ox/J, R) € D.(X).
(Equivalently—Dby simple arguments—RHom®* (M, R) € D.(X) for every
coherent torsion sheaf M.)

Remarks. (1) On an ordinary scheme, (iii) signifies finite injective dimension
[H1, p. 83, Definition, and p. 134, (iii).], so both c-dualizing and t-dualizing mean
the same as what is called “dualizing” in [H1, p. 258, Definition]. (For the extension
to arbitrary noetherian formal schemes, see (4) below.)

(2) By (i) and (iv), Proposition 5.2.1(a), and Corollary 5.1.3, any t-dualizing
complex R is in D(‘fct(f)C); and then (iii) implies that R is isomorphic in D to a
bounded complex of Aqct-injectives.

To see this, begin by imitating the proof of [H1, p.80, (iii)=(i)], using [Y,
Theorem 4.8] and Lemma 2.5.6 below, to reduce to showing that if N € Aqe(X)
is such that Ext*(M,N) =0 for every coherent torsion sheaf M then N is Aqct-
mjective.

For the last assertion, suppose first that X is affine. Lemma 5.1.4 implies that
Hom(M,N) € Az(X); and then Ext' (M, ') = 0, by the natural exact sequence

= HYX,Hom(M,N)) — Ext'(M,N) — H°(X, Ext* (M, N)).

(3.1.8)
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Since coherent torsion sheaves generate Aqqt(X) (Corollary 5.1.3, Lemma 5.1.4), a
standard argument using Zorn’s Lemma shows that A is indeed Agci-injective.

In the general case, let U C X be any affine open subset. For any coherent tor-
sion Oy-module Mg, Proposition 5.1.1 and Lemma 5.1.4 imply there is a coherent
torsion Ox-module M restricting on U to Mg, whence Exth (Mo, N|u) = 0. By
the affine case, then, Ny is Aqee(U)-injective, hence Ai(U)-injective [Y, Propo-
sition 4.2]. Finally, as in [H1, p.131, Lemma 7.16], using [Y, Lemma 4.1],'* one
concludes that NV is A¢(X)-injective, hence Aqe(X)-injective.

(3) With (2) in mind, one finds that what is called here “t-dualizing complex”
is what Yekutieli calls in [Y, §5] “dualizing complex.”

(4) A c-dualizing complex R has finite injective dimension: there is an inte-
ger ng such that for any ¢ > no and any Ox-module £, Homp (€, R[i]) = 0. To see
this, note first that

Homp (&, R[i]) 2 Homp (€, AI'R[i]) = Homp (I'E, I'Ri)).

Lemma 2.5.3(b) below and (2) above show that I'R is isomorphic to a bounded
complex of Agci-injectives. The complex I"E—obtained by applying the functor Iy
to an injective resolution of £—consists of torsion Ox-modules, and so as in [Y,
Corollary 4.3] (see also the proof of Lemma 2.5.6 below, with Proposition 5.1.2 in
place of Proposition 3.1.1), the natural map

H'(Hom®(I'E, I'R)) — H'(RHom®*(I'E, T'R)) = Homp (I'E, T'R]i])

is an isomorphism. Since I'€ vanishes in degrees < 0, the asserted result holds for
any ng such that H*(I'R) = 0 for i > ny.

(5) For a complex R € D N D_, conditions (ii) and (iii) in Definition 2.5.1
hold iff they hold stalkwise for = € X, with an integer b independent of z. (The idea
is that such an R is locally resolvable by a bounded-above complex F of finite-rank
locally free Ox-modules, as is M in (iii), and Hom®*(F,R) = RHom*(F,R)....)
Proceeding as in the proofs of [H1], Proposition 8.2, p.288, and Corollary 7.2,
p- 283, one concludes that R is c-dualizing iff X has finite Krull dimension and
R, is a dualizing complex for the category of Ox ,-modules for every x € X. (It is
enough that the latter hold for all closed points x € X.)

EXAMPLES 2.5.2. (1) If R is c-(or t-)dualizing then so is R ® L[n] for any
invertible Ox-module and n € Z. The converse also holds, see Proposition 2.5.4.

(2) (Cf. [Y, Example 5.12].) If X is an ordinary scheme and x: X — X is its
completion along some closed subscheme Z, then for any dualizing Ox-complex R,
K*R is c-dualizing on X, and I'e*R = x*RI,R (see Proposition 5.2.4(c)) is a
t-dualizing complex lying in D} (X).

Proof. For k*R, conditions (i) and (ii) in the definition of c-dualizing follow
easily from the same for R (because of Lemma 2.4.2). So does (iii), after we reduce
to the case X affine, where Proposition 3.1.1 allows us to write M = k* M, with
Mo € A(X). (Recall from remark (1) above that R has finite injective dimension.)
The last assertion is given by Lemma 2.5.3(b).

(3) If X = Spf(A) where A is a complete local noetherian ring topologized
by its maximal ideal m—so that A(X) is just the category of A-modules—then a
c-dualizing Ox-complex is an A-dualizing complex in the usual sense; and by (2)

My here one may assume that X and X have the same underlying space
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(via [H1, p.276, 6.1]), or directly from Definition 2.5.1, the injective hull of A/m
is a t-dualizing complex lying in DX (X).

(4) Tt is clear from Definition 2.5.1 and remark (4) above that Oy is c-dualizing
iff Oy has finite injective dimension over itself. By remark (5), Ox is c-dualizing iff
X is finite dimensional and Ox_, is Gorenstein for all z € X [H1, p. 295, Definition].

(5) For instance, if the finite-dimensional noetherian formal scheme Y is regular
(i.e., thelocal rings Oy , (y € Y) are all regular), and 7 is a coherent Oy-ideal, defin-
ing a closed formal subscheme i: X — Y [GD, p. 441,(10.14.2)], then by remark (3),
RHom?*(i.Oy, Oy) is c-dualizing on X. So Lemma 2.5.3 gives that

RHom*(0y/T, RIjO,) | = RIRHom*(i.0x, 0y) € Di (X)
5.2.10(4

is t-dualizing on X. (This is also shown in [Y, Proposition 5.11, Theorem 5.14].)

LEMMA 2.5.3. (a) If R € D} is t-dualizing then AR is c-dualizing.
(b) If R is c-dualizing then I'R is t-dualizing, and lies in D}.

PROOF. (a) If R € D then of course AR € D.. Also, A(D™) C D because
RIY Oy is given locally by a finite complex K2, see proof of Proposition 5.2.1(a).
For condition (ii), note that if R € D, (X) then I'R = R (Proposition 5.2.1),

qct
then use the natural isomorphisms (see (8):

RHom®*(AR,AR) = RHom*(F'AR,R) 2 RHom*(I'R, R) 2 RHom*(R,R).

For (iii) note that I"'M = M (Proposition 5.2.1), then use (8).

(b) Proposition 5.2.1 makes clear that if R € D then 'R € D, N D;.
For (ii) use the isomorphisms (the second holding because R € Dy):

RHom®*(I'R,I'R) 5%3 RHom®*(I'R,R) 6%1 RHom*(R,R).

For (iii) use the isomorphism RHom®*(M,I'R) 5%3 RHom®*(M,R). For (iv),
note that when M = Ox/J (J any ideal of definition) this isomorphism gives
RHom®(Ox/d,I'R) 2% RHom*(Ox /3, R) S, D, 0

The essential uniqueness of t-(resp. c-)dualizing complexes is expressed by:

PROPOSITION 2.5.4. (a) (Yekutieli) If R is t-dualizing then a complex R’ is t-
dualizing iff there is an invertible sheaf L and an integer n such that R’ =2 R®L[n].

(b) If R is c-dualizing then a complex R’ is c-dualizing iff there is an invertible
sheaf L and an integer n such that R' 2 R ® L[n].

PROOF. Part (a) is proved in [Y, Theorem 5.6].
Now for a fixed invertible sheaf £ there is a natural isomorphism of functors
(9) AFRL) = AFQRL (F € D),

as one deduces, e.g., from a readily-established natural isomorphism between the
respective right adjoints

réegpLt <~ rEeoL™) (£€D).
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Part (b) results, because I'R’ and I'R are t-dualizing (Lemma 2.5.3), so that
by (a) (and taking F:= I'R[n] in (9)) we have isomorphisms

R = A(I'R') = A(I'R @ L[n]) (L invertible, n € Z)
~ (AT'R) ® Ln] = R @ L[n]. 0

COROLLARY 2.5.5. If X is locally embeddable in a regular finite-dimensional
formal scheme then any t-dualizing complex on X lies in Dg.

PRrROOF. Whether a t-dualizing complex R satisfies AR € D, is a local question,
so we may assume that X is a closed subscheme of a finite-dimensional regular formal
scheme, and then Example 2.5.2(5) shows that some—hence by Proposition 2.5.4,
any—t-dualizing complex lies in D;. ([

LEMMA 2.5.6. Let X be a locally noetherian formal scheme, let Z be a bounded
complez of Aqet(X)-injectives, say I = 0 for all i > n, and let F € DF(X),
say H(F) =0 for all ¢ <—m. Suppose there exists an open cover (X,) of X by
completions of ordinary noetherian schemes X, along closed subsets, with com-
pletion maps kq: Xo — Xq, such that for each a the restriction of F to Xy is
D-isomorphic to k. F, for some F, € D(X,). Then

Ext'(F,T):= HRHom%(F,ZT)=0 foralli>m+n.
Moreover, if X has finite Krull dimension d then
Ext!(F,T):= H'RHom%(F,Z) =0 foralli>m+n+d.

Remarks. In the published version of this paper (Contemporary Math. 244)
Lemma 2.5.6 stated: Let F € Dg and let T be a bounded-below complex of Aget-
injectives. Then the canonical map is a D-isomorphism

Hom®(F,T) = RHom*(F,I).

Suresh Nayak pointed out that the proof given applies only to Agz-complexes, not,
as asserted, to arbitrary F € Dg. (Cf. [Y, Corollary 4.3].) Lemma 2.5.6 is used
four times in §2.5, so these four places need to be revisited. (There are no other
references to Lemma 2.5.6 in the paper.)

First, in Remark (2) on p. 24, the reference to Lemma 2.5.6 is not necessary:
the cited theorem 4.8 in [Y] (see also Proposition 5.3.1 below) shows that the
t-dualizing complex R is D-isomorphic to a bounded-below complex X”® of Aqct-
injectives; and then one can proceed as indicated to show that for some n the
(bounded) truncation o<, X"® is Agct-injective and D-isomorphic to X”®. (To follow
the details, it helps to keep in mind 5.1.3 and 5.1.4 below.)

Since, by Remark (2), any t-dualizing complex is D-isomorphic to a bounded
complex of Aq.t-injectives, in view of Propositions 3.3.1 and 5.1.2 one finds that
the remaining three references to Lemma 2.5.6 can be replaced by references to the
present Lemma 2.5.6. For the reference in the proof of 2.5.7(b) this is clear. The
same is true for Remark (4) on p. 25, but i > ng at the end should be i > ng + d,
where, by Remark (5), the Krull dimension d of X is finite. Finally, for the reference
in the proof of 2.5.12, one can note, via 5.1.4 and 5.1.2, that D} C Dyt C Ds.

PROOF OF 2.5.6. By the proof of [Y, Proposition 4.2], Aqci-injectives are just
direct sums of sheaves of the form J(x) (xr € X), where for any open U C X,
(U, J(x)) is a fixed injective hull of the residue field of Ox , if x € U, and van-
ishes otherwise. Hence the restriction of an Aqei(X)-injective to an open V C X
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is Aqet(V)-injective; and so the first assertion is local. Thus to prove it one may
assume that X itself is a completion, with completion map «: X — X, and that
in D(X), F & k*F for some F € D(X). As x* being exact, commutes with the
truncation functor o _,, there are D-isomorphisms (the first as in [H1, p. 70]):

F2oemF 2 oa ' F 2 o I
so one can replace I’ by o~ _,, F' and assume further that F* =0 for all £ < —m.

From the above description of Aqct-injectives, one sees that x.Z is a bounded
complex of Ox-injectives, vanishing in degree > n. Since k. is exact, therefore for
all i > m +n,

ki H'RHomS (F, T) = H'k ,RHom% (k*F, T)

>~ H'RHom% (F, k.T) [Sp, p. 147, 6.7(2)]
~ H'"Hom% (F, k.I) =0,
and hence H'RHom%(F,I) = 0.

If X has Krull dimension d, and I':= I'(X, —) is the global-section functor, then
by a well-known theorem of Grothendieck the restriction of the derived functor RI'
to the category of abelian sheaves has cohomological dimension < d; and so since
RHom?Y = RI'RHom} [L4, Exercise 2.5.10(b)], the second assertion follows from
[L4, Remark 1.11.2(iv)]. O

Proposition 2.5.8 below brings out the basic property of the dualizing functors
associated with dualizing complexes. (For illustration, one might keep in mind the
special case of Example 2.5.2(3).)

LEMMA 2.5.7. Let R be a c-dualizing complex on X, let Ry be the t-dualizing
compler Ry:= I'R, and for any € € D set
DE:= RHom* (&, R), D& := RHom* (€, Ry).
(a) There are functorial isomorphisms
AD,ZEAD=EZDA=ZD=EDIr =D, T.
(b) For all F € D., DF € D, and there is a natural isomorphism DyF = I'DF.
PRrOOF. (a) For any £ € D, Proposition 6.2.1 gives the isomorphism
DE = RHom®(€,R) = RHom*(I'§, R) = DIE.

In particular, DAE X DI'AE = DI'E. Thus D = DI' = DA.
Furthermore, using that the natural map I'Oyx ® € — I'€ is an isomorphism
(localize, and see [AJL, p.20, Corollary (3.1.2)]) we get natural isomorphisms

RHom®(I'Ox, Hom®*(E,R)) =~ Hom®*(I'E, R) 2, RHom*(I'E,I'R)

=~ RHom®*(I'Ox, Hom®*(E,I'R)),
giving AD 2 DI’ 2 D, I" =2 AD;.

(b) Given remark (2) following Definition 2.5.1, Lemma 2.5.6 implies that the
functor D; := RHom®*(—,R¢) is bounded on Dz. The same holds for D = D, I"
(see (a)), because I'(Dz) C Dyt C Dz (Lemma 5.1.4), and I' is bounded. (I" is
given locally by tensoring with a bounded flat complex K2, see proof of Proposi-
tion 5.2.1(a)).

Arguing as in Proposition 3.2.4, we see that Dy F := RHom®(F, R¢) € Dggt, s0
that I'D;F == D F (Proposition 5.2.1(a)); and similarly, DF € D.. Further-
more, the argument in Remark 5.2.10(4) gives an isomorphism I'D; F 2 I'DF. O
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ProrosITION 2.5.8. With notation as in Lemma 2.5.7 we have, for £, F € D:
(a) £ € D} <= D& € D, and the natural map is an isomorphism & == DyD;E.
(b) F € D, <= DF € D, and the natural map is an isomorphism F —- DDF.
(¢) F € D, < Dy F € D! and the natural map is an isomorphism F —= DDy F.

Remark. The isomorphism F —> D;D;F is a formal version of “Affine Duality, ”
see [AJL, §5.2].

PrOOF. For F € D, Lemma 2.5.7(b) gives DF € D¢, so DiF 2 I'DF € D?.
Moreover, from the isomorphism D I'F = DF of Lemma 2.5.7(a) it follows that
Dy(D¢) C D.. The <= implications in (a), (b) and (c) result, as do the first parts
of the = implications.

Establishing the isomorphisms DDF =~ F == DD, F is a local problem, so
we may assume X affine. Since the functors D and D; are bounded on Dz (see proof
of Lemma 2.5.7(b)), and both take D, into Dz, therefore the functors DD and DD
are bounded on D¢, and so [H1, p.68, 7.1] (dualized) reduces the problem to the
tautological case F = Ox (cf. [H1, p. 258, Proposition 2.1].)

For assertion (a) one may assume that &€ = I'F (F € D), so that there is a
composed isomorphism (which one checks to be the natural map):

E=TF2TIDDF = DDF = DDIF="DDE. 0
2.5.7(b) 2.5.7(a)

COROLLARY 2.5.9. With the preceding notation,
(a) The functor D induces an involutive anti-equivalence of D¢ with itself.

(b) The functor Dy, induces quasi-inverse anti-equivalences between D. and D}.

LEMMA 2.5.10. Let J be an ideal of definition of X. Then a complex R € D,
(resp. R € Dqet) is c-dualizing (resp. t-dualizing) iff for every n > 0 the complex
RHom®*(Ox /3™, R) is dualizing on the scheme X, := (X, Ox/d").

PRrROOF. Remark (1) after Definition 2.5.1 makes it straightforward to see that
if R is either ¢- or t-dualizing on X then RHom*(Ox/J", R) is dualizing on X,,.
For the converse, to begin with, Corollary 5.2.3 gives

RHom®*(Ox /3", R) = RHom*(Ox /3", I'R),

and it follows from Lemma 2.5.3 that it suffices to consider the t-dualizing case. So
suppose that R € Dy, and that for all n, RHom®*(Ox/J", R) is dualizing on X,.
Taking R = R in the proof of [Y, Theorem 5.6], one gets Ox —= RHom*(R,R).

It remains to check condition (iii) in Definition 2.5.1. We may assume R to be
K-injective, so that Ry, := Hom®*(Ox /3™, R) is K-injective on X,, for all n. Then,
since Iy R = RIYR = R (Proposition 5.2.1(a)),

H'R=H'IYR>H'lmR, =lim 'R, (i € Z).

For each n, R, is quasi-isomorphic to a residual complex, which is an injective
Ox,-complex vanishing in degrees outside a certain finite interval I:= [a,b] ([H1,
pp. 304-306]). If m < n, the same holds—with the same I—for the complex
R = Homx, (Ox/d™ Ry). It follows that H'R = 0 for i ¢ I. In particular,
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So now we we may assume that R is a bounded-below complex of Aqc¢-injectives
[Y, Theorem 4.8]. Then for any coherent torsion sheaf M, the homology of

RHom% (M, R) 2§6 Hom$ (M, R) = Hom% (M, lim R,,) = lim Hom% (M, R,)
vanishes in all degrees > b, as required by (iii). ! ! O

PRrROPOSITION 2.5.11. Let f: X — Y be a pseudo-proper map of noetherian
formal schemes.

(a) If R is a t-dualizing complez on Y, then f*R is t-dualizing on X.

(b) If R is a c-dualizing complex on Y, then f*R is c-dualizing on X.

PRrROOF. (a) Let J be a defining ideal of X, and let J be a defining ideal of Y such
that IOy C J. Let Xg:= (X, Ox/9) <> X and Y3:= (Y, Oy /J) <> Y be the resulting
closed immersions. Example 6.1.3(4) shows that i; R = RHom®*(Oy/J, R), which
is a dualizing complex on Y5. Pseudo-properness of f means the map fy5: X5 — Y5
induced by f is proper, so as in [V, p.396, Corollary 3] (hypotheses about finite
Krull dimension being unnecessary here for the existence of f etc.),

RHom®(Ox /3, f'R) = ji IR = (fag)f it R

is a dualizing complex on Xj. The assertion is given then by Lemma 2.5.10.

(b) By Proposition 8.3.2, f¥*R € D.(X). By Corollary 6.1.5, Lemma 2.5.3(b),
and the just-proved assertion (a),

RIYf'R = R = [{RIR,

is t-dualizing on X. So by Lemma 2.5.3(a), f*R = AxRIJ f*R is c-dualizing. O

The following proposition generalizes [H1, p. 291, 8.5] (see also [H1, middle of
p.384] and [V, p. 396, Corollary 3]).

PROPOSITION 2.5.12. Let f: X — Y be a pseudo-proper map of noetherian
formal schemes. Suppose that Y has a c-dualizing complex R, or equivalently (by
Lemma 2.5.3), a t-dualizing compler Ry € D} (Y), so that f*R. is c-dualizing
(resp. fRy is t-dualizing) on X (Proposition 2.5.11). Define dualizing functors

DI (—):= RHomy(—,Ry), DI (—):= RHomy(—, Re),
D" (=)= RHom% (=, [ Ry, Df (=)= RHom%(—, f*Rc).
Then there are natural isomorphisms
fFE=DILFDIE, (€ €D(Y)NDH(Y)),
e =D L DIE (€ e DI (Y)).

PrROOF. When £ € D?(Y) N D*(Y) (resp. £ € DF(Y)) set F:= DIE (resp.
F:=DJE). In either case, F € D.(Y) (Proposition 2.5.8), and also F € D~ (Y)—
in the first case by remark (2) following Definition 2.5.1 and Lemma 2.5.6, in the
second case by remark (1) following Definition 2.5.1. So, by Proposition 2.5.8, we
need to find natural isomorphisms

[EDYF = DILfF,

FDIF =2 DILfF.
Such isomorphisms are given by the next result—a generalization of [H1, p. 194,
8.8(7)]—for G:= Ry (resp. Re). O
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PROPOSITION 2.5.13. Let f: X — Y be a map of noetherian formal schemes.
Then for F € D (Y) and G € DT (Y) there are natural isomorphisms

RHom% (Lf*F, fG) = fRHom}(F,G),
RHom% (Lf*F, f*G) = f*RHomS(F,G).

PROOF. The second isomorphism follows from the first, since f# = Af* and
since there are natural isomorphisms

ARHomS (Lf*F, fXG) = RHom% (RIFZOy, RHom% (Lf*F, fG))
%

(
> RHom$ (RIZOyx ® Lf*F, fG))
= RHom% (Lf*F, RHom% (RIyOx, f*G))
= RHom% (Lf*F, f*G).

For fixed F the source and target of the first isomorphism in Proposition 2.5.13
are functors from DT (Y) to Dgct(X) (see Proposition 3.2.4), right adjoint, respec-
tively, to the functors Rf.(€ @ Lf*F) and RAE @ F (€ € Dget(X)). The functorial
“projection” map

RLEQF — RAEEQLSF),
is, by definition, adjoint to the natural composition
LIfRAE®RF) = L RAEQLF'F - EQLIF;

and it will suffice to show that this projection map is an isomorphism.

For this, the standard strategy is to localize to where Y is affine, then use
boundedness of some functors, and compatibilities with direct sums, to reduce to the
trivial case F = Oy. Details appear, e.g., in [L4, pp. 123-125, Proposition 3.9.4],
modulo the following substitutions: use Dg in place of Dgc, and for boundedness
and direct sums use Lemma 5.1.4 and Propositions 3.4.3(b) and 3.5.2 below. [

3. Direct limits of coherent sheaves on formal schemes.

In this section we establish, for a locally noetherian formal scheme X, properties-
of Az(X) needed in §4 to adapt Deligne’s proof of global Grothendieck Duality to
the formal context. The basic result, Proposition 3.2.2, is that Az(X) is plump (see
openlng remarks in §1), hence abelian, and so (being closed under lim ) cocomplete,

, it has arbitrary small colimits. This enables us to speak about D(A (X)), and
to apply standard adjoint functor theorems to colimit-preserving functors on Az(X).
(See e.g., Proposition 3.2.3, Grothendieck Duality for the identity map of X).

The preliminary paragraph 3.1 sets up an equivalence of categories which allows
us to reduce local questions about the (globally defined) category Az(X) to corre-
sponding questions about quasi-coherent sheaves on ordinary noetherian schemes.
Paragraph 3.3 extends this equivalence to derived categories. As one immediate
application, Corollary 3.3.4 asserts that the natural functor D(Az(X)) — Dz(X) is
an equivalence of categories when X is properly algebraic, i.e., the J-adic completion
of a proper B-scheme with B a noetherian ring and J a B-ideal. This will yield a
stronger version of Grothendieck Duality on such formal schemes—for Dz(X) rather
than D(Az(X)), see Corollary 4.1.1. We do not know whether such global results
hold over arbitrary noetherian formal schemes.
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Paragraph 3.4 establishes boundedness for some derived functors, a condition
which allows us to apply them freely to unbounded complexes, as illustrated, e.g.,
in Paragraph 3.5.

3.1. For X a noetherian ordinary scheme, Az(X) = Ay(X) [GD, p. 319, 6.9.9].
The inclusion jy: Age(X) — A(X) has a right adjoint Qx: A(X) — Aq(X),
the “quasi-coherator,” necessarily left exact [I, p. 187, Lemme 3.2]. (See Proposi-
tion 3.2.3 and Corollary 5.1.5 for generalizations to formal schemes.)

PROPOSITION 3.1.1. Let A be a noetherian adic ring with ideal of definition I,
let fo: X — Spec(A) be a proper map, set Z = fO_ISpeC(A/I), and let
ki X=X,z - X
be the formal completion of X along Z. Let Q:= Qx be as above. Then k* induces

equivalences of categories from Age(X) to Az(X) and from A.(X) to Ac(X), both
with quasi-inverse QK.

PROOF. For any quasi-coherent Ox-module G the canonical maps are isomor-
phisms

(3.1.2) HY(X,G) = HY(X,k.s*G) =H(X,xk*G) (i >0).
(The equality holds because k, transforms any flasque resolution of £*G into one
of kuk*G.)

For, if (Gy) is the family of coherent submodules of G, ordered by inclusion,
then X and X being noetherian, one checks that (3.1.2) is the composition of the
sequence of natural isomorphisms

H'(X,G) = H'(X,lim G))  [GD, p. 319, (6.9.9)]
= lim H(S( G»)
=, @ H(X,x*Gy) [EGA, p. 125, (4.1.7)]
B }fl(x, lim £*Gy)
-~ Hi(x7liiliin> G\) == HY(X,k*G).
Next, for any G and H in Aqe(X ; the natural map is an isomorphism
(3.1.3) Homx (G, H) = Homy(k*G, k" H)
For, with G, as above, (3.1.3) factors as the sequence of natural isomorphisms
Homx (G, H) =~ lim Homx (Gx,H)
=~ @ HO(X, Homx (Gx, H))
e }ﬁ HO(X, s*Homx (Gx, H)) (see (3.1.2))
- (hi HO(X, Homx (5* G, k*H))
N @ Homy (k*Gx, k*H)
o Hkorngc(l_igl> K*Gx,k"H) == Homx (k*G, k*H).
>

Finally, we show the equivalence of the following conditions, for F € A(X):
(1) The functorial map a(F): k*Qr.F — F (adjoint to the
canonical map Qr+F — K.F) is an isomorphism.
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(2) There exists an isomorphism £*G —- F with G € A, (X).
(3) F e Az(X).
Clearly (1) = (2); and (2) = (3) because lim, k*Gx == k*G (G as before).
Since k* commutes with lim and induces an equivalence of categories from
Ac(X) to A (X) [EGA, p. 150, (5.1.6)], we see that (3) = (2).
For G € Aq(X), let B(G): G — Qr.k*G be the canonical map (the unique
one whose composition with Qr.k*G — k.k*G is the canonical map G — k.£*G).
Then for any H € Aqc(X) we have the natural commutative diagram

via 3

Hom(H,G) ——— Hom(H,Qr.x*G)

=| |=

Hom(x*H, x*G) ——— Hom(H, k«r*G)

where the left vertical arrow is an isomorphism by (3.1.3), the right one is an
isomorphism because @ is right-adjoint to Ay(X) — A(X), and the bottom arrow
is an isomorphism because k. is right-adjoint to £*; so “via 8”7 is an isomorphism
for all H, whence 3(G) is an isomorphism. The implication (2) = (1) follows now
from the easily checked fact that a(k*G)ox*3(G) is the identity map of k*G.

We see also that Qr.(A(X)) C Ac(X), since by [EGA, p. 150, (5.1.6)] every
F € A (X) is isomorphic to k*G for some G € A (X), and 3(G) is an isomorphism.

Thus we have the functors x*: Age(X) — Az(X) and Qrs: Az(X) — Aq(X),
both of which preserve coherence, and the functorial isomorphisms

a(F): k*QreF = F (FeA(X));  B(9): G = Qruk*G (G € Age(X)).
Proposition 3.1.1 results. |

Since k* is right-exact, we deduce:

COROLLARY 3.1.4. For any affine noetherian formal scheme X, F € Az(X) iff
F is a cokernel of a map of free Ox-modules (i.e., direct sums of copies of Ox).

COROLLARY 3.1.5. For a locally noetherian formal scheme X, Az(X) C Aqe(X),
i.e., any lim of coherent Ox-modules is quasi-coherent.

PrOOF. Being local, the assertion follows from Corollary 3.1.4. O

COROLLARY 3.1.6 (cf. [Y, 3.4, 3.5]). For a locally noetherian formal scheme X
let F and G be quasi-coherent Ox-modules. Then:

(a) The kernel, cokernel, and image of any Ox-homomorphism F — G are
quasi-coherent.

(b) F is coherent iff F is locally finitely generated.

(c) If F is coherent and G is a sub- or quotient module of F then G is coherent.

(d) If F is coherent then Hom(F,G) is quasi-coherent; and if also G is coherent
then Hom(F,G) is coherent. (For a generalization, see Proposition 3.2.4.)

PROOF. The questions being local, we may assume X = Spf(A) (A noetherian
adic), and, by Corollary 3.1.4, that F and G are in Az(X). Then, £* being exact,
Proposition 3.1.1 with X := Spec(A) and fy:= identity reduces the problem to not-
ing that the corresponding statements about coherent and quasi-coherent sheaves
on X are true. (These statements are in [GD, p.217, Cor. (2.2.2) and p.228,
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§(2.7.1)]. Observe also that if F and G are Ox-modules with F' coherent then
Homx (k*F, k*G) =2 k*Homx (F, G).) O

COROLLARY 3.1.7. For a locally noetherian formal scheme X, any F € Az(X)
is the lim of its coherent Ox-submodules.

PRrROOF. Note that by Corollary 3.1.6(a) and (b) the sum of any two coherent
submodules of F is again coherent. By definition, 7 = lim , ¥, with F), coherent,
and from Corollary 3.1.6(a) and (b) it follows that the canonical image of F,, is a
coherent submodule of F, whence the conclusion. O

COROLLARY 3.1.8. For any affine noetherian formal scheme X, any F € Az(X)
and any 1 > 0, _
H* (X, F) =0.

PRrOOF. Taking fjy in Proposition 3.1.1 to be the identity map, we have 7 = k*G
with G quasi-coherent; and so by (3.1.2), H* (X, F) = H'(Spec(4),G) = 0. O

3.2. Proposition 3.1.1 will now be used to show, for locally noetherian formal
schemes X, that Az(X) C A(X) is plump, and that this inclusion has a right adjoint,
extending to derived categories.

LEMMA 3.2.1. Let X be a noetherian formal scheme, let F € Ac(X), and let
(Gas Yap: G3 — Ga)a,pen be a directed system in Ac(X). Then for every g > 0 the
natural map is an isomorphism

lim Ext?(F, Go) — Ext!(F, lim G,).
ProoOF. For an O;-module M, let E(M) denoteathe usual spectral sequence
ESY (M) := HP(X, Ext9(F, M)) = ExtPT(F, M).
It suffices that the natural map of spectral sequences be an isomorphism
lim B(G.) = E(lm G,)  (lm := lim),
and for that we need only check out the EL? terms, i.e., shov&j that the natural maps
lim H? (X, Ext4(F,Ga)) — HP (X, lim Extd(F, Ga)) — HP (X, Ext?(F, lim Ga))

are isomorphisms. The first one is, because X is noetherian. So we need only show
that the natural map is an isomorphism

lim Ext!(F, Go) — Ext?(F,lim Go).

For this localized question we may assume that X = Spf(A4) with A a noetherian
adic ring. By Proposition 3.1.1 (with fy the identity map of X := Spec(A)) there is
a coherent Ox-module F' and a directed system (Gu, gag: Gg — Ga)a,peq of co-
herent Ox-modules such that F = «*F, G, = 6" G4, and 74,8 = £*ga,3. Then the
well-known natural isomorphisms (see [EGA, (Chapter 0), p. 61, Prop. (12.3.5)]—
or the proof of Corollary 3.3.2 below)

lim Exty (F, Go) —= lim k" Exty(F,Gy) —= £'lim Exty (F,Gy)
- k*Exti(F, lim Go) = Extd(K*F, n*liir{ Go) = Exti(F, lim Ga)

give the desired conclusion. 0
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PROPOSITION 3.2.2. Let X be a locally noetherian formal scheme. If
.7:1—>.7:2—>.7:—>‘7‘—3—>]‘—4

is an ezxact sequence of Ox-modules and if F1, Fa, Fs and Fu are all in Aqc(X)
(resp. Az(X)) then F € Aqe(X) (resp. Az(X)). Thus Aqe(X) and Az(X) are plump—
hence abelian—subcategories of A(X), and both Dqc(X) and its subcategory Dz(X)
are triangulated subcategories of D(X). Furthermore, Az(X) is closed under arbi-
trary small A(X)-colimits.

PROOF. Part of the Aq. case is covered by Corollary 3.1.6(a), and all of it by
[Y, Proposition 3.5]. At any rate, since every quasi-coherent Ox-module is locally
in Az C Aqe (see Corollaries 3.1.4 and 3.1.5), it suffices to treat the Az case.

Let us first show that the kernel I of an Az map

YilimgHg=H—G=1limaGa  (Ga,Hp € Ac(X))
is itself in Az(X). It will suffice to do so for the kernel Kg of the composition
wﬁi Hﬁ natural H i} g’
since K = lim g Kg.
By the case ¢ = 0 of Corollary 3.2.1, there is an a such that 13 factors as

Hﬁ Vga ga natural g7

and then with Kgo (@' > a) the (coherent) kernel of the composed map
YBa

natural
Hsg — Go ——— G

we have Kg = lim o Kgor € Az(X).
Similarly, we find that coker(y) € Az(X). Being closed under small direct sums,
then, Az(X) is closed under arbitrary small A(X)-colimits [M1, Corollary 2, p. 109].
Consideration of the exact sequence

0 — coker(Fy, — Fo) — F — ker(F3 — F4) — 0

now reduces the original question to where F; = F4 = 0. Since F3 is the 1_1&1> of
its coherent submodules (Corollary 3.1.7) and F is the lim of the inverse images
of those submodules, we need only show that each such inverse image is in Az(X).
Thus we may assume F3 coherent (and Fop = lim, G with Ga coherent).

The exact sequence 0 — F5 — F — F3 — 0 represents an element

ES Extl(}"g, Fo) = Extl(}"g, @aga);

and by Corollary 3.2.1, there is an « such that 7 is the natural image of an element
Na € Extl(]:3, G.), represented by an exact sequence 0 — G, — Fo — F3 — 0.
Then F, is coherent, and by [M2, p.66, Lemma 1.4], we have an isomorphism

F = Fo®g, Fa-
Thus F is the cokernel of a map in Az(X), and so as above, F € Az(X). O
PROPOSITION 3.2.3. On a locally noetherian formal scheme X, the inclusion
functor jy: Az(X) — A(X) has a right adjoint Qx: A(X) — Az(X); and RQy s

right-adjoint to the natural functor D(Az(X)) — D(X). In particular, if £: X — X
s as in Proposition 3.1.1 then Qx = k*Qx ks« and RQx = k*RQx K« .
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PROOF. Since Az(X) has a small family of (coherent) generators, and is closed
under arbitrary small A(X)-colimits, the existence of @y follows from the Special
Adjoint Functor Theorem ([F, p.90] or [M1, p. 126, Corollary]).*?

In an abelian category A, a complex J is, by definition, K-injective if for each
exact A-complex G, the complex Hom%(G, J) is exact too. Since j, is exact,
it follows that its right adjoint Q. transforms K-injective A(X)-complexes into
K-injective Az(X)-complexes, whence the derived functor RQ« is right-adjoint to
the natural functor D(Az(X)) — D(X) (see [Sp, p. 129, Proposition 1.5(b)]).

The next assertion is a corollary of Proposition 3.1.1: any M € Az(X) is iso-
morphic to £*G for some G € Ay(X), and then for any ' € A(X) there are natural
isomorphisms

Homy (jx M, N') = Homx (jx "G, N')
= Homx (jx G, k) = Homy (x)(G, @x k)
= Hom g, (x) (K" G, " Qx £ N') = Hom y_(x0) (M, K" Qx ks N).

Moreover, since k, has an exact left adjoint (viz. k*), therefore, as above, k. trans-
forms K-injective A(X)-complexes into K-injective A(X)-complexes, and it follows
at once that RQy = k*RQx k. O

Let X be a locally noetherian formal scheme. A property P of sheaves of
modules is local if it is defined on A(U) for arbitrary open subsets U of X, and
is such that for any £ € A(U) and any open covering (U,) of U, P(€) holds iff
P (&, ) holds for all a.

For example, coherence and quasi-coherence are both local properties—to which
by Proposition 3.2.2, the following Proposition applies.

PROPOSITION 3.2.4. Let X be a locally noetherian formal scheme, and let P be
a local property of sheaves of modules. Suppose further that for all open U C X the
full subcategory Ap(U) of A(U) whose objects are all the E € A(U) for which P(E)
holds is a plump subcategory of A(U). Then for all F € Dy (X) and G € DH(X),
it holds that RHom®(F,G) € DH(X).

PROOF. Plumpness implies that Dp(X) is a triangulated subcategory of D(X),
as is D(X), so [H1, p. 68, Prop. 7.1] gives a “way-out” reduction to where F and G
are Ox-modules. The question being local on X, we may assume X affine and
replace F by a quasi-isomorphic bounded-above complex F* of finite-rank free
Ox-modules, see [GD, p.427, (10.10.2)]. Then RHom*(F*, G) = Hom*(F*,G),
and the conclusion follows easily. O

3.3. Proposition 3.2.3 applies in particular to any noetherian scheme X. When
X is separated, jy induces an equivalence of categories jy : D(Age(X)) = Dgo(X),
with quasi-inverse RQx |p,.(x)- (See [H1, p. 133, Corollary 7.19] for bounded-below
complexes, and [BN, p. 230, Corollary 5.5] or [AJL, p. 12, Proposition (1.3)] for
the general case.) We do not know if such an equivalence, with “¢” in place of “qc,”
always holds for separated noetherian formal schemes. The next result will at least
take care of the “properly algebraic” case, see Corollary 3.3.4.

131t follows that Ag(X) is closed under all A(X)-colimits (not necessarily small): if F is any
functor into Az(X) and F € A(X) is a colimit of jy o F, then QxF is a colimit of F, and the
natural map is an isomorphism F =5 j,QxF. (Proof: exercise, given in dual form in [F, p. 80].)
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PROPOSITION 3.3.1. In Proposition 3.1.1, the functor k*: D(X) — D(X) in-
duces equivalences from Dgc(X) to Dg(X) and from Dc(X) to Dc(X), both with
quasi-inverse RQk. (where RQ stands for jyoRQx).

PROOF. Since k* is exact, Proposition 3.1.1 implies that £*(Dqc(X)) C Dz(X)
and £*(D.(X)) C Dc(X). So it will be enough to show that:

(1) If F € Dz(X) then the functorial D(X)-map x*RQk.F — F adjoint to the
natural map RQk.F — k.F is an isomorphism.

(2) If G € Dqe(X) then the natural map G =~ RQk.k*G is an isomorphism.

(3) If F € D.(X) then RQk+F € Dc(X).

Since Dg(X) is triangulated (Proposition 3.2.2), we can use way-out reasoning
[H1, p. 68, Proposition 7.1 and p. 73, Proposition 7.3] to reduce to where F or G is
a single sheaf. (For bounded-below complexes we just need the obvious facts that
k* and the restriction of RQk. to Dz(X) are both bounded-below (= way-out right)
functors. For unbounded complexes, we need those functors to be bounded-above
as well, which is clear for the exact functor x*, and will be shown for RQ#x«|p,(x)
in Proposition 3.4.4 below.)

Any F € Az(X) is isomorphic to k*G for some G € Aqc(X); and one checks
that the natural composed map k*G — K*RQk+k*G — k*G is the identity, whence
(2) = (1). Moreover, if F € A.(X) then G 2 Qk.F € A.(X), whence (2) = (3).

Now a map ¢ : G1 — Gz in D (X) is an isomorphism iff

(¥): the induced map Hompx)(E[-n], G1) — Homp(x)(E[-n], G2)

is an

isomorphism for every £ € A.(X) and every n € Z.
(For, if V is the vertex of a triangle with base ¢, then (k) says that for all &, n,
Hompx)(E[-n], V) = 0; but if ¢ is not an isomorphism, i.e., V has non-vanishing
homology, say H"(V) # 0 and H*(V) = 0 for all i < n, then the inclusion into H"(V)
of any coherent non-zero submodule £ gives a non-zero map £[—n] — V.) So for (2)
it’s enough to check that the natural composition

Hompx)(E[—n], G) — Hompx)(E[—n], RQK.k"G)
- HOmD(X)(E[—n],Ii*Ii*g) - HOmD(x)(Ii*E[—n],K*g)

is the isomorphism Ext's(E,G) == Exty (k*E, k*G) in the following consequence
of (3.1.2):

COROLLARY 3.3.2. With k: X — X as in Proposition 3.1.1 and £ € Dgy.(X),
the natural map RT(X, L) — RI(X,k*L) is an isomorphism. In particular, for
£ €D (X) and G € DS (X) the natural map Ext (€,G) — Exty (k*E, k*G) is an
isomorphism.

Proof. After “way-out” reduction to the case where £ € Aq(X) (the RIs
are bounded, by Corollary 3.4.3(a) below), the first assertion is given by (3.1.2).
To get the second assertion, take £ := RHom% (€,G) (which is in D;.(X), [H1,
p. 92, Proposition 3.3]), so that x*£ = RHom% (k*E, k*G) (as one sees easily after
way-out reduction to where £ and G are Ox-modules, and further reduction to
where X is affine, so that £ has a resolution by finite-rank free modules. . .). O

DEeFINITION 3.3.3. A formal scheme X is said to be properly algebraic if there
exist a noetherian ring B, a B-ideal J, a proper B-scheme X, and an isomorphism
from X to the J-adic completion of X.
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COROLLARY 3.3.4. On a properly algebraic formal scheme X the natural functor
Jx: D(Az(X)) — Dg(X) is an equivalence of categories with quasi-inverse RQq;
and therefore jyoRQ« is right-adjoint to the inclusion Dg(X) — D(X).

PRrOOF. If X is properly algebraic, then with A:= J-adic completion of B and
I:= JA, it holds that X is the I-adic completion of X ® g A, and so we may assume
the hypotheses and conclusions of Proposition 3.1.1. We have also, as above, the
equivalence of categories jy: D(Aqc(X)) — Dqc(X); and so the assertion follows
from Propositions 3.3.1 and 3.2.3. O

PROPOSITION 3.3.5. For a map g: Z — X of locally noetherian formal schemes,
Lg*(De(X)) C Dge(2).
If X is properly algebraic, then
Lg*(De(X)) C Dg(Z).

PrOOF. The first assertion, being local on X, follows from the second. Assum-
ing X properly algebraic we may, as in the proof of Corollary 3.3.4, place ourselves
in the situation of Proposition 3.1.1, so that any G € Dz(X) is, by Corollary 3.3.4
and Proposition 3.1.1, isomorphic to x*€ for some £ € Dy (X). By [AJL, p. 10,
Proposition (1.1)]), & is isomorphic to a lim of bounded-above quasi-coherent flat
complexes (see the very end of the proof of ibid.); and therefore G = k*E is iso-
morphic to a K-flat complex of Az(X)-objects. Since Lg* agrees with g* on K-flat
complexes, and ¢g*(Az(X)) C Az(Z), we are done. O

REMARKS 3.3.6. (1) Let X be a properly algebraic formal scheme (necessarily
noetherian) with ideal of definition J, and set I:= H°(X,J) C A:= H%(X, Ox). Then
A is a noetherian I-adic ring, and X is Spf(A)-isomorphic to the I-adic completion
of a proper A-scheme. Hence X is proper over Spf(A), via the canonical map given
by [GD, p. 407, (10.4.6)].

Indeed, with B, J and X as in Definition 3.3.3, [EGA, p. 125, Theorem (4.1.7)]
implies that the topological ring

A =lim H(X, Ox/T"Ox) = lim H(X,Ox/I"Ox)

n>0 n>0

is the J-adic completion of the noetherian B-algebra Ag := H°(X,Ox), and that
the J-adic and I-adic topologies on A are the same; and then X is the I-adic
completion of X ®4, A.

(2) Tt follows that a quasi-compact formal scheme X is properly algebraic iff
so is each of its connected components.

(3) While (1) provides a less relaxed characterization of properly algebraic
formal schemes than Definition 3.3.3, Corollary 3.3.8 below provides a more relaxed
one.

LEMMA 3.3.7. Let X be a locally noetherian scheme, Iy C Zs quasi-coherent
Ox-ideals, Z; the support of Ox /Z;, and X; the completion X,z, (i = 1,2). Suppose
that Z:Ox, is an ideal of definition of Xo. Then Xo is a union of connected
components of X1 (with the induced formal-subscheme structure).

Proor. We need only show that Z5 is open in Z;. Locally we have a noe-
therian ring A and A-ideals I C J equal to their own radicals such that with A
the J-adic completion, J"A C I A for some n > 0; and we want the natural map
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A/I - A/J to be flat. (For then with L:= J/I, L/L? = Torf/I(A/J,A/J) =0,
whence (1 —¢)L = (0) for some ¢ € L, whence ¢ = (%> and L = ¢(A/I), so that
A/T 2L x (A/J) and Spec(A/J) — Spec(A/I) is open.)

So it suffices that the localization (A/I)14+5 — (A/J)14+5 = A/J by the multi-
plicatively closed set 14 J be an isomorphism, i.e., that its kernel J(A/I)14; be
nilpotent (hence (0), since A/I is reduced.) But this is so because the natural map

Ai4 5 — A s faithfully flat, and therefore J" A5 C IA14;. O

R COROLLARY 3.3.8. Let A be a noetherian ring, let I be an A-ideal, and let
A be the I-adic completion of A. Let fo: X — Spec(A) be a separated finite-type
scheme-map, let Z be a closed subscheme of fy *(Spec(A/I)), let X = Xz be

the completion of X along Z, and let f: X — Spf(A) be the formal-scheme map
induced by fo:

X=Xz —— X

f |

Spf(A) ——— Spec(A4)
If f is proper (see §1.2.2) then X is properly algebraic.

PRrROOF. Consider a compactification of fy (see [Lil, Theorem 3.2]):

X — X Jo Spec(A).
open proper
Since f is proper, therefore Z is proper over Spec(A), hence closed in X. Thus we
may replace fo by fo, i.e., we may assume fq proper. Since f, being proper, is adic,
Lemma 3.3.7, with Zy:= Z and Z;:= f, ' (Spec(A/I)), shows that X is a union of
connected components of the properly algebraic formal scheme Xz, . Conclude by
Remark 3.3.6(2). O

3.4. To deal with unbounded complexes we need the following boundedness
results on certain derived functors. (See, e.g., Propositions 3.5.1 and 3.5.3 below.)

3.4.1. Refer to §1.2.2 for the definitions of separated, resp. affine, maps.

A formal scheme X is separated if the natural map fy: X — Spec(Z) is sep-
arated, i.e., for some—hence any—ideal of definition g, the scheme (X, Ox /) is
separated. For example, any locally noetherian affine formal scheme is separated.

A locally noetherian formal scheme X is affine if and only if the map fx is
affine, i.e., for some—hence any—ideal of definition J, the scheme (X,Ox/J) is
affine. Hence the intersection V NV’ of any two affine open subsets of a separated
locally noetherian formal scheme Y is again affine. In other words, the inclusion
V — Y is an affine map. More generally, if f: X — Y is a map of locally noetherian
formal schemes, if Y is separated, and if V and V'’ are affine open subsets of Y and X
respectively, then f~1V NV’ is affine [GD, p. 282, (5.8.10)].

LEMMA 3.4.2. If g: X — Y is an affine map of locally noetherian formal
schemes, then every M € Az(X) is g.-acyclic, i.e., Rig.M = 0 for all i > 0.
More generally, if G € Dz(X) and e € Z are such that H'(G) = 0 for all i > e,
then H (Rg.G) = 0 for all i > e.
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PROOF. R‘g,M is the sheaf associated to the presheaf U — H*(g~1(U), M),
(U open in Y) [EGA, Chap.0, (12.2.1)]. If U is affine then so is ¢~}(U) C X, and
Corollary 3.1.8 gives H (¢~ 1(U), M) = 0 for all i > 0.

Now consider in K(X) a quasi-isomorphism G — I where I is a “special”
inverse limit of injective resolutions I_. of the truncations G=¢ (see (13)), so that
H(Rg.G) is the sheaf associated to the presheaf U — H*(TI'(¢~'U,I)), see [Sp,
p-134, 3.13]. If C_. is the kernel of the split surjection I_. — I1_. then C_.[e]
is an injective resolution of H¢(G) € Az(X), and so for any affine open U C Y
andi > e, H(I'(g~'U, C_.)) = 0. Applying [Sp, p. 126, Lemma], one finds then that
for i > e the natural map HY(I'(¢~'U, I)) — HY(I'(¢g~'U, I_.)) is an isomorphism.
Consequently if H/(G) = 0 for all i > e (whence I_. = G=¢ = 0 in D(X)) then
HY(T(¢~'U, 1)) = 0. O

PROPOSITION 3.4.3. Let X be a noetherian formal scheme. Then:

(a) The functor RT'(X, —) is bounded-above on Dgz(X). In other words, there
is an integer e > 0 such that if G € Dz(X) and HY(G) = 0 for all i > ig then
HY(RI(X,—)) =0 for all i >ig + e.

(b) For any formal-scheme map f: X — Y with Y quasi-compact, the func-
tor Rf. is bounded-above on Dg(X), i.e., there is an integer e > 0 such that
if G €Dz(X) and H (G) =0 for all i > ig then H'(Rf.G) =0 for all i > io+ e.

PROOF. Let us prove (b). (The proof of (a) is the same, mutatis mutandis.)
Suppose first that X is separated, see §3.4.1. Since Y has a finite affine open cover
and Rf, commutes with open base change, we may assume that Y itself is affine.
Let n(X) be the least positive integer n such that there exists a finite affine open
cover X = U, X;, and let us show by induction on n(X) that e:= n(X) — 1 will do.

The case n(X) =1 is covered by Lemma 3.4.2. So assume that n:= n(X) > 2,
let X = U ;X; be an affine open cover, and let ui: X1 — X, ug: Ul 5 X; — X,
ug: U, (X1 NX,;) — X be the respective inclusion maps. Note that Xy N X; is
affine because X is separated. So by the inductive hypothesis, the assertion holds
for the maps f;:= fou; (i =1,2,3).

Now apply the A-functor R f, to the “Mayer-Vietoris” triangle

G — Ruy.uiG & Ruy.ujG — Rug,u3g
(derived from the standard exact sequence
0— & — upui€ ®ugusél — ug,uil — 0
where G — £ is a K-injective resolution) to get the D(Y)-triangle
RAG — Rf1,uiG © Ry, u36 — Ry, 56 =

whose associated long exact homology sequence yields the assertion for f.
The general case can now be disposed of with a similar Mayer-Vietoris induction
on the least number of separated open subsets needed to cover X. (Il

PROPOSITION 3.4.4. Let X be a separated noetherian scheme, let Z C X be
a closed subscheme, and let ry: X = X,z — X be the completion map. Then
the functor RQx ks is bounded-above on Dg(X).

PROOF. Set k:= kq. Let n(X) be the least number of affine open subschemes
needed to cover X. When X is affine, Qx is the sheafification of the global section
functor, and since k. is exact and, being right adjoint to the exact functor x*,
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preserves K-injectivity, we find that for any F € D(X), RQx«x.F is the sheafifica-
tion of the complex RI'(X, k.F) = RI'(X, F). Thus Proposition 3.4.3(a) yields the
desired result for n(X) = 1.

Proceed by induction when n(X) > 1, using a “Mayer-Vietoris” argument as
in the proof of Proposition 3.4.3. The enabling points are that if v: V — X is an
open immersion with n(V) < n(X), giving rise to the natural commutative diagram

Vigry =V —2— V

X — X
Ky

then there are natural isomorphisms, for F € Dg(X) and vi: Ag(V) — Aqe(X)
the restriction of v,:

RQy ki, R0,0* F = RQx Rus ki, 0" F = RUCRQy i, 0* F,

and the functor RQvky,0* is bounded-above, by the inductive hypothesis on
n(V) < n(X), as is Rvi, by the proof of [AJL, p. 12, Proposition (1.3)]. O

3.5. Here are some examples of how boundedness is used.

PRrROPOSITION 3.5.1. Let f: X — Y be a proper map of noetherian formal
schemes. Then

RfD:(X) CDc(Y) and RfDe(X) C De(Y).

PrOOF. For a coherent Ox-module M, Rf M € D.(Y) [EGA, p. 119, (3.4.2)].
Since X is noetherian, the homology functors H'Rf, commute with lim on Ox-
modules, whence RN € Dz(Y) for all N € Az(X). Rf. being bounded on Dz(X)
(Proposition 3.4.3(b)), way-out reasoning [H1, p. 74, (iii)] completes the proof. O

PrOPOSITION 3.5.2. Let f: X — Y be a map of quasi-compact formal schemes,
with X noetherian. Then the functor R fi|p,(x) commutes with small direct sums,
i.e., for any small family (€,) in Da(X) the natural map

Ga(RfEa) = RE(Baa)
is a D(Y)-isomorphism.

PROOF. It su_fﬁces to look at the induced homology maps in each degree, i.e.,
setting R'f,.:= H'R f, (i € Z), we need to show that the natural map

Oua(Rfiln) = RUE(Dula).

is an isomorphism.

For any F € Dz(X) and any integer e > 0, the vertex G of a triangle based on
the natural map t;_. from F to the truncation F==¢ (see (13)) satisfies H/(G) = 0
for all j > i —e — 1; so if e is the integer in Proposition 3.4.3(b), then R""1£.G =
R'f.G = 0, and the map induced by t;_. is an isomorphism

R'f,F =~ Rif,F=zi"

We can therefore replace each &£, by £2°7¢, i.e., we may assume that the &, are
uniformly bounded below.
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We may assume further that each complex &, is injective, hence fi-acyclic (i.e.,
the canonical map is an isomorphism f.£, = Rfi.€). Since X is noetherian,
R'f, commutes with direct sums; and so each component of ®,&, is an f.-acyclic
Ox-module. This implies that the bounded-below complex &,&, is itself f.-acyclic.
Thus in the natural commutative diagram

Ba(fila) —— f(®ala)

=| |=

EBoz (Rf*goz) — Rf* (EBOZSOZ)

the top and both sides are isomorphisms, whence so is the bottom. O

The following Proposition generalizes [EGA, p. 92, Theorem (4.1.5)].

PROPOSITION 3.5.3. Let fo: X — Y be a proper map of locally noetherian
schemes, let W C Y be a closed subset, let Z := f0_1W, let ky:Y =Yw —Y
and ky: X = X,z — X be the respective (flat) completion maps, and let f: X — Y
be the map induced by fo. Then for £ € Dye(X) the map s adjoint to the natural
composition

RfO*g — RfO*KQC*K*Xg — KH*R.ﬁFK*X‘S‘
is an isomorphism
s : kYR f.€ == Rfir}E.

PROOF. We may assume Y affine, say Y = Spec(A), and then W = Spec(A/I)
for some A-ideal I. Let A be the I-adic completion of A, so that there is a natural
cartesian diagram

X@aAd=X —X, X

"

Spec(A) =: 11 — Y

Y

Here ky is flat, and the natural map is an isomorphism £y Rf,,£ = Rf; kxE:
since Rf, (resp. Rf;,) is bounded-above on Dy (X) (resp. Dyc(X1)), see Proposi-
tion 3.4.3(b), way-out reasoning reduces this assertion to the well-known case where
£ is a single quasi-coherent O x-module. Simple considerations show then that we
can replace fo by f1 and £ by k% &; in other words, we can assume A = A.

From Proposition 3.5.1 it follows that Rf),£ € Dg.(Y) and Rfik5E € De(Y).
Recalling the equivalences in Proposition 3.3.1, we see that any F € Dgz(Y) is
isomorphic to kyFo for some Fy € Dyc(Y) (so that LfyFo € Dgc(X)), and that
there is a sequence of natural isomorphisms

Homy (F, kjRfy,£) —= Homy (Fo, R fy.£)
- Homx (LfiFo, )
-5 Homy (k5% Lfy Fo, £5E)
(Lf sy Fo, k5xE) = Homy(F, Rfir}E).

-~ Homqy

The conclusion follows. O
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4. Global Grothendieck Duality.

THEOREM 4.1. Let f: X — Y be a map of quasi-compact formal schemes,
with X noetherian, and let j: D(Az(X)) — D(X) be the natural functor. Then the
A-functor Rf.o 3 has a right A-adjoint. In fact there is a bounded-below A-functor
DY) - D (A(X)) and a map of A-functors 7: Rf.jf* — 1 such that for
all G € D(A(X)) and F € D(Y), the composed map (in the derived category of
abelian groups)

natural

RHom’_ (G, f*F) ——— RHom¥y,(RfJG, REGf*F)
R RHomY y,(R£JG, F)
is an isomorphism.
With Corollary 3.3.4 this gives:

COROLLARY 4.1.1. If X is properly algebraic, the restriction of Rfi. to Dz(X)
has a right A-adjoint (also to be denoted f* when no confusion results).

Remarks. 1. Recall that over any abelian category A in which each complex F has
a K-injective resolution p(F), we can set

RHom*% (G, F):= Hom%(G, p(F)) (G,F e D(A));
and there are natural isomorphisms
H'RHom% (G, F) = Homp4)(G, Fli]) (i € Z).

2. Application of homology to the second assertion in the Theorem reveals that
it is equivalent to the first one.

3. We do not know in general (when X is not properly algebraic) that the
functor j is fully faithful—j has a right adjoint (identity)* = RQ. (see Proposi-
tion 3.2.3), but it may be that for some £ € Ag(X) the natural map € — RQ,j€&
is not an isomorphism.

4. For a proper map fo: X — Y of ordinary schemes it is customary to
write f§ instead of 15+ (Our extension of this notation to maps of formal schemes—
introduced immediately after Definition 7.3—is not what would be expected here.)

5. Theorem 4.1 includes the case when X and Y are ordinary noetherian schemes.
(In fact the proof below applies with minor changes to arbitrary maps of quasi-
compact, quasi-separated schemes, cf. [L4, Chapter 4].) The next Corollary relates
the formal situation to the ordinary one.

COROLLARY 4.1.2. Let A be a noetherian adic ring with ideal of definition I,
set Y := Spec(A) and W := Spec(A/I) C Y. Let fo: X — Y be a proper map and
set Z:= f&lw, so that there is a commutative diagram

X:i= X,z SELE TN ¢
fl lfo
Y:=Spf(4) — Y

with Ky and ky the respective (flat) completion maps, and f the (proper) map
induced by fo.
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Then the map adjoint to the natural composition

3.5.3
Rf*m}féﬁy* _ H;;Rfo*féliy* — Kyky, — 1

is an isomorphism of functors—jfrom D(Y) to Dg(X), see Corollary 4.1.1—
K fory. = [

PROOF. For any £ € Dg(X) set £ := jxRQx k& € Dqc(X) (see Section 3.3).

Using Proposition 3.3.1 we have then for any F € D(Y) the natural isomorphisms
Homp (x)(&, n&fém%}') —= Hompx)(&o, folmé*]:)
—= Hompy)(Rfy.€o, ky.F)
— HOmD(y) (Iig Rfo*go, ]:')
(

— HOmD(y) Rf*liécgo,]:) e HOmD(y)(Rf*E,]:).

3.5.3

Thus k% fémy* is right-adjoint to R fi|p,(x), whence the conclusion. |

PROOF OF THEOREM 4.1. 1. Following Deligne [H1, p. 417, top], we begin by
considering for M € A(X) the functorial flasque Godement resolution

0—M—G'M) =G M) —---.

Here, with G72(M) := 0, G"Y(M):= M, and for i > 0, K?(M) the cokernel of
G'2(M) — G'~1(M), the sheaf G*(M) is specified inductively by

G M)(U):= J] E*M). (U open in X).
zclU
One shows by induction on 4 that all the functors G* and K* (from A(X) to itself)
are exact. Moreover, for i > 0, G*(M), being flasque, is f.-acyclic, i.e.,

RILGH (M) =0 forall j>0.

The category Az(X) has small colimits (Proposition 3.2.2), and is generated by
its coherent members, of which there exists a small set containing representa-
tives of every isomorphism class. The Special Adjoint Functor Theorem ([F, p. 90]
or [M1, p. 126, Corollary]) guarantees then that a right-exact functor F' from Az
into an abelian category A’ has a right adjoint iff F' is continuous in the sense
that it commutes with filtered direct limits, i.e., for any small directed system
(Ma, Yap: Mg — M) in Az, with lim My = (M, @a: My — M) it holds that

(F(M), Fpa)) = fim (F(Ma), F(¢ap))-

Accordingly, for constructing right adjoints we need to replace the restrictions of G*
and K"* to Az(X) by continuous functors.

LEMMA 4.1.3. Let X be a locally noetherian formal scheme and let G be a
functor from A.(X) to a category A’ in which direct limits exist for all small directed
systems. Let j: A(X) — Az(X) be the inclusion functor. Then:

(a) There exists a continuous functor Gz: Az(X) — A’ and an isomorphism
of functors e: G = Ggzoj such that for any map of functors ¢: G — Foj with
F continuous, there is a unique map of functors v¥z: Gz — F such that v factors
as

G 55 Groj Y2Y%, o
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(b) Assume that A’ is abelian, and has exact filtered direct limits (i.e., satisfies
Grothendieck’s axiom ABbS). Then if G is exact, so is Gz.

PROOF. (a) For M € Az(X), let (M,) be the directed system of coherent
Ox-submodules of M, and set

Ge(M):=lim G(M,).

For any Az(X)-map v: M — N and any «, there exists a coherent submodule N C
N such that v|, factors as My — Ng — N (Corollary 3.1.7 and Lemma 3.2.1,
with ¢ = 0); and the resulting composition

Vo: G(Ma) = G(N3) — Gz(N)
does not depend on the choice of Nz. We define the map
Ge(v): Ge(M) = lim G(Ma) — Ge(N)

to be the unique one whose composition with G(M,) — Gz(M) is v, for all a.
Verification of the rest of assertion (a) is straightforward.

(b) Let 0 - M — N =5 Q — 0 be an exact sequence in Az(X). Let (N3)
be the filtered system of coherent submodules of N, so that N’ = lim N (Corol-
lary 3.1.7). Then (M NNjp) is a filtered system of coherent Ox-modules whose lim
is M, and (mNj) is a filtered system of coherent Ox-modules whose lim is Q (see
Corollary 3.1.6). The exactness of Gz is then made apparent by application of lim 5
to the system of exact sequences

0 — GIMNN3) — G(N3) — G(rNg) — 0. |

Now for M € Az(X), the lim of the system of Godement resolutions of all the
coherent submodules M, C M is a functorial resolution

0 — M — GIM) = GHM) = -+

and the cokernel of G5 *(M) — GL (M) is KY(M):= lim K'(M,). By (b) above

(applied to the exact functors G* and K?), the continuous functors G% and K@

are exact; and GE(M) = lim G*(M,) is fi-acyclic since G*(M) is, and—X being

noetherian—the functors R’ f. commute with lim . Proposition 3.4.3(b) implies then

that there is an integer e > 0 such that for all M € Az(X), K$(M) is fi-acyclic.
So if we define the exact functors D?: Az(X) — A(X) by

Ge(M) (0<i<e)
D(M)=S KeM)  (i=e)
0 (i >e)

then for M € Az(X), each DY(M) is f.-acyclic and the natural sequence

(M) M)

0 — M 2 po gy ZM prpg) M,

D2(M) —> -+ — D (M) — 0

is exact. In short, the sequence P° — D! — D? — ... — D® — 0 is an ezact,
continuous, fi-acyclic, finite resolution of the inclusion functor Az(X) — A(X).
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2. We have then a A-functor (D*,1d): K(Az(X)) — K(X) which assigns an
fi-acyclic resolution to each Agz(X)-complex G = (GP)pez:

(0*g)"= @) DG (meZ 0<q<e),
ptg=m

the differential (D*G)™ — (D*G)™*! being defined on D4(GP) (p + ¢ = m) to be
d' + (=1)Pd" where d': DI(GP) — DI(GP*!) comes from the differential in G and
d" = §9(GP): DI(GP) — DITL(GP).

It is elementary to check that the natural map §(G): G — D*G is a quasi-
isomorphism. The canonical maps are D(Y)-isomorphisms
12 .D*(G) = RED*(G) <~ RALG,
(12) £D'(Q) = RED'G) = RS
i.e., the natural map o': H'(£,D*(G)) — H'(RfD*(G)) is an isomorphism for
all i € Z: this holds for bounded-below G because D*(G) is a complex of fi-acyclic
objects; and for arbitrary G since for any n € Z, with G=" denoting the truncation

(13) ”__>0_>O_>COker(gn71_>gn)_>gn+1_)gn+2_>._.

there is a natural commutative diagram

H(£D*(G) —2— HI(RLD*(G))

ﬁil lvi

H'(£.D*(G*")) —— H'(RLD*(G™"))

in which, when n < 4, 8¢ is an isomorphism (since G and G=" are identical in all
degrees > n), ¥¢ is an isomorphism (by Proposition 3.4.3(b) applied to the mapping
cone of the natural composition D*(G) —~ G — G=" == D*(G=")), and o, is
an isomorphism (since G=" is bounded below).

Thus we have realized R f; o 5 at the homotopy level, via the functor C*:= f,D*;
and our task is now to find a right adjoint at this level.

3. Each functor C? = f£,DP: Az(X) — A(Y) is exact, since R'f,(DP(M)) = 0
for all M € Az(X). CP is continuous, since DP is and, X being noetherian, f,
commutes with lim. As before, the Special Adjoint Functor Theorem yields that
C? has a right adjoint Cp: A(Y) — Az(X).

For each A(Y)-complex F = (FP)pez let CoF be the Az(X)-complex with

(CeF)™:= H CyF? (meZ,0<qg<e),
p—q=m

and with differential (CeF)™ — (CoF)™*! the unique map making the following
diagram commute for all r, s with r—s = m+1:

M ¢F° ——— I CF?

p—q=m p—qg=m+1

l l

CF 1 Co1 FI ————— CFT
d/"l‘(—l)Tdu

where:
(i) the vertical arrows come from projections,
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(ii) d;: CsFT=1 — CsF" corresponds to the differential in F, and
(iii) with 4: Cs41 — Cs corresponding by adjunction to f.(§%): C¥ — C5T1,

dyi= (—1)%6,(F"): Cop1 F" — C.F.

This construction leads naturally to a A-functor (Ce,Id): K(Y) — K(Az(X)). The
adjunction isomorphism

Hom 4, (x) (M, C,N') = Hom 4(y)(CPM, N') (M e A:(X), N € AY))
applied componentwise produces an isomorphism of complexes of abelian groups
(14) Hom¥_(x)(G, CeF) —— HomYy(C*G, F)
for all Az(X)-complexes G and A(Y)-complexes F.

4. The isomorphism (14) suggests that we use Co to construct f*, as fol-
lows. Recall that a complex J € K(Az(X)) is K-injective iff for each exact com-
plex G € K(Az(X)), the complex Hom$_x)(G,d) is exact too. By (12), C*G is
exact if G is; so it follows from (14) that if F is K-injective in K(Y) then CoF is
K-injective in K(Az(X)). Thus if Ki(—) C K(—) is the full subcategory of all
K-injective complexes, then we have a A-functor (Co,Id): Ki(Y) — Ki(Az(X)).
Associating a K-injective resolution to each complex in A(Y) leads to a A-functor
(p,0): D(Y) — Ki1(Y).16 This p is bounded below: an A(Y)-complex € such that
H'(&) = 0 for all i < n is quasi-isomorphic to its truncation £2" (see (13)), which is
quasi-isomorphic to an injective complex F which vanishes in all degrees below n.
(Such an F is K-injective.)

Finally, one can define f* to be the composition of the functors

D(Y) L Ki(Y) < Ki(A(X)) 222 D(A(X)),

and check, via (12) and (14) that Theorem 4.1 is satisfied. (This involves some
tedium with respect to A-details.) |

5. Torsion sheaves.

Refer to §1.2 for notation and first sorites regarding torsion sheaves.

Paragraphs 5.1 and 5.2 develop properties of quasi-coherent torsion sheaves
and their derived categories on locally noetherian formal schemes—see e.g., Propo-
sitions 5.2.1, 5.2.4, 5.2.6, and Corollary 5.2.11. (There is some overlap here with
84 in [Y].) Such properties will be needed throughout the rest of the paper. For
instance, Paragraph 5.3 establishes for a noetherian formal scheme X, either sepa-
rated or finite-dimensional, an equivalence of categories D(Aqet(X)) = Dqet(X),
thereby enabling the use of Dge(X)—rather than D(Age(X))—in Theorem 6.1
( 2 Theorem 2 of Section 1). Also, Lemma 5.4.1, identifying the derived func-
tor RI;(—) (for any Ox-ideal J, where X is a ringed space) with the homotopy
colimit of the functors RHom*(Ox /J", —), plays a key role in the proof of the
Base Change Theorem 7.4 (2 Theorem 3).

161y fact (p, ©) is an equivalence of A-categories, see [L4, §1.7]. But note that © need not be
the identity morphism, i.e., one may not be able to find a complete family of K-injective resolutions
commuting with translation. For example, we do not know that every periodic complex has a
periodic K-injective resolution.
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5.1. This paragraph deals with categories of quasi-coherent torsion sheaves on
locally noetherian formal schemes.

PRrROPOSITION 5.1.1. Let f: X — Y be a map of noetherian formal schemes,
and let M € Aqe(X). Then fiM € Aqe(Y). Moreover, if f is pseudo-proper
(see §1.2.2) and M is coherent then f,M is coherent.

PROOF. Let § C Ox and J C Oy be ideals of definition such that JOx C J,

and let

Xpi= (X, 00 /0") L2 (4,04 /9" =Y (0> 0)

be the scheme-maps induced by f, so that if j, and ¢, are the canonical closed
immersions then fj, = i,f,. Let M, := Hom(Ox/J", M), so that

M = IIM = lim M,, = lim . jy, M.

Since J" is a coherent Oy-ideal [GD, p. 427], therefore M,, is quasi-coherent (Corol-
lary 3.1.6(d)), and it is straightforward to check that i, f,, 75 M,y € Aget(Y). Thus,
X being noetherian, and by Corollary 5.1.3 below,

When f is pseudo-proper every f,, is proper; and if M € Aq4(X) is coherent
then so is fi. M, because for some n, fiM = fijnsjt My = ins frdn M. O

PROPOSITION 5.1.2. Let Z be a closed subset of a locally noetherian scheme X,
and let k: X — X be the completion of X along Z. Then the functors k* and kK.
restrict to inverse isomorphisms between the categories Az(X) and Ay (X), and
between the categories Aqez(X) and Aqet(X); and if M € Aqet(X) is coherent,
then so is k. M.

PROOF. Let J be a quasi-coherent Ox-ideal such that the support of Ox/J
is Z. Applying lim to the natural isomorphisms

K Homx (Ox/T", N) = Homx(Ox/T"Ox, "N (N € A(X), n>0)

we get a functorial isomorphism x*I; =~ IJx* and hence £*(Az(X)) C A(X).
Applying lim to the natural isomorphisms

Homx (Ox /T", kM) =5 ki Homyx (Ox /T Ox, M) (M e AX), n>0)

we get a functorial isomorphism Ik, — k.Iy, and hence k.(A(X)) C Az(X).
As k is a pseudo-proper map of locally noetherian formal schemes ((0) be-
ing an ideal of definition of X), we see as in the proof of Proposition 5.1.1 that
for M € Aqet(X), kM is a lim of quasi-coherent O x-modules, so is itself quasi-
coherent, and k.M is coherent whenever M is. 17
Finally, examining stalks (see §1.2) we find that the natural transformations
1 — ky«r*® and K"k, — 1 induce isomorphisms

N =5 ko™ IGN (N € A(X)),
K ke EM =5 TY M (M € A(X)). O

17The noetherian assumption in Lemma 5.1.1 is needed only for commutativity of fi with
lim, a condition clearly satisfied by f = k in the present situation.
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COROLLARY 5.1.3. If X is a locally noetherian formal scheme then Aqet(X) is
plump in A(X) and closed under small A(X)-colimits.

PROOF. The assertions are local, and so, since A¢(X) is plump (§1.2.1), Propo-
sition 5.1.2 (where £* commutes with lim ) enables reduction to well-known facts
about Agcz(X) C A(X) with X an affine noetherian (ordinary) scheme. O

LEMMA 5.1.4. Let X be a locally noetherian formal scheme. If M is a quasi-
coherent Ox-module then Iz M € Aqet(X) is the lim of its coherent submodules.
In particular, Aqet(X) C Az(X).

PROOF. Let J be an ideal of definition of X. For any positive integer n, let X,
be the scheme (X, Oy /3™), let j,: X, — X be the canonical closed immersion, and
let M,, := Hom(Ox /J", M) C I¥ (M), so that M,, € Aget(X) (Corollary 3.1.6(d)).
Then the quasi-coherent Ox,-module jzM,, is the lim of its coherent submod-
ules [GD, p.319, (6.9.9)], hence so is M,, = jn.ji M, (since j,; and j,. preserve
both lim and coherence [GD, p. 115, (5.3.13) and (5.3.15)]), and therefore so is
IYM = lim M,,. That lim M,, € Aqet(X) results from Corollary 5.1.3. O

COROLLARY 5.1.5. For a locally noetherian formal scheme X, the inclusion
functor j%: Aqet(X) — A(X) has a right adjoint Q%. If moreover X is noetherian
then Q% commutes with lim.

PROOF. To show that j% has a right adjoint one can, in view of Corollary 5.1.3
and Lemma 5.1.4, simply apply the Special Adjoint Functor theorem.

More specifically, since Iy is right-adjoint to the inclusion A¢(X) — A(X), and
Az(X) C Aqe(X) (Corollary 3.1.5), it follows from Lemma 5.1.4 that the restriction
of Iy to Az(X) is right-adjoint to Aget(X) — Az(X); and by Proposition 3.2.3,
Az(X) — A(X) has a right adjoint Q+; so Q% := I} oQy is right-adjoint to ji.
(Similarly, Q o I is right-adjoint to j%.)

Commutativity with lim means that for any small directed system (G ) in A(X)
and any M € Aqc(X), the natural map

¢: Hom(M, lim Q% Go) — Hom(M, Q5 lim G,)

is an isomorphism. This follows from Lemma 5.1.4, which allows us to assume that
M is coherent, in which case ¢ is isomorphic to the natural composed isomorphism

lim Hom(M, Q&cGa) = lim Hom(M, Go) = Hom(M,lm Go).

Remark. For an ordinary noetherian scheme X we have Q% = Qy (see §3.1).
More generally, if x: X — X is as in Proposition 5.1.2, then Q% = Kk*I,Qx k.
Hence Proposition 5.1.1 (applied to open immersions X — Y with X affine) lets
us construct the functor Q% for any noetherian formal scheme Y by mimicking the

construction for ordinary schemes (cf. [I, p. 187, Lemme 3.2].)

5.2. The preceding results carry over to derived categories.
From Corollary 5.1.3 it follows that on a locally noetherian formal scheme X,
Dyt (X) is a triangulated subcategory of D(X), closed under direct sums.
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PROPOSITION 5.2.1. For a locally noetherian formal scheme X, set Ay:= Ay(X),
the category of torsion Ox-modules, and let i: D(Ay) — D(X) be the natural
functor. Then:

(a) An Ox-complex € is in D¢(X) iff the natural map iIRINE — € is a D(X)-
isomorphism.

(b) If £ € Dqe(X) then RIZE € Dyc(As).

(c) The functor i and its right adjoint RIY. induce quasi-inverse equivalences

between D(Ay) and Dy(X) and between Dyc(As) and Dget (X).18

PROOF. (a) For F € D(Ay) (e.g., F:= RIYE), any complex isomorphic to iF
is clearly in D¢(X).

Suppose conversely that £ € D¢(X). The assertion that tRIyE = € is local,
so we may assume that X = Spf(A4) where A = T'(X, Ox) is a noetherian adic
ring, so that any defining ideal J of X is generated by a finite sequence in A. Then
iRIYE = K3, ® €, where K3, is a bounded flat complex—a lim of Koszul complexes
on powers of the generators of J—see [AJL, p.18, Lemma 3.1.1].

So iRIY is a bounded functor, and the usual way-out argument reduces the
question to where £ is a single torsion sheaf. But then it is immediate from the
construction of K2, that K3, ® & =£.

(b) Again, we can assume that X = Spf(A4) and RIy is bounded, and since
Aqe(X) is plump in A(X) (Proposition 3.2.2) we can reduce to where £ is a single
quasi-coherent Oy-module, though it is better to assume only that £ € Dqt(DCL for
then we may also assume & injective, so that

RIYE = IYE = lim Hom(O/J", €).
n>0
From Corollary 3.1.6(d) it follows that Hom(O/J", £) € Dqet (X)—for this assertion
another way-out argument reduces us again to where £ is a single quasi-coherent
Ox-module—and since homology commutes with hm and Aqct is closed under hrn
(Corollary 5.1.3), therefore RIYE has quasi- coherent’ homology.

Assertion (c) results now from the following simple lemma. O

LEMMA 5.2.2. Let A be an abelian category, let j: A, — A be the inclusion of
a plump subcategory such that j has a right adjoint I, and let j: D(A,) — D(A)
be the derived-category extension of j. Suppose that every A-complex has a K-
injective resolution, so that the derived functor RI': D(A) — D(A,) exists. Then
RTI is right-adjoint to 3. Furthermore, the following conditions are equivalent.
(1) 7 induces an equivalence of categories from D(A,) to Dy(A), with quasi-
inverse RyI":= RI'|p, (4)-
(2) For every € € Dy(A) the natural map jRI'E — £ is an isomorphism.
(3) The functor R, I is bounded, and for & € A, the natural map jRI'Ey —
&o is a D(A)-isomorphism.
When these conditions hold, every A,-complex has a K-injective resolution.

PROOF. Since I" has an exact left adjoint, it takes K-injective .A-complexes to
K-injective A,-complexes, whence there is a bifunctorial isomorphism in the derived

18we may therefore sometimes abuse notation and write RIY instead of iRIy; but the
meaning should be clear from the context.
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category of abelian groups
RHom% (3G, £) = RHomY (G, RI€) (G € D(A,), € € D(A)).

(To see this, one can assume & to be K-injective, and then drop the R’s..) Apply
homology H° to this isomorphism to get adjointness of j and RI.

The implications (1) = (3) = (2) are straightforward. For (2)=- (1), one needs
that for G € D(A,) the natural map G — RI'§G is an isomorphism, or equivalently
(look at homology), that the corresponding map jG — jRI'jG is an isomorphism.
But the composition of this last map with the isomorphism jRI'jG == 3G (given
by (2)) is the identity, whence the conclusion.

Finally, if G is an A,-complex and jG — J is a K-injective A-resolution, then as
before I'J is a K-injective A,-complex; and (1) implies that the natural composition

G—1jG—TJ (2RIjG)
is a D(A,)-isomorphism, hence an 4,-K-injective resolution. (|

COROLLARY 5.2.3. For any complezes £ € Dy(X) and F € D(X) the natural
map RIYF — F induces an isomorphism

RHom* (&, RINF) = RHom*(E, F).

ProoOF. Consideration of homology presheaves shows it sufficient that for each
affine open U C X, the natural map

Homp g (Elu, (RIYF)|u) — Homp (Eu, Flu)

be an isomorphism. But since RIY. commutes with restriction to U, that is a direct
consequence of Proposition 5.2.1(c) (with X replaced by U). O

Parts (b) and (c) of the following Proposition will be generalized in parts (d)
and (b), respectively, of Proposition 5.2.8.

PROPOSITION 5.2.4. Let Z be a closed subset of a locally noetherian scheme X,
and let k: X — X be the completion of X along Z. Then:

(a) The exact functors k* and k. restrict to inverse isomorphisms between the
categories Dz(X) and Dy(X), and between the categories Dqcz(X) and Dget(X);
and if M € Dqyc(X) has coherent homology, then so does k.M.

(b) There is a unique derived-category isomorphism

RIyk.E == r,RIGE (£ €D(X))

whose composition with the natural map /@*RZ%E — Kk«& 15 just the natural map
RIJk.E — KiE.

(c) There is a unique derived-category isomorphism
K'RIZF = RIYk*F (F e D(X))

whose composition with the natural map RINK*F — Kk*F is just the natural map
K*RIZF — k*F.
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PROOF. The assertions in (a) follow at once from Proposition 5.1.2.

(b) Since k. has an exact left adjoint (namely x*), therefore k. transforms
K-injective A(X)-complexes into K-injective A(X)-complexes, and consequently
the isomorphism in (b) results from the isomorphism I}k, == k.Iy in the proof
of Proposition 5.1.2. That the composition in (b) is as asserted comes down then
to the elementary fact that the natural composition

Homx (Ox/T", kM) =5 ki Homy(Ox/T"Ox, M) — k.M

(see proof of Proposition 5.1.2) is just the obvious map. Since k., RI¥E € Dz(X)
(by (a) and Proposition 5.2.1(a)), the uniqueness assertion (for the inverse isomor-
phism) results from adjointness of Rl and the inclusion Dz(X) — D(X). (The
proof is similar to that of Proposition 5.2.1(c)).

(c) Using (b), we have the natural composed map

K'RIGF — K*RIGkEF = Kk RINEF — RINE*F.
Showing this to be an isomorphism is a local problem, so assume X = Spec(A)
with A a noetherian adic ring. Let K3, be the usual lim of Koszul complexes on
powers of a finite system of generators of an ideal of definition of A ([AJL, §3.1]);
and let K S, be the corresponding quasi-coherent complex on Spec(A), so that the
complex IC;O in the proof of Proposition 5.2.1(a) is just k*K3 . Then one checks
via [AJL, p.18, Lemma (3.1.1)] that the map in question is 1somorphic to the
natural isomorphism of complexes
K (KS @0y F) = kK% @0, k*F.

That the composition in (c) is as asserted results from the following natural

commutative diagram, whose bottom row composes to the identity:

K*RIF — k*RIJKLF —— k*kRIGK'F —— RIYK*F

I Lo ] I

K*F —— KRk F —— Kk F —— K*F

Uniqueness is shown as in (b). |

COROLLARY 5.2.5. The natural maps are isomorphisms
Homy (&, F) = Homx (&, kuk*F) = Homy (k*E, " F) (€ € Dz(X), F € D(X)),
Homy (&, F) = Homx (&, kuk*F) =2 Homy (k*E, " F) (€ € D(X), F € Dz(X)),
Homy (G, H) = Homy (5 k4G, H) = Homx (k.G, ksH) (G € D(X), H € D(X)).

PROOF. For the first line, use Proposition 5.2.1 and its analogue for Dz (X),
Lemma 5.2.2, and Proposition 5.2.4 to get the equivalent sequence of natural iso-
morphisms

Homy (€, F) = Homx (€, RILF)
= Homy (k*E, k" RIZF)
= Homy (k*E, RINK*F)
=~ Homy (k*E, K*F)
>~ Homx (&, ke K*F).
The rest is immediate from Proposition 5.2.4(a). O
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The next series of results concerns the behavior of Dyc¢ with respect to maps
of formal schemes.

PROPOSITION 5.2.6. Let f: X — Y be a map of noetherian formal schemes.
Then R fi|p,.(x) is bounded, and

Rf*(cht(x)) - cht(y)-
Moreover, if f is pseudo-proper and F € Di(X) has coherent homology, then so
does Rf. F € D¢(Y).

PROOF. Since Dy (X) C Dz(X) (Lemma 5.1.4), the boundedness assertion is
given by Proposition 3.4.3(b). (Clearly, R, is bounded-below.) It suffices then for
the next assertion (by the usual way-out arguments [H1, p. 73, Proposition 7.3]) to
show for any M € Aq(X) that R M € Dgct(Y).

Let £ be an injective resolution of M, let J be an ideal of definition of X, and
let &, be the flasque complex &, := Hom(0O/J", ). Then by Proposition 5.2.1(a),
M=RIIM = lim,, &, . Since X is noetherian, lim’s of flasque sheaves are f.-acyclic
and lim commutes with f; so with notation as in the proof of Proposition 5.1.1,

RAM = REREM 2 Ll €, =1 fojuefiEn =1 inf,jiEn

Since £ € DS, (X), therefore

Jnxjn€n = 'Hom(@/gn, 8) € ch(fX:),
as we see by way-out reduction to where £ is a single quasi-coherent sheaf and
then by Corollary 3.1.6(d); and hence j*&, € Dqc(X,) (see [GD, p.115, (5.3.15)]).
Now j&, is a flasque bounded-below Ox,, -complex, so by way-out reduction to (for
example) [Ke, p. 643, corollary 11],
and finally, in view of Corollary 5.1.3,

RfM =iy, lim Jnsdn€n € Dyct(¥).

For the last assertion, we reduce as before to showing for each coherent torsion
Ox-module M and each p > 0 that RPf,M:= HPR f.M is a coherent Oy-module.
With notation remaining as in Proposition 5.1.1, the maps i, and j,, are exact, and
for some n, M = jp.ji My, So
which is coherent since j*M,, is a coherent Ox, -module and f,: X,, — Y, is a
proper scheme-map. O

COROLLARY 5.2.7 (cf. Corollary 3.5.3). Let fo: X — Y be a map of locally
noetherian schemes, let W CY and Z C fo_lW be closed subsets, with associated
(flat) completion maps ky:4=Yyw =Y, kip: X=X,z - X, and let f: X — Y
be the map induced by fo. For £ € D(X) let

Os : kYR fo.& = RERYE
be the map adjoint to the natural composition
R i€ — Rifpuhinc, i5E = iy, RERLE.
Then 8g is an isomorphism for all £ € Dyoz(X) .
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PROOF. 6¢ is the composition of the natural maps
KYRfpx€ — KGR fouhin kX E = Kiky RERYE — REKYE.

By Proposition 5.2.4, the first map and (in view of Proposition 5.2.6) the third map
are both isomorphisms. |

PROPOSITION 5.2.8. Let f: X — Y be a map of locally noetherian formal
schemes. Let J be a coherent Oy-ideal, and let Dg(Y) be the triangulated sub-
category of D(Y) whose objects are the complexes F with I-torsion homology (i.e.,
LH'F =H'F for all i € Z—see §§1 and 1.2.1). Then:

(a) Lf*(D3(¥)) C Doy (X).
(b) There is a unique functorial isomorphism
§€): LI RGE < R, Lf'€ (€ € D(Y))

whose composition with the natural map Rlj, Lf*E — Lf*E is the natural map
Lf*RI; & — Lf*€.

(¢) The natural map is an isomorphism

RIYLf*RIJE = RIXLf*E (E€DY)).
(d) If X is noetherian, there is a unique functorial isomorphism
RLRALG = RARI, G (G e DT(X))

whose composition with the natural map RERIjo G — RLG is the natural map

PRrROOF. (a) Let F € Dg(Y). To show that Lf*F € Djo,(X) we may assume
that F is K-injective. Let € X, set y:= f(x), and let Py be a flat resolution
of the Oy ,-module Oy .. Then, as in the proof of Proposition 5.2.1(a), there is a
canonical D(Y)-isomorphism

lim Hom* (Oy /1", F) = LF = RGF = F.
and it follows that for any 4 the stalk at = of the homology H'Lf*F is
H'(P? ®o,, F,) = lim H'(P} ®0,, Hom, (Oy, /%", F,)).

Hence each element of the stalk is annihilated by a power of JOx ,, and (a) results.

(b) The existence and uniqueness of a functorial map £(&) satisfying everything
except the isomorphism property result from (a) and the fact that Rl is right-
adjoint to the inclusion Djp, (X) — D(X).

To show that £(€) is an isomorphism we may assume that Y is affine and that £
is K-flat, and then proceed as in the proof of (the special case) Proposition 5.2.4(c),
via the bounded flat complex K3 .

(¢c) Let J, d be defining ideals of Y and X respectively, so that K:= JOx C .
The natural map RIYRIg := RIZRI} — Ry =: RIy is an isomorphism, as one
checks locally via [AJL, p. 20, Corollary (3.1.3)]. So for any € € D(Y), (b) gives

RIXLf*é 2 RIYRIZLfE 2 RIXLf*RIJE.

(d) G may be assumed bounded-below and injective, so that

Gpn:=Hom®*(Ox /I"Ox, G)

is flasque.
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Then, since X is noetherian, I, =lim, G, is flasque too, and
RfRIo,G = R0, 0 = flim G, = lim £.G, € Dy(Y).
By Lemma 5.2.2, RIj (resp. RI;, ) is right-adjoint to the inclusion Dy(Y) — D(Y)

(resp. Dgo, (X) — D(X)), whence, in particular, the uniqueness in (d). Moreover,
in view of (a), for any £ € Dg(Y) the natural maps are isomorphisms
Homy (&, RGRLG) = Homy(E, RfG) = Homx (Lf*E, G)
= Homx (Lf*€, Rljp, G) —— Homy(&, RARI0, G).
It follows formally that the image under this composed isomorphism of the identity

map of RIJR f.G is an isomorphism as asserted. (In fact this isomorphism is adjoint

to the composition Lf*RIJRf.G m Rl LI*RLG — Rlj».G.) O

DEFINITION 5.2.9. For a locally noetherian formal scheme X,
Dy (X) == RIx ™ (Dge (X))
is the A-subcategory of D(X) whose objects are those complexes F such that
RIYF € Dyc(X)—or equivalently, RIYF € Dyct (X).
REMARKS 5.2.10. (1) By Proposition 5.2.1(b), Dge(X) C Dge(X). Hence
RI(Dqe(X)) C Doe(X).

(2) Since RIY is idempotent (see Proposition 5.2.1), the vertex of any triangle
based on the canonical map RIYE — £ (£ € D(X)) is annihilated by RIy. It
follows that Dyc(X) is the smallest A-subcategory of D(X) containing Dy (X) and
all complexes F such that RIyYF = 0.

(3) The functor RIy: D(X) — D(X) has a right adjoint

Ax(=):= RHom® (RIFOy, ).
Indeed, there are natural functorial isomorphisms for £, F € D(X),

HOmD(x)(RFQég, F) = HOmD(x)(E & RFgéOx, F)
(15) -
= HomD(x)(E, RHom® (RFQéOx, ]‘—))

(Whether the natural map & ® RIyOy -~ RI}E is an isomorphism is a local
question, dealt with e.g., in [AJL, p. 20, Corollary (3.1.2)]. The second isomorphism
is given, e.g., by [Sp, p. 147, Proposition 6.6 (1)].)

There is a natural isomorphism RIY -~ RIYAy (see (d) in Remark 6.3.1
below), and consequently

A (Dge(X)) € Dge(%).
(4) If £ € D7 (X) and F € Dye(X) then RHom* (€, F) € Dye(X), and hence
RHom®*(RILE, F) € Dye(X). Indeed, the natural map
RIZRHom® (€, RILF) — RIIRHom® (&, F)

is an isomorphism, since for any G in Dy(X), G ® £ € Dy(X) (an assertion which
can be checked locally, using Proposition 5.2.1(a) and the complex K2, in its proof),



56 LEOVIGILDO ALONSO, ANA JEREMIAS, AND JOSEPH LIPMAN

so that there is a sequence of natural isomorphisms (see Proposition 5.2.1(c)):

Hom(G, RIYRHom® (&, RIYF)) — Hom(G, RHom® (&, RIY.F))
— Hom(G ® &, RIXF)
— Hom(G ® &, F)
-~ H m(g RHom* (€, F))
om (G, RIFRHom® (€, F)).
Since Aget(X) is plump in A(X) (Corollary 5.1.3), Proposition 3.2.4 shows that

RIZRHom® (&, RI}F) € Dyet(X), whence RHom® (€, F) € Dyo(X).
From (3) and the natural isomorphisms

RHom®*(RIXE, F) = RHom®*(RIYOx ® £, F) = AxRHom* (€, F)

we see then that
RHom®(RIZE, F) € Dye(X).

(5) For F € D(X) it holds that
F € Dge(X) <= RHom*(Ox/d, F) € Dyes(X) for all defining ideals J of X.

The implication = is given, in view of Corollary 5.2.3, by Proposition 3.2.4; and
the converse is given by Lemma 5.4.1, since Corollary 5.1.3 implies that Dgct(X) is
a A-subcategory of D(X) closed under direct sums.

(6) Let f: X — Y be a map of locally noetherian formal schemes. For any
F € Dye(Y), Lemma 5.1.4 and Proposition 3.3.5 give
Lf*RI{F € Lf*(Dqet(4)) € Lf*(Ds(Y)) € Dae(X) € Dye(X),

and so RIZLf*F %( : RIFLf*RIJF € Dgey(X). Thus
5.2.8(c

Lf*(Dge(¥)) € Dge(%).

COROLLARY 5.2.11. Let f: X — Y be an adic map of locally noetherian formal
schemes. Then:

(a) Lf*(Dy(¥)) C Dy(X).
(b) Lf*(Dget(4)) C Deet (X).
(c) There is a unique functorial isomorphism

Lf'RIJE - RIJLf*E (£eD(Y)

whose composition with the natural map RIYLf*E — Lf*E is the natural map
Lf*RIJE — Lf*E. There results a conjugate isomorphism of right-adjoint functors

RfAxG = AyRfG (G €D(X)).

whose composition with the natural map Rf,G — RfiAxG is the natural map
Rf.G — AyRf.G.
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(d) If X is noetherian then there is a unique functorial isomorphism
RIJRf.G —~ RLRILG (G € DT(X) or G € Dye(X))

whose composition with the natural map Rf*RFDég — Rf.G is the natural map
RE{;Rf*g — Rf.G.

(e) If X is noetherian then R.f.(Dge(X)) C Dye(Y).

PRrROOF. To get (a) and (c) take J in Proposition 5.2.8 to be an ideal of definition
of Y. (The second assertion in (c) is left to the reader.) As Dyc(Y) = Dz(Y)ND(Y)
(Corollary 3.1.5 and Lemma 5.1.4), (b) follows from (a) and Proposition 3.3.5.
The same choice of J gives (d) for G € D*(X)—and the argument also works for
G € Dyc(X) once one notes that

R RI(Dge(X)) C Rfi(Dget (X)) 5%6 Dyt () € De(Y).
The isomorphism in (d) gives (e) via Proposition 5.2.6. O

COROLLARY 5.2.12. In Corollary 5.2.7, if X is noetherian and Z = fo_lW
then for all F € Dyc(X) the map 0% := RI(0F) is an isomorphism

0 RIJkiRfo, F =5 RIJRLRYF.

PROOF. Arguing as in Proposition 5.2.1, we find that RI; F € Dqcz(X), so
that we have the isomorphism Ogr, 7 of Corollary 5.2.7.
Imitating the proof of Corollary 5.2.11, we get an isomorphism

ar: Rf, RI;F = RIRf, F

whose composition with the natural map Ry, R f,, F — Rf,,F is the natural map
Rfy,RI;F — Rf,, F.
Consider then the diagram

* —~ * —~ * nat’l *
K;nyO*RFZ]: m KJyRFWRfO*]: 52—4(5)) R,l—glinyo*]: d—> K’nyO*]:

(')ery-‘l: (1) J{G} J,GF

RfkiRIF ﬁ‘l(@) RARI KL F m RIJRfiky F — RfkyF
It suffices to show that subdiagram (1) commutes; and since RI}j is right-adjoint
to the inclusion D¢(Y) — D(Y) it follows that it’s enough to show that the outer
border of the diagram commutes. But it is straightforward to check that the top
and bottom rows compose to the maps induced by the natural map RI, — 1,
whence the conclusion. |

5.3. From the following key Proposition 5.3.1—generalizing the noetherian case
of [AJL, p.12, Proposition (1.3)]—there will result, for complexes with quasi-
coherent torsion homology, a stronger version of the Duality Theorem 4.1, see
Section 6.

Recall what it means for a noetherian formal scheme X to be separated (§3.4.1).
Recall also from Corollary 5.1.5 that the inclusion functor ji : Aget(X) — A(X) has
a right adjoint Q%.
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PRrROPOSITION 5.3.1. Let X be a noetherian formal scheme.
(a) The extension of ji induces an equivalence of categories

g s DT (Ager (X)) = Dy (),

with bounded quasi-inverse RQBC|D;“(DC)'

(b) If X is separated, or of finite Krull dimension, then the extension of j&
induces an equivalence of categories

g+ D(Aqet(X)) = Dyt (X),
with bounded quasi-inverse RQ%|p, ., (x)-

PROOF. (a) The asserted equivalence is given by [Y, Theorem 4.8]. The idea is
that Aqc(X) contains enough A (X)-injectives [Y, Proposition 4.2], so by [H1, p. 47,
Proposition 4.8], D (Aqet(X)) is equivalent to D (Ai(X)), which is equivalent
to D, (X) (Proposition 5.2.1(c)).

Since RQY, is right-adjoint to j% (Lemma 5.2.2), its restriction to D(L

(X) is

quasi-inverse to j&|D+( Aqer (X)) From the resulting isomorphism

act(
te: J¥RQYLE = & (€ € D, (X))

we see that if H'€ =0 then H'RQ%& = 0, so that RQgchqtt(DC) is bounded.

(b) By Lemma 5.2.2, and having the isomorphism ¢¢, we need only show that
RQY% is bounded on Dgc(X).

Suppose that X is the completion of a separated ordinary noetherian scheme X
along some closed subscheme, and let x: X — X be the completion map, so that

Y = k*I,Qxk, (see remark following Corollary 5.1.5). The exact functor s,
preserves K-injectivity, since it has an exact left adjoint, namely x*. Similarly
Qx transforms K-injective A(X)-complexes into K-injective Aqc(X)-complexes.
Hence RQY = v*RIF“RQyk,, where I Aye(X) — Aqez(X) is the restric-
tion of I,. Now by the proof of [AJL, p.12, Proposition (1.3)], RQy is bounded
on Dy (X) D keDget(X) (Proposition 5.2.4). Also, by [AJL, p. 24, Lemma (3.2.3)],
RT, is bounded; and hence by [AJL, p.26, Proposition (3.2.6)], so is I;°. Thus
RQY% is bounded on Dgct(X).

In the general separated case, one proceeds by induction on the least number
of affine open subsets covering X, as in the proof of [AJL, p. 12, Proposition (1.3)]
(which is Proposition 5.3.1 for X an ordinary scheme), mutatis mutandis—namely,
substitute “X” for “X7 “qct” for “qc,” “Q'” for “Q; and recall foramapv: V — X
of noetherian formal schemes that v, (Agct(V)) C Aqet(X) (Proposition 5.1.1), and
furthermore that if v is affine then v. |4, (v) is ezact (Lemmas 5.1.4 and 3.4.2).

A similar procedure works when the Krull dimension dim X is finite, but now
the induction is on n(X):= least n such that X has an open covering X = Uj_;U;
where for each ¢ there is a separated ordinary noetherian scheme U; such that
U; is isomorphic to the completion of U; along one of its closed subschemes. (This
property of U; is inherited by any of its open subsets).

The case n(X) = 1 has just been done. Consider, for any open immersion
v:V — X, the functor v := Vx| Aqe(v)- To complete the induction as in the
proof of [AJL, p. 12, Proposition (1.3)], one needs to show that the derived functor
R : D(Aqet(V)) — D(X) is bounded above.
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For N € Aqt(V), let N — J* be an Aqc-injective—hence flasque—resolution
[Y, Proposition 4.2]. Now H'Rwi°(N) is the sheafification of the presheaf send-
ing an open W C X to HT(WN 'V, J°*) = H(WnN V,N), which vanishes when
i > dim X, whence the conclusion ([L4, Proposition (2.7.5)]). O

5.4. Let (X,0x) be a ringed space, and let J be an Ox-ideal. The next
Lemma, expressing RI; as a “homotopy colimit,” lifts back to D(X) the well-
known relation

H'RI;G =lim Ext (Ox/T"G) (G €D(X)).
Define h,,: D(X) — D(X) by
h,(G):= RHom*(Ox /JT", G) (n>1, G € D(X)).

There are natural functorial maps s, : h, — h,+1 and €,: h,, — RI;, satisfying
En+15Sn = €pn. The family

(17 —Sm): hy, — hyy @ Ry1 C Dn>1 h, (m > 1)
defines a natural map s: ®p>1h, — @p>1hy,. There results, for each G € D(X), a
map of triangles

ESrn>1hnG — GOn>1hnG —— 77 S N

1 [
0 —— RIG ——RI;G ——
LEMMA 5.4.1. The map  is a D(X)-isomorphism, and so we have a triangle

Dp>1hnG —>— ©p>1h,G DYLIN RI;G S N

PRrROOF. In the exact homology sequence

o H (@ns1 haG) N H (®p>1 hnG) — H(7?) — H (@51 h,G) — -

the map o' is injective, as can be verified stalkwise at each € X. Assuming, as
one may, that G is K-injective, one deduces that

H'(??) = lim H'(h,,G) = H'lim (h,,G) = H'lim Hom*(Ox /J", G) = H'(RI};§),

whence the assertion. O

6. Duality for torsion sheaves.

Paragraph 6.1 contains the proof of Theorem 2 (section 1), that is, of two
essentially equivalent forms of Torsion Duality on formal schemes—Theorem 6.1
and Corollary 6.1.4. The rest of the paragraph deals with numerous relations among
the functors which have been introduced, and with compatibilities among dualizing
functors occurring before and after completion of maps of ordinary schemes.

More can be said for complexes with coherent homology, thanks to Greenlees-
May duality. This is done in paragraph 6.2.
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Paragraph 6.3 discusses additional relations involving RIy : D(X) — D(X) and
its right adjoint RHom®(RI} O, —) on a locally noetherian formal scheme X.

THEOREM 6.1. (a) Let f: X — Y be a map of noetherian formal schemes.
Assume that [ is separated, or X has finite Krull dimension, or else restrict to
bounded-below complexes. Then the A-functor R f,: Dyet(X) 529, Dyt (Y) — D(Y)
has a right A-adjoint.

In fact there is a bounded-below A-functor f: D(Y) — Dqct(X) and a map
of A-functors 7,: Rf.f — 1 such that for all G € Dyet(X) and F € D(Y), the

composed map (in the derived category of abelian groups)

RHom$ (G, f*F) 2L, RHom} (R£.G, R, f*F)

via Tt

RHom} (R£.G, F)

is an isomorphism.
(b) If g: Y — Z is another such map then there is a natural isomorphism
(9 = fa
Proof. Assertion (b) follows from (a), which easily implies that (¢gf); and f g
are both right-adjoint to the restriction of R(gf)« = Rg:Rfi to Dqe (X).

As for (a), assuming first that X is separated or finite-dimensional, or that only
bounded-below complexes are considered, we can replace Dqct(X) by the equivalent
category D(Aget(X)) (Proposition 5.3.1). The inclusion k: Age(X) — Az(X) has
the right adjoint Iy.. (I¥(Az(X)) C Aget(X), by Lemma 5.1.4 and Corollary 3.1.5.)
So for all Aget(X)-complexes G and Ag(X)-complexes F' there is a natural isomor-
phism of abelian-group complexes

Hom;‘qct(g', IYF') = Hom%_(kG', F').

Note that if ' is K-injective over Ag(X) then I3 F’ is K-injective over Aqet(X),
because Iy has an exact left adjoint. Combining this isomorphism with the isomor-
phism (14) in the proof of Theorem 4.1, we can conclude just as in part 4 at the
end of that proof, with the functor f.* defined to be the composition

D(Y) £ Ki(Y) <5 Kr(Ae(X) 25 Kr(Ager(X)) 22020 D (Ao ().

(We have in mind here simply that the natural functor D(Aget(X)) — D(Az(X))
has a right adjoint. That is easily seen to be true once one knows the existence
of K-injective resolutions in D(Az(X)); but we don’t know how to prove the latter
other than by quoting the generalization to arbitrary Grothendieck categories [Fe,
Theorem 2], [AJS, Theorem 5.4]. The preceding argument avoids this issue. One
could also apply Brown Representability directly, as in the proof of Theorem 1
described in the Introduction.)

Now suppose only that the map f is separated. If Y is separated then so is X,
and the preceding argument holds. For arbitrary noetherian Y the existence of
a bounded-below right adjoint for Rfi: Dyt (X) — D(Y) results then from the
following Mayer-Vietoris pasting argument, by induction on the least number of
separated open subsets needed to cover Y. Finally, to dispose of the assertion
about the RHom"®’s apply homology to reduce it to f{* being a right adjoint.

To reduce clutter, we will abuse notation—but only in the rest of the proof of
Theorem 6.1—by writing “f*” in place of “f*.”
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LEMMA 6.1.1. Let f: X — Y = Y1 UYs (Y; open in Y) be a map of formal
schemes, with X noetherian. Consider the commutative diagrams

:X:12 = I)C1 n :X:Q Kl DCl i :X:

f12l fli lf (i=1,2)

Yi2:=Y1NY, Y Y

Pi Yi

where X;:= f~'Y,; and all the horizontal arrows represent inclusions. Suppose that
for i =1,2,12, the functor Rfi.: Dact(X;) — D(Y;) has a right adjoint f*. Then
Rf.: Dyt (X) — D(Y) has a right adjoint f*; and with the inclusions yi2:= y; o p;,
Z12:= x;0q;, there is for each F € D(Y) a natural D(X)-triangle
* * A *
[*F — Ry flyi F © Ray, fyys F = Ry, froy12F — (F*F)[].

Remark. If we expect f* to exist, and the natural maps z} f* — fy¥ to be
isomorphisms, then there should be such a triangle—the Mayer-Vietoris triangle
of f*F. This suggests we first define Az, then let f*F be the vertex of a triangle
based on A, and verify ...

PROOF. There are natural maps

T1: 1:{'fl*fl>< - 13 T2 Rf2*f2>< - 17 712" Rfl2*f1><2 — L

For i = 1,2, define the “base-change” map f;: ¢/ f — fl5p; to be adjoint under
Theorem 6.1 to the map of functors

Rfi0.q; [ —— piRfin f[ 5 pi.

natural

This 3; corresponds to a functorial map 5;: f — Rqi f{5p}, from which we obtain
a functorial map

Razin f7y; — RauRai f507y] = R, [507,

and hence a natural map, for any F € D(Y):

- * * A * B

DY(F):=Ray f{yi F @ Ray, 3 ys F 5 Ry, floyiaF =2 DY(F).
Embed this map in a triangle D(F), and denote the third vertex by f*(F):

D(F): [*F — D°(F) 22 DY(F) — (FF)l1).
Since D°(F) and D'(F) are in Dyt (X) (see Proposition 5.2.6), therefore so is f*F
(Corollary 5.1.3).
This is the triangle in Lemma 6.1.1. Of course we must still show that this f*

is functorial, and right-adjoint to Rf,. (Then by uniqueness of adjoints such a
triangle will exist no matter which right adjoint f* is used.)
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Let us next construct a map 7r: R f*F — F (F € D(Y)). Set
CUF)=RyyiF &Ry, 57, CH(F):=Rypp. i 7.
We have then the Mayer-Vietoris D(Y)-triangle
C(F): F—C%F) 5 CY(F) — Fl1,
arising from the usual exact sequence (Cech resolution)
0= F = 4.0 F ® Yo — Y12.912F — 0,

where F may be taken to be K-injective. Checking commutativity of the following
natural diagram is a purely category-theoretic exercise (cf. [L4, Lemma (4.8.1.2)] :

Rf.D"(F) R Rf.D'(F)
Rf*(Rxl*f;yT]:@sz*fzxygf) Rf*R:C12*f1X2yT2]:
Ry Rf flyi F @ Ryp Rfo, foys F Ry10. R f10. floyiaF
Tl@‘rgl l"'lz
Ry, 41 F & Rys,y3 F Ry, y12F
CO(F) CY(F)
HF

This commutative diagram extends to a map 7, of triangles:

Rf.f*F —— RfD(F) —— RfDYF) —— RLS*F[]

-] 1 1 Jon
F — ) — CYFr) — F
The map 7 is not necessarily unique. But the next Lemma will show, for
fixed F, that the pair (f*F, 7z) represents the functor
Hompy)(RAE, F) (€ € Dyet (X)).

It follows formally that one can make f* into a functor and 7: Rf.f* — 1 into
a morphism of functors in such a way that the pair (f*,7) is a right adjoint for
Rf.: Dyt (X) — D(Y) (cf. [M1, p. 83, Corollary 2]); and that there is a unique
isomorphism of functors ©: f*Ty == T; f* (where T7 and T» are the respective
translations on Dge(X) and D(Y)) such that (f*,0) is a A-functor A-adjoint
to Rf. (cf. [L4, Proposition (3.3.8)]). That will complete the proof of Lemma 6.1.1.

O

LEMMA 6.1.2. For £ € Dqet(X), and with f*F, 1 as above, the composition

Homp,, (x)(€, f*F) 2202, Hompy)(RAE, R £ F) RAGREN Hompy)(RLE, F)

is an isomorphism.
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PROOF. In the following diagram, to save space we write Hy for Homp,_, (x),
Hy for Hompy), and f. for Rf.:

Hy (€, (D°F)[-1]) —— Hy(£E, L(D°F)[-1])) —— Hy(£E, (COF)[-1])

Hy (€, (D'F)[-1]) —— Hy(£E, L(D'F)[-1])) —— Hy(£E, (CTF)[-1])

Hy(E, f*F)  ——  Hy(LE Lf*F) —— Hy(f.€,F)

Hx(&,D°F) —ns Hy(f.E, f.D°F) —  Hy(f.£,C°F)

Hx(&,D'F) —s Hy(f.E, f.D'F) —  Hy(f.£,C'F)

The first column maps to the second via functoriality of f., and the second to
the third via the above triangle map 7,; so the diagram commutes. The columns
are exact [H1, p.23, Prop.1.1b)], and thus if each of the first two and last two
rows is shown to compose to an isomorphism, then the same holds for the middle
row, proving Lemma 6.1.2.

Let’s look at the fourth row. With notation as in Lemma 6.1.1 (and again, with
all the appropriate R’s omitted), we want the left column in the following natural
diagram to compose to an isomorphism:

Hx(&,win [ y; F)  ———  Hox, (2}, [{yF)

Hy(£LE, fainfTy; F) Hy,(fuxaiE, finfy; F)

~ ~

Hy (L&, yis fin [T Yi F) ——— Hy,(y; L€, i [T yi F)

via T; via T;

Hy(LE yiny; F)  ——  Hy,(y] L€,y F)

Here the horizontal arrows represent adjunction isomorphisms. Checking that the
diagram commutes is a straightforward category-theoretic exercise. By hypothesis,
the right column composes to an isomorphism. Hence so does the left one.

The argument for the fifth row is similar. Using the (easily checked) fact
that the morphism f,D° — C° is A-functorial, we find that the first row is, up
to isomorphism, the same as the fourth row with F[—1] in place of F, so it too

composes to an isomorphism. Similarly, isomorphism for the second row follows
from that for the fifth. O
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EXAMPLES 6.1.3. (1) Let f: X — Y be a map of quasi-compact formal schemes
with X properly algebraic, and let f* be the right adjoint given by Corollary 4.1.1.
Using Proposition 5.2.1 we find then that f := RIy o f* is a right adjoint for the
restriction of R f, to Dgci (X).

(2) For a noetherian formal scheme X, Theorem 6.1 gives a right adjoint 1':= 1}
to the inclusion Dyer(X) — D(X). If G € Dye(X) (ie.,, RIEG € Dyer(X), see
Definition 5.2.9), then the natural Dye(X)-map RIYG — 1'G (corresponding to
the natural D(X)-map RIYG — G) is an isomorphism, see Proposition 5.2.1.

(3) If X is separated or if X is finite-dimensional, then we have the equivalence
g5 D(Aqet(X)) = Dyet(X) of Proposition 5.3.1, and we can take 1':= j5 o RQY,
see Corollary 5.1.5 and Lemma 5.2.2.

(4) Let f: X — Y be a closed immersion of noetherian formal schemes (see
[GD, p.442]). The functor f.: A(X) — A(Y) is exact, so Rf. = f.. Let J be the
kernel of the surjective map Oy — f.Ox and let Y be the ringed space (Y, Oy /J),
so that f factors naturally as X LY 5 Y, the map f being flat. The inverse

isomorphisms .A(X) I;i_) A(Y) extend to inverse isomorphisms D(X) ‘<;‘_:> DY)

The functor Hy: A(Y) — A(Y) defined by Hy(F) := Hom(Oy/J, F') has an
exact left adjoint, namely i.: A(Y) — A(Y), so Hy preserves K-injectivity and
RHj is right-adjoint to i,: D(Y) — D(Y) (see proof of Lemma 5.2.2). Hence the
functor f%: D(Y) — D(Y) defined by

(16) fUF):= fFRHy(F) = f'RHom®(0y /3, F)  (F € D(Y))
is right-adjoint to f. = i f, and f.: Dyet(X) — D(Y) has the right adjoint
fl= =1

We recall that G € A(X) is quasi-coherent iff £,G € Ay (Y) iff £.G € Aqe(Y),
see [GD, p. 115, (5.3.15), (5.3.13)]. Also, by looking at stalks (see §1.2.1) we find
that £.G € Ay(Y) = G € A(X). Hence Remark 5.2.10(4) together with the isomor-
phism RERIY = RIJR, of Corollary 5.2.11(d) yields that f*DJ (Y) c DL (X);
and given Corollary 5.1.3, Proposition 3.2.4 yields f*DJ(Y) € D, (X). Thus if

~ qct
Fe D:C(H) then by (2) above, f'F = RI}f*F; and if F € D;rct(‘é) then f'F = fiF.
(5) Let f: X — Y be any map satisfying the hypotheses of Theorem 6.1. Let

d C Ox and J C Oy be ideals of definition such that IO C g, and let

Xoi= (X, 00 /8" I (Y,04/77) = Y, (n>0)

be the scheme-maps induced by f, so that each f, also satisfies the hypotheses
of Theorem 6.1. As the target of the functor (fy,); i Dgct(Xn) = Dgo(Xn), we
write fX for (fn); (see (1) above). If j,: X,, — X and i,: Y, — Y are the
canonical closed immersions then fj,, = i, fn, and so j!, f* = fXi!

The functor j% : D(X) — D(X,,) being as in (16), we have, using (4),
hnG:= RHom*(Ox /8", G) = jueiiG = juejhG (G € DL(X)).
Hence for G:= f*F (F € DT (Y)), Lemma 5.4.1 gives a “homotopy colimit” triangle

Eanljn*fnxi!n]:—’697121jn*fnxi!n]:—’ftX]:i>
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Once again, Dye(X):= (RI}) ™ "Dyet(X) (Definition 5.2.9).

COROLLARY 6.1.4. (a) Let f: X — Y be a map of noetherian formal schemes.

Suppose that f is separated or that X has finite Krull dimension, or else restrict to
bounded-below complexes. Let Ax: D(X) — D(X) be the bounded-below A-functor

Ax(—):=RHom®*(RI{ Oy, —),
and let f*: D(Y) — Dqe(X) be the A-functor f*:= Ax f* (see Ezample 5.2.10(3)).
The functor f* is bounded-below, and is right-adjoint to

RARIY: Dyo(X) 225 Dy (Y) — D(Y).

(In particular with j: D(Az(X)) — D(X) the natural functor, the functor
RLRIyj: D(A:(X)) — D(Y)

has the bounded-below right adjoint RQ f*—see Proposition 3.2.3.)
In fact there is a map of A-functors

™ RARIYf* —1
such that for all G € Dye(X) and F € D(Y), the composed map

RHom% (G, f*F) 2, RHom$(RLRILG, RERIELf*F)
o ™ RHomy (RARILG, F)
is an isomorphism.

(b) If g:'Y — Z is another such map then there is a natural isomorphism
(9f)* = f'g".

PROOF. (a) The functor Ay is bounded below because RIyOx is locally iso-
morphic to the bounded complex K¢, in the proof of Proposition 5.2.1(a), hence
homologically bounded-above. Since Ay is right-adjoint to RIy (see (15)), (a)
follows directly from Theorem 6.1.

(b) Propositions 5.2.6 and 5.2.1(a) show that for any G € Dge(X) we have
RIJRAG = Rf.G, and hence the functors f*Ay and f are both right-adjoint
to R f*|cht(x), so they are isomorphic. Then Theorem 6.1(b) yields functorial
isomorphisms

(9)* = Ax(gf)F == Axflgd == AxflAyg! = f*q*.

O

Here are some “identities” involving the dualizing functors f* (Theorem 4.1),
1 (Theorem 6.1), and f*:= Ax f* (Corollary 6.1.4).

Note that Ay is right-adjoint to RIY, see (15). Simple arguments show that
the natural maps are isomorphisms Ax —= AxAx, RIy =5 RIJAx, see (b)
and (d) in Remark 6.3.1(1).



66 LEOVIGILDO ALONSO, ANA JEREMIAS, AND JOSEPH LIPMAN

COROLLARY 6.1.5. With the notation of Corollary 6.1.4,
(a) There are natural isomorphisms
RIGf* = £ " = Axf,
RFf)éftX - ftX7 f# - ADCf#-
(b) The natural functorial maps RIj — 1 — Ay induce isomorphisms
FERIy = £ = [ Ay,
f#RIg -~ f# -~ f#Ay
(c) There are natural pairs of maps
JE S RIL P f
5 A 2 g,
each of which composes to an identity map. If X is properly algebraic then all of
these maps are isomorphisms.

(d) If f is adic then the isomorphism RARIYj «~ RIJRfj in 5.2.11(d)
induces an isomorphism of the right adjoints (see Theorem 4.1, Proposition 3.2.3)
f Ay = RQxf*

PROOF. (a) The second isomorphism (first row) is the identity map. Proposi-
tion 5.2.1 yields the third. The first is the composition
RIGf* = RIJAxf = RIGfS = f
The fourth is the composition
ff=Axf == AxAx [l = Axf".

(b) The first isomorphism results from RIy being right adjoint to the inclu-
sion Dy(Y) — D(Y) (see Proposition 5.2.1(c)). For the second, check that f*
and fAy are both right-adjoint to R fi|p ., (x) - (Or, consider the composition
fi8 == PRI = ffRIJAy = f“Ay.) Then apply Ax to the first row to
get the second row.

(c) With k: D(Aqet(X)) — D(Az(X)) the natural functor, let

a: kRQY 7 — f*

be adjoint to R £, jERQY f* i Rf.fX 5 1. By Corollary 5.2.3, j(): fX — jf*
factors naturally as
S REGP — 51

Let ap be the map adjoint to the natural composition RARIYjf* — REGf* — 1.
One checks that 7 o R fi(aga) = 7t (7t as in Theorem 6.1), whence aecv; = identity.

The pair (1, f2 is obtained from «;, s by application of the functor Ax—
see Corollary 5.2.3. (Symmetrically, the pair aj, as is obtained from (1, 82 by
application of the functor RIY.)

When X is properly algebraic, the functor j is fully faithful (Corollary 3.3.4);
and it follows that RIYjf* and f* are both right-adjoint to R fi|p,.,(x)-

(d) Straightforward. O



DUALITY AND FLAT BASE CHANGE ON FORMAL SCHEMES 67

The next three corollaries deal with compatibilities between formal (local) and
ordinary (global) Grothendieck duality.

COROLLARY 6.1.6. Let fo: X — Y be a map of noetherian ordinary schemes.
Suppose either that fo is separated or that X is finite-dimensional, or else restrict
to bounded-below complexes. Let W CY and Z C fO_IW be closed subsets, rky: Y =
Yyw — Y and ky: X = X,z — X the respective completion maps, and f: X — Y
the map induced by fy.

X=X,z X

f P

Y:=Yw 7 Y
With f§ = (fo)i right-adjoint to Rf.: Dgc(X) — D(Y), let 7{ be the composition
Rﬁﬁ*xRFZfoX“y* 5%; HERfo*RFZfoX’iy* - “ngo*foX“y* — Kyky, — 1.
Then for all £ € Dot (X) and F € D(Y), the composed map
a(&, F): Homp (€, kXRI f Ky, F) — Hompy)(RLE, Rf.x R f Ky F)
— Hompy)(RAE, F)

via 7/
is an isomorphism. Hence the map adjoint to 7| is an isomorphism of functors
“&szfoxﬁy* == f
PRrROOF. For any £ € Dyt (X), set & := k& € Dgcz(X) (Proposition 5.2.4).
Proposition 5.2.4 and [AJL, p.7, Lemma (0.4.2)] give natural isomorphisms
Homp (€, kxRIZG) —~ Hompx)(&o, RI;G) =~ Homp x)(&o, G)
(G € Dye(X)).

(In other words, k3 RI,G = (ky);{G.) One checks then that the map (&, F)
factors as the sequence of natural isomorphisms

Homp x)(&, kxRIy f§ £y, F) == Homp(x)(&o, fo Ky, F)
—= Hompy)(Rfo.&o, ky.F)
—= Homp (kiR fy.Eo, F)
—= Hompy)(RfikX o, F) (Corollary 5.2.7)
- HomD(y)(RﬁS, _7:) [l

COROLLARY 6.1.7. With hypotheses as in Corollary 6.1.6:
(a) There are natural isomorphisms

RF:)é’f*xfoX“y* = ("E:x)txfoxffy* - ftxa
Axﬁ&foxﬁy* = ’igcfox"%* - f#;

and if fo is proper, Y = Spec(A) (A adic), Z = fy W, then with f* as in Corol-

lary 4.1.1: * ~
Y K/xfoxliy* — f><.

(b) The functor fy'y:= Rl fo": D(Y) — Dycz(X) is right-adjoint to the func-

tor Rf*|Dqu(X); and there is an isomorphism

ozt = I
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(¢) If X is separated then, with notation as in Section 3.3, the functor
foz:= ixRQxRHom% (RI;Ox, fo' —): D(Y) — Dgc(X)
is right-adjoint to R fy,Rly|p, (x); and if X is properly algebraic, so that we have
the equivalence jy: D(Az(X)) — Dg(X) (Corollary 3.3.4), there is an isomorphism

KLY 2Ry = JxRQx f*.

PRrROOF. (a) The first isomorphism combines Corollary 6.1.6 (in proving which
we noted that kARI,G = (ky); G for G € Dgc(X)) and Proposition 5.2.4. The
second follows from f* = Ax f. The third is Corollary 4.1.2.

(b) The first assertion is easily checked; and the isomorphism is given by Corol-
lary 6.1.6.

(c) When X is separated, jy is an equivalence [AJL, p. 12, Proposition (1.3)],
and then the first assertion is easily checked.

From Corollary 6.1.6 and Proposition 5.2.4 we get an isomorphism

RFZfOX fiy* AN Hx*ftx .
As in Corollary 5.2.3, the natural map is an isomorphism
RHom% (RI;Ox,G) = RHom% (RI,Ox,RI,G) (G € Dye(X)).

When X is properly algebraic, jxRQy = k% jxRQxkqy, (Proposition 3.2.3). So
then we have a sequence of natural isomorphisms
ﬁ}fg,zﬁy* - K&ijQxRHomS((RFZO)Ofoxﬁy*_)

= kxixRQxRHom% (RILOx, RI, [ Ky.—)

= ki jx RQxRHom% (RI;Ox, ke, ' —)

== wxIx RQx hixg, RHom% (kX RI;Ox, f*—)

== JxRQxRHom% (RIxOx, f*—)

= jxRQq f". (]

The following instance of “flat base change” will be needed in the proof of the
general base-change Theorem 3.

COROLLARY 6.1.8. In Corollary 6.1.6, assume further that Z = f0_1W. Then
the natural map is an isomorphism

RIfF = RIL [ kyryF (FeD(Y)),
and so there is a composed isomorphism

¢: Rl?)ém;cfox}'aﬁ;)n}RFZfoxf — Ii*xRFZfOXKy*ﬁgf&ﬁb)ftxligf.

PrOOF. First, Rfj,(Dgcz(X)) C Dyew (Y). For, by [L4, Proposition (3.9.2)],
Rfy,(Dgc(X)) C Dgc(Y); and then the assertion follows from the natural isomor-
phism of functors (from Dgc(X) to Dgc(Y)) RIyRfy, = Rfy,RI; 1y, because
G € Dyez(X) (resp. H € Dyew (V) iff RILG = G (vesp. R H = 'H), cf. Propo-
sition 5.2.1(a) and its proof. (The said functorial isomorphism arises from the
corresponding one without the R’s, since R, preserves K-flabbiness, see [Sp,
5.12, 5.15(b), 6.4, 6.7].
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Now Corollary 5.2.5 gives that the natural map is an isomorphism
HomD(Y)(RfO*gaF) - HomD(Y)(RfO*gv HH*HQ‘F) (5 € DqCZ(X))7

and the conclusion follows from the adjunction in Corollary 6.1.7(b). O

6.2. The next Proposition is a special case of Greenlees-May Duality for formal
schemes (see [AJL/, Proposition 0.3.1]). It is the key to many statements in this
paper concerning complexes with coherent homology.

PROPOSITION 6.2.1. Let X be a locally noetherian formal scheme, £ € D(X).
Then for all F € Do(X) the natural map RINE — & induces an isomorphism

RHom* (&, F) = RHom*(RIZE, F).
PROOF. The canonical isomorphism (cf. (15))
RHom®*(RIYE, F) = RHom* (&, RHom® (RI¥ O, F))

reduces the question to where £ = Ox. It suffices then—as in the proof of Corol-
lary 5.2.3—that for affine X = Spf(A), the natural map be an isomorphism

Hompx)(Ox, F) == Hompx)(RIXOx,F)  (F € D(X)).

Let I be an ideal of definition of the adic ring A, set Z := Supp(A/I), and
let k: X — X := Spec(A) be the completion map. The categorical equivalences in
Proposition 3.3.1 and the isomorphism k*RI;Ox —= RIy Oy in Proposition 5.2.4
make the problem whether for all F' € D.(X) (e.g., F' = RQx,F = jxRQxk,F)

the natural map is an isomorphism
HOHlD(X)(Ox, F) e HOHlD(X)(RFZOX, F)

Now, the canonical functor jy : D(Aq(X)) — D(X) induces an equivalence of
categories D(Age(X)) =5 Dye(X) (see beginning of §3.3), and so we may assume
that F' is a K-flat quasi-coherent complex. Lemma 5.2.2 shows that jyRQy is
right-adjoint to the inclusion Dy (X) < D(X). The natural map

RHom®*(Ox,F) - RHom*(RI;Ox, F)
factors then as
(17) — K E'F
=5 lim F/(IOx)"F = RHom*(RI,Ox, F),
where the map A, obtained by applying x, to the natural map from x*F to the
completion F)z, is a D(X)-isomorphism by [AJL, p.6, Proposition (0.4.1)]; and
® is the isomorphism ®(F, Ox) of [AJL, §2]. (The fact that ® is an isomorphism

is essentially the main result in [AJL].) Also, by adjointness, the natural map is
an isomorphism

Hompx)(Ox, jxRQxk, " F) == Hompx)(Ox, k" F).

Conclude now by applying the functor H'RI'(X, —) to (17). O



70 LEOVIGILDO ALONSO, ANA JEREMIAS, AND JOSEPH LIPMAN

COROLLARY 6.2.2. Let f: X — Y be as in Corollary 6.1.4, and assume further
that f is adic. Then for all F € D.(Y) the map corresponding to the natural
composition RERIYjf*F — REJf*F — F (see Theorem 4.1) is an isomorphism

[ F = RQy f*F.

PROOF. By Proposition 6.2.1, F = AyF := RHom*(RIjOy, F); so this
Corollary is a special case of Corollary 6.1.5(d). O

COROLLARY 6.2.3. In Corollary 6.1.6, suppose Y = Spec(A) (A adic) and that
the the map fo is proper. Then with the customary notation f} for fy we have,
for any F € DF(Y), a natural isomorphism

K SRy F == [*F € DF(X).

PROOF. The natural map f(!)jYRQymy* — fékay* is an isomorphism of func-
tors from D(Y) to Dyc(X), both being right-adjoint to xR fy,. Proposition 3.3.1
gives jyRQyky, F € DF(Y); so by [V, p.396, Lemma 1], firy,F € DF(X)."
Hence Proposition 6.2.1 and Corollary 6.1.7(a) yield isomorphisms

Ky fory, F = RHom® (RI{ Oy, k% foriy, F) =: Ak fory, F == f*F. O

6.3. More relations, involving the functors RIy and Ax := RHom*(RI{ O, —)
on a locally noetherian formal scheme X, will now be summarized.

REMARKS 6.3.1. Let X be a locally noetherian formal scheme.
(1) The functor I' := RI}: D(X) — D(X) admits a natural map I' - 1, which
induces a functorial isomorphism

(A) Hom(I'E,I'F) = Hom(I'E,F)  (£,F € D(X)),
see Proposition 5.2.1(c). Moreover I' has a right adjoint, viz. A:= Ax (see (15)).
The rest of (1) consists of (well-known) formal consequences of these properties.
Since 7 is functorial, it holds that v(F)oy(I'F) = y(F)o L'(n(F)): I'TF — F, so
injectivity of the map in (A) (with & = I'F) yields v(I'’F) = I'(y(F)): I'l'F — I'’F; and
one finds after setting F = I'G in (A) that this functorial map is an isomorphism
(a) Yy )y=I(y): ' = TI.
Conversely, given (a) one can deduce that the map in (A) is an isomorphism, whose
inverse takes a: I'E — F to the composition I'E = I'T'E Lo rF2 The composed

functorial map A: 1 — AT’ AM), A induces an isomorphism

(B) Hom(AE,AF) = Hom(E,AF)  (&,F € D(X)),

9For G € D (Y) one has [5G € D& (X): The question being local on X one reduces to where
either X is a projective space Py and fp is projection, so that f(’)g = fgg@ﬂ';(/y[n] € DS (X), or
fo is a closed immersion and f()*f(!)g = RHom$ (foxOx,F) € DI (Y) [H1, p. 92, Proposition 3.3
whence, again, f4G € DF (X) [GD, p. 115, (5.3.13)].

20The idempotence of T, expressed by (a) or (A), can be interpreted as follows. 3

Set D:= D(X), S:= {£ € D | I'(§) = 0}, so that I' factors uniquely as D % D/S L D
where q is the “Verdier quotient” functor. Then I' is left-adjoint to q, so that S C D admits a
“Bousfield colocalization.” It follows from (c) and (d) below that S = {€ € D | A(§) =0}, and
(b) below means that the functor A: D/S — D defined by A = Aoq is right-adjoint to q; thus
S C D also admits a “Bousfield localization.” And D/S is equivalent, via I" and A respectively,
to the categories Dy C D and D C D introduced below—categories denoted by S+ and +S
in [N2, Chapter 8].
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or equivalently (as above), A induces an isomorphism
(b) AA)=AN): A = AAL
Moreover, the isomorphism (A) transforms via adjointness to an isomorphism
Hom(E,Al'F) =+ Hom(E,AF)  (&,F € D(X)),
whose meaning is that v induces an isomorphism
(c) Al = A.
Similarly, (B) means that A\ induces the conjugate isomorphism
(d) I'A <& TI.

Similarly, that A(X(F))—or «(I'(£))—is an isomorphism (respectively that A(A(F))—
or I'(y(€))—is an isomorphism) is equivalent to the first (respectively the second) of the
following maps (induced by A and + respectively) being an isomorphism:

(AB) Hom(I'E, F) — Hom(I'E,AF) «— Hom(E,AF).

That (c) is an isomorphism also means that the functor A factors, via I', through the
essential image D¢(X) of I' (i.e., the full subcategory D¢(X) whose objects are isomorphic
to I'E for some £); and similarly (d) being an isomorphism means that I" factors, via A,
through the essential image D(X) of A; and the isomorphisms I'AI’ 2 I" and ATA = A
deduced from (a)—(d) signify that A and I" induce quasi-inverse equivalences between the
categories D¢(X) and D(X).

(2) If X is properly algebraic, the natural functor j: D(Az(X)) — Dg(X) is an equiva-
lence, and the inclusion Dz(X) — D(X) has a right adjoint Q := jRQy (Corollary 3.3.4.)
Then (easily checked, given Corollary 3.1.5 and Proposition 5.2.1) all of (1) holds with
D, Dy, and A replaced by Dz, Dgct, and A®:= QA, respectively.

(3) Asin (1), A induces an equivalence from Dyt (X) to Dgc(X), the essential image
of Alp,,x)—or, since A = AT, of Alp, (x) (Proposition 5.2.1). So for any f: X — Y as
in Corollary 6.1.5, the functor

AyRERIY : Di(X) — Die(Y)

has the right adjoint Ax f*RI} = Axf* = f* There result two “parallel” adjoint
pseudofunctors [L4, (3.6.7)(d)] (where “3.6.6” should be “3.6.2”):

(Rfe, f*) (on Dger) and  (AyRERIY, f*) (on Dge).

Both of these correspond to the same adjoint pseudofunctor on the quotient Dqc/(SNDyqc),
see footnote under (1).

If f is adic then RfiAx = AyRf (Corollary 5.2.11(c)), and so Proposition 5.2.6
gives that Rf,(Dg.(X)) C Dgc(Y). Moreover, there are functorial isomorphisms

AyRERIZAx 2 R AxRIZAx =2 Rf.Ax.
Thus for adic f, AyRf.RIY can be replaced above by Rf..
When f is proper more can be said, see Theorem 8.4.
7. Flat base change.
A fiber square of adic formal schemes is a commutative diagram

v Y X

|

U——1
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such that the natural map is an isomorphism V == X xy U. If J, g, K are ideals
of definition of Y, X, U respectively, then L£:= JOvy + KOy is an ideal of definition
of V, and the scheme V:= (V, Oy /L) is the fiber product of the (Y, Oy /J)-schemes
(X, 0x/d) and (U, Oy /K), see [GD, p. 417, Proposition (10.7.3)]. By [GD, p.414,
Corollaire (10.6.4)], if V is locally noetherian and the Oy-module £/L£? is of finite
type then V is locally noetherian. That happens whenever X, Y and U are locally
noetherian and either u or f is of pseudo-finite type.

Our goal is to prove Theorem 7.4 (= Theorem 3 of the Introduction). That is,
given a fiber square as above, with X, Y, U and V noetherian, f pseudo-proper, and
u flat, we want to establish a functorial isomorphism

Br: RGO fEF = g ROW'F (2 glu'F)  (F € DY)

Some consequences of this theorem will be given in Section 8.

In order to define Sz (Definition 7.3) we first need to set up a canonical iso-
morphism RIJu*R f. = RIRg.v*. This is done in Proposition 7.2. (When u is
adic as well as flat, RIj| can be omitted.)

Our proof of Theorem 7.4 has the weakness that it assumes the case when f is a
proper map of noetherian ordinary schemes. As far as we know, the published proofs
of this latter result make use of finite-dimensionality hypotheses on the schemes
involved (see [V, p. 392, Thm. 2], [H1, p. 383, Cor. 3.4]), or projectivity hypotheses
on f [H1, p.191, 5]). There is however an outline of a proof for the general case,
even without noetherian hypotheses, in [L5]—see Corollary 4.3 there.?!

To begin with, here are several properties of formal-scheme maps (see §1.2.2)
which propagate across fiber squares.

PRrROPOSITION 7.1. (a) Let f: X — Y and u : W — Y be maps of locally noe-
therian formal schemes, such that the fiber product X xy U is locally noetherian
(a condition which holds, e.g., if either f or w is of pseudo-finite type, see [GD,
p.- 414, Corollaire (10.6.4)]). If f is separated (resp. affine, resp. pseudo-proper,
resp. pseudo-finite, resp. of pseudo-finite type, resp. adic) then so is the projection
X xyU— U.

(b) With f: X =Y and u : U — Y as in (a), assume either that u is adic or
that f is of pseudo-finite type. If w is flat then so is the projection X xy U — X.

(c) Let f: X =Y, u:U—Y be maps of locally noetherian formal schemes, with
w flat and locally over Y the completion of a finite-type map of ordinary schemes.
Then X xy W is locally noetherian, and the projection X xy U — X is flat.

PROOF. (a) The adicity assertion is obvious, and the rest follows from cor-
responding assertions for the ordinary schemes obtained by factoring out defining
ideals.

(b) It’s enough to treat the case when Y, X, and U are the formal spectra,
respectively, of noetherian adic rings (A4, I), (B,J) and (C, K) such that B and C
are A-algebras with J D IB and K O IC, and such that B®,C is noetherian
(since X xy U is locally noetherian, see [GD, p.414, Corollaire (10.6.5)]). By the
following Lemma 7.1.1, the problem is to show that if C' is A-flat and either K = IC
(u adic), or B/J is a finitely-generated A-algebra (f of pseudo-finite type), then
B®4C is B-flat.

21Details may eventually appear in [L4]. It is quite possible that the argument can be
adapted to give a direct proof for formal schemes too.
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The local criterion of flatness [B, p. 98, §5.2, Thm.1 and p. 101, §5.4, Prop. 2]
reduces the problem further to showing that for all n > 0, (B®,C)/J"(B®4C) is
(B/J™)-flat, i.e., that (B/J")®4C is (B/J")-flat. But, C being A-flat, if K = IC
then (B/J")®4C = (B/J") ®a/1n (C/I"C) is clearly B/J"-flat; while if B/J is
a finitely-generated A-algebra, then (B/J™) ®4 C is noetherian and (B/J")-flat,
whence so is its K-adic completion (B/J")®4 C.

(c) Proceeding as in the proof of (b), we may assume C to be the K’-adic
completion of a finite-type A-algebra C’ (K’ a C’-ideal). If C' is A-flat then by [B,
§5.4, Proposition 4], the localization C":= C’[(1+K')~1] is A-flat, so the noetherian
B-algebra B ®4 C"' is B-flat, as is its (noetherian) completion B &4 C. O

LEMMA 7.1.1. Let ¢ : A — C be a continuous homomorphism of noetherian
adic rings. Then C is A-flat iff the corresponding map Spf(p): Spf(C) — Spf(A)
is flat, i.e., iff for each open prime q C C, Cyqy is Ay,-14)-flat.

PROOF. Recall that if K is an ideal of definition of C and ¢ D K is an open
prime ideal in C, then with C'\ ¢ ordered by divisibility,

Clay = Ospr(0),¢ = lim Cypy
feC\q
where Cyyy is the K-adic completion of the localization Cf.

Now for each f ¢ q and n > 0 the canonical map Cy/K"Cy — Crp/K"Cypy is
bijective, so the lim of these maps is an 1som0rphlsm Cy/K"Cq = Ciy/K"Clgys
whence so is the K adic completion C — C{q} of the canonical map Cy — Cyg;.
We can therefore apply [B, §5.4, Proposmon 4] twice to get that C is A 14-flat
iff Cqy is Agy-14y-flat. So if C is A-flat then Spf(¢p) is flat; and the converse holds
because C' is A-flat iff C, is A,-1,,-flat for every maximal ideal m in C, and every
such m is open since C' is complete. |

PROPOSITION 7.2. (a) Consider a fiber square of noetherian formal schemes

v 2 X

gl lf

with w and v flat. Let
Yg: Rg.RIyv*G — R Ry,v*G (G € Dye(X))

be the unique map whose composition with the natural map RI;{Rgv*G — Rg,v*G
is the natural map Rg.RIyv*G — Rg.v*G. (The existence of g is given by
Propositions 5.2.1 and 5.2.6.) Then for all € € Dqei(X), ¢¢ is an isomorphism.

In particular, if u (hence v) is adic then vg can be identified with the identity
map of Rg.v*E.

(b) Let X, Y, U be noetherian formal schemes, let f: X —Y and u: U — Y be
maps, with u flat, and assume further that one of the following holds:

(i) w is adic, and V:= X xy U s noetherian,

(ii) f is of pseudo-finite type,

(iii) w is locally the completion of a finite-type map of ordinary schemes;
so that by Proposition 7.1 we have a fiber square as in (a). Let

Og: v*"RfG — Rgv*G (G e D(X))
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be adjoint to the canonical map Rf.G — Rf.Rvv*G = Ru,Rg.v*G.
Then for all € € Dget(X), the map 0z := RI{(0g) is an isomorphism

0t : ROU'RLE = RIJRg.v*E.
In particular, if u (hence v) is adic then Og itself is an isomorphism.

(c) Under the hypotheses of (a) resp. (b), if f (hence g) is adic then ¢ resp. 6%
is an isomorphism for all £ € Dye(X) (see Definition 5.2.9).

PROOF. (a) Let J be an ideal of definition of X, and K of U, so that JOv+ KOy
is an ideal of definition of V. The obvious equality I35\ x0, = Iko,lj0, applied
to K-injective Ovy-complexes, leads to a natural functorial map

s def

RIy 1351 Rljo0, k0, — Rlgo,Rlj0,

which is an isomorphism, as one checks locally via [AJL, p. 20, Corollary (3.1.3)].
Also, there are natural isomorphisms

Rl’éovv*ga;;(b)v*Rl}éS =v'RI 85-2%1(;)1)*8 (€ € Dyt (X)).

Thus the natural map RIj — R, induces an isomorphism—the composition

Since (¥): Rg«Rlxp,v*E = Ry RIyv*E € Dy(U) (Propositions 5.2.1 and 5.2.6)
therefore we can imitate the proof of Proposition 5.2.8(d)—without the boundedness
imposed there on G, since that would be needed only to get (x¥)—to see that the
map Rg.RIin v*'E€ — Rg.v*E induced by Rl — 1 factors uniquely as

Rg.RIzp, v"E = R Rg.v*"E — Ry.v*E,
with the first map an isomorphism. It follows that 1¢ is the composed isomorphism
Rg.RIyv*E = Rg.Rlxp,RIjp,v"E = RgRI;p,v°E RIRg.v*€.

The last statement in (a) (for adic u) results then from Corollary 5.2.11(b) and
Propositions 5.2.6 and 5.2.1(a).

(b) Once 6 is shown to be an isomorphism, the last statement in (b) (for
adic u) follows from Corollary 5.2.11(b), and Propositions 5.2.6 and 5.2.1(a).
To show that 6 is an isomorphism, it suffices to show that the composition

Ve tOh: ROU'REE —» R RIGVE (€ € Dyer(X)).

is an isomorphism. We use Lemma 5.4.1 to reduce the problem, as follows.

First, the functors u*, v*, RI} and RIy, are bounded, and commute with
direct sums: for «* and v* that is clear, and for RIj; and RIy it holds because
they can be realized locally by tensoring with a bounded flat complex (see proof
of Proposition 5.2.1). Furthermore, Lemma 5.1.4, Proposition 5.2.1, and Proposi-
tion 3.3.5 show that RI{v*Dyct(X) C Dget(V); and the functor Ry, (resp. Rf)
is bounded on, and commutes with direct sums in, Dqc(V) (resp. Dget (X)), see
Propositions 5.1.4, 3.4.3 and 3.5.2. Hence, standard way-out reasoning allows us to
assume that £ € D;Lct(f)C).

Next, let J be an ideal of definition of X, X,, (n > 0) the scheme (X, Ox/J™), and
Jn: Xpn — X the associated closed immersion. The functor j,.: A(X,) — A(X) is
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exact, so it extends to a functor D(X,,) — D(X). The functor 58 :
being defined as in (16), we have

hi(G):= RHom®(0x /3", G) = jn:jiG (G € D(X)).

If £ € DS (X) then £ = RI;E (Proposition 5.2.1(a)), and, as noted just af-

ter (16), j4€ € Dyc(X,,). Hence, from the triangle in Lemma 5.4.1 (with G replaced

by an £ € D, (X)) we derive a diagram of triangles

D(X) — D(X,)

REWRE(Dns1hn) — ROURLE(©p>1hnf) — REWRLERLE) ——

On>1 ROU' RLA,E — @p>1ROu'Rfh,E — RIu*RfLE A
@ 11);7150’/1715 @ w’:i‘geilng wgleél'
&n>1ReRIGV*A,E — @p>1ReRIGVh,E — Rg.RIyv*E —

~ ~ ~

Ro. RV (Bn>1hn€) — RgRLW (©p51hnE) — Re.RV (REE) ——

From this diagram we see that if each 1/1,;} ¢0h. ¢ 1s an isomorphism, then so is Vg 0.
So we need only prove (b) when & = j,. F with F:= j8& € Dy(X,,). Let us show
that in fact for any n >0 and any F € Doc(Xy), 0] £ is an isomorphism.

The assertion (b) is local both on Y and on U. Indeed, for (b) to hold it suffices,
for every diagram of fiber squares

-/ ’

Vel oy v oy . x

S

U uw Y Y

i’ u’ 4

where Y ranges over a base of open subsets of Y, U ranges over a base of open
subsets of u~Y’, v’ is induced by u, and i, i’ are the inclusions, that i"*6% (= 6:w)
be an isomorphism. Now when u is an open immersion, g is an isomorphism for
all G € D(X). (One may assume G to be K-injective and note that v*, having the
exact left adjoint “extension by zero,” preserves K-injectivity, so that g becomes
the usual isomorphism u*f,G —> ¢,v*G). Thus there are functorial isomorphisms
*Rg. == Ryg.j* and i*Rf. — Rf/j*; and similarly there is an isomorphism
i""RIj; == RIj,i"*. So it suffices that the composition

-/*0/
ROURLE — i*RIRgv0*E = RILLi"Rgw*E —> RIRg.j* v*

be an isomorphism; and with a bit of patience one identifies this composition with

0
RI v i*RfE = RELu*Rf*E L5 R Ry G*E,
thereby reducing to showing that 9}5 is an isomorphism. Thus one may assume
that both Y and U are affine, say Y = Spf(A) and U = Spf(C) with C a flat
A-algebra (Lemma 7.1.1).

Suppose next that X and Y are ordinary schemes, so that Y = Spec(A). In
cases (1) and (ii) of (b), set C"":= C, and in case (iii) let C' be as in the proof of
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part (c) of Proposition 7.1. In any case, C'"' is A-flat, C' is the K-adic completion
of C" for some C"-ideal K, X xySpf(C) is the K-adic completion of X xySpec(C"’),
and we have a natural commutative diagram

X xy Spf(C) —2— X xy Spec(C”) —2—

| | I

Spf(C) _ Spec(C") — Y

U2 u1

With I'” denoting Fs/pf(C)v 0 =:0'(€, f,u) factors naturally as the composition

RIMu} (0(E, f,u1)) 6’ (vi€ g1,uz)
- = —

RIMuuiREE
Here 6(&, f,u1) is an isomorphism because all the schemes involved are ordinary
schemes. (One argues as in [H1, p. 111, Prop.5.12], using [AHK, p. 35, (6.7)]; for
a fussier treatment see [L4, Prop. (3.9.5)].) Also, ¢’ (vi&, g1, u2) is an isomorphism,
in case (i) of (b) since then us and vy are identity maps, and in cases (ii) and (iii)
by Corollary 5.2.12 since then X xy Spec(C"’) is noetherian. Thus:

RIMu;Rgy,vf RI"v;Rg.vsv €.

LEMMA 7.2.1. Proposition 7.2 holds when X and Y are both ordinary schemes.
We will also need the following special case of Proposition 7.2:

LEMMA 7.2.2. Let I be an ideal of definition of Y, Y, the scheme (Y, Oy/I™),
and in: Yy, — Y the canonical closed immersion. Let un: Y, xy U — Y, and
Pr: Yo xyU — W be the projections (so that u, is flat and py, is a closed immersion,
see [GD, p.442, (10.14.5)(ii)]). Then the natural map is an isomorphism

U*'Ln*g e pn*uzg (g € ch(Yn))

PROOF. Since the functors u*, i,., Pn«, and u} are all exact, we may assume
that G is a quasi-coherent Oy, -module; and since those functors commute with lim
we may further assume G coherent, and then refer to [GD, p. 443, (10.14.6)]. O

Finally, for general noetherian formal schemes X and Y, and J and Y,, as above,
let § D IO« be an ideal of definition of X, let X,, be the scheme (X, Ox/J"), and let
fn: Xn — Y, be the map induced by f. Then for any F € Dy (X,,), it holds that
R frsF € Dqc(Yn). (See Proposition 5.2.6—though the simpler case F € D;.(X,,)
would do for proving Proposition 7.2.) Associated to the natural diagram

X, xyU o X,

Jn

(7.2.3)
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there is a composed isomorphism

R R jn F = R iR F (F € Dye(X,0))
= R pnsus Rfpe F (Lemma 7.2.2)
= R pn«Rgnsv F (Lemma 7.2.1)
= RO RGqnv F
= RORGv jps F (Lemma 7.2.2),

which—the conscientious reader will verify—is just QJ(M -
Thus 0/ , is indeed an isomorphism.

Jnx

(c) By definition RIY(Dgye(X)) C Dyet(X), and so by (a) and (b) it’s enough
to see, as follows, that the natural map RI}.E — & induces isomorphisms of the
source and target of both ¢ and 6;.

Proposition 5.2.8(c) gives the isomorphism Rg,RIjv*RIYE == Rg.RIJv*E,
as well as the second of the following isomorphisms, the first and third of which
follow from Corollary 5.2.11(d):

RO Rg.v*RIFE =2 Re. RIGVV'RIYE 2 Rg. RIGv*E 2 R Rg.v*E.
Likewise, there are natural isomorphisms

RIOu'RLRINE = RIu'RIGRLE = RIu ' RLE. O

Notation and assumptions stay as in Proposition 7.2(a). Assume that f and g
satisfy the hypotheses of Theorem 6.1, so that the functor Rf,: Dgct(X) — D(Y)
has a right adjoint f*, and similarly for g. Recall from Corollary 6.1.5(b) that

~

there is a natural isomorphism g RIj| == g¢;°.
DEFINITION 7.3. With conditions as in Proposition 7.2(b), the base-change map
Br: RIZv* f*F — g Ru*F (FeD(®Y))
is defined to be the map adjoint to the natural composition
Ry RIyv*f*F % R Rg.v*f*F ﬁ ROu'RLfCF — RIU'F
where t):= ¢);x and 0= 9}57" In particular, if u (hence v) is adic then
Br: v f{F — glu'F

is the map adjoint to the natural composition

Ryg.v*f*F ﬁ WV RLESF — ' F
where 6:= Hftx -

Notation. For a pseudo-proper (hence separated) map f (see §1.2.2), we write f*
instead of f*.
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THEOREM 7.4. Let X, Y and U be noetherian formal schemes, let f: X — Y
be a pseudo-proper map, and let u: U — Y be flat, so that in any fiber square

v 2 X

| |7

U—"14

the formal scheme 'V is noetherian, g is pseudo-proper, and v is flat (Proposi-
tion 7.1). Then for all F € D;C(y):: Dy.(Y) N DT (Y) the base-change map Br is

an isomorphism
Br: Ry f'F = ¢' RO F (2 g'u*F).

Remark. In [N1, p.233, Example 6.5] Neeman gives an example where f is a finite
map of ordinary schemes, u is an open immersion, F € D; (Y), and 87 is not an isomor-
phism.

PROOF. Recall diagram (7.2.3), in which, J and J D JOx being defining
ideals of Y and X respectively, Y, is the scheme (Y, Oy/I™") and X,, is the scheme
(X, Ox/3™). Let K D IOy be a defining ideal of U, let £:= JOy + KOy, a defining
ideal of V, let V;, (n > 0) be the scheme (V,Ov/L"), and let 1,: V;, — V be the
canonical closed immersion. Then by Example 6.1.3(4),

LniliyG = 1,u15G = RHom(Ov/L",G) =: hy(G) (G € DI (V).

So in view of the natural isomorphism R} g'u*F - g'u*F (Proposition 5.2.1(a)),
Lemma 5.4.1 shows it sufficient to prove that the maps

ho(BF): L bRV F — Ll g'u*F - (n>0)

are all isomorphisms.
Moreover, the closed immersion [,, factors uniquely as

Vi 5 X, xy U250,

so we can replace I}, by r},q, (Theorem 6.1(b)). Thus it will suffice to prove that
the maps

0,(67): RV F'F = q,9'w’F  (n>0)
are all isomorphisms.

In the cube (7.2.3), the front, top, rear, and bottom faces are fiber squares,
denoted, respectively, by O, O, O, and Oy; and we have the “composed” fiber
square [.:

X, xyU —2— X,

Pndn l: 9qn in fn l: fin
u — Y
u

The proper map f,, and the closed immersions i,, and j, are all of pseudo-finite
type. Also, it follows from Proposition 7.1(b) that in addition to u, the maps u, uy,,
v and vy, are all flat. So corresponding to the fibre squares [ we have base-change

maps [.
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Consider the following diagram of functorial maps where, to save space, we set
A= X, xyUand v:=Y, xy U.

GRS P R e RIJU(f4a) == RIJv:(infa) = RIJv,fAL,
q;w)l ﬁcl lﬁr
ghg'vt = (gg)'ut = (pagn)'ut =  giphut  — g RIJulil

an (B

As above, we want to see that ¢.,(3) is an isomorphism (in the category of functors
from D;'C(H) to D(X,,xyU)). For that the following assertions clearly suffice:

(a) The preceding diagram commutes.
(b) The base-change maps 3; and 3}, are isomorphisms.
(c) The base-change map S, is an isomorphism.

Assertion (a) results from part (b) of the transitivity lemma 7.5.2 below. Since iy,
and j, are closed immersions, assertion (b) results from Lemma 7.6.1, which is just
Theorem 7.4 for the case when f is a closed immersion. Since f is pseudo-proper
therefore f,, is proper, and assertion (c) is essentially the case of Theorem 7.4—
established in Lemma 7.7.1—when X and Y are ordinary schemes.

Thus these three Lemmas will complete the proof of Theorem 7.4. O

7.5. We will need some “transitivity” properties of the maps 6; and G relative
to horizontal and vertical composition of fiber squares of noetherian formal schemes,
i.e., diagrams of the form

V2 V1
Vi

(7.5.0a) 9l gll lf
U —— U —— Y
Vv 24— X
gzl sz
(7.5.0b) w— 2
gll Lfl
U —1Y

where all squares are fiber squares, and the maps u, u;, v, v;, and w are all flat.
As we will be dealing with several fiber squares simultaneously we will indicate
the square with which, for instance, the map 6g in Proposition 7.2 is associated,
by writing 0y, (G) instead.
The transitivity properties begin with:



80 LEOVIGILDO ALONSO, ANA JEREMIAS, AND JOSEPH LIPMAN

LEMMA 7.5.1. Coming out of the fiber square diagrams (7.5.0a) and (7.5.0b),
the following natural diagrams commute for all G € D(X):

0 L UL, (g)
(v1u2)*RfG L Ry.(v1v2)*G

gl lg

usuiR — usRg;,v7G ————  Rg.viv7
suiRAG w3670, (9)) 3Rgy, 010 Dor o (019) g+ V307G

Of1 9,u(9 *
W R(f1£2).G GEIICH R(g1g2).0°G

=| B

v*Rfi.Rf,G —— Rg, w*Rf,,G ———  Rg;,Rg,,v*G
fl f2 9f1vu(Rf2*g) & f2 R.‘h*(efg,w(g)) & 92

PRrOOF. This is a formal exercise, based on adjointness of u* and Ru., etc.
Details are left to the reader. O

LEMMA 7.5.2. (a) In the fiber square diagram (7.5.0a) (with ui, vi, us and vy
flat), let F € D(Y) be such that the maps 0] := Q}ﬂl(ftxf), 05:= 05, o, ((91)FuiF)
and 03 := 6y, (RIy vi f*F) of Proposition 7.2 are isomorphisms. Then the map
0" = 0; ., (fCF) is an isomorphism, so the base-change maps By := Byu, (F),
B2:= By, u, (Ui F) and B:= Bt u,u,(F) can all be defined as in Definition 7.3; and
the following natural diagram, all of whose uparrows are isomorphisms, commutes:

RIY(vive)* f&F g g RL [ (ugu)* F
RIGv30l fXF REvi(g) uiF  —2  gRIjuju
sz.Qis(c) 2T6.1.5(b) 5.2.8(C)T2
RIjvsRE vi f*F RIGv3(9)) R ulF —— gRIJusRE) uiF
RIv3 (A1) ! Ba !

(b) In the fiber square diagram (7.5.0b)—where u, v and w are assumed flat—
set f:= fifa and g:= g192. Let F € D(Y) be such that the maps 6] := 9}11u((f1)f]:),
0y:= 0}, ,(f7F) and 0":= 0 ,(fF) of Proposition 7.2 are isomorphisms, so that
the base-change maps (1 := Bf, . u(F), B2 := Brw((fi)i F) and B:= Bru(F) are
all defined. Then the following diagram, whose two uparrows are isomorphisms,
commutes:

RIJv*f*F & g RIu*F

:T T:

RIGv* (fo)i (A F " (g2)f REGw*(fi)i F W (92)7 (91 RIqu™F
2 9s): (P1
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PROOF. (a) The map
7= REu3 (070, (FF)): REu3uR L F — RIuzRg, v} 7 F
is isomorphic by Proposition 5.2.8(c), to
w3(0)): REGRE wiRS 7 F — RIusRE, Ryt [ F,

and so is an 1somorphlsm (since 6] is).
The map
Oy u, V1 i F): ROus Ry 07 f7F — R Rg.v3 vl f* F
is also an isomorphism, as it is isomorphic to
0y : RIju;Rg, RIp 01 [ F — R Rg.w;RI ol [ F,

because the natural map RIjusRg RIY vif*F — RIjusRg, v f*F is the com-
posed isomorphism
R Ry, R0 F o RIS RE Ry, 0] [ F
u f><
RIu;Rg,,v
m wus Ry 01 fEF

(see Proposition 7.2(a)); and because RIjjRg.vsRIy vif*F — RIjRg.vsvi f*F
is one of the maps in the commutative diagram (B) below, all of whose other maps
are isomorphisms.

Thus in the next diagram, whose commutativity results easily from that of the
first diagram in Lemma 7.5.1, all the maps other than 6’ are isomorphisms, whence
so is 6.

R Ry, (v102) [ F o R usuiRE [ F

~| @) =|»

RO Rgv30ifi'F  «—————— RLOu;Rg, 01 f'F
gl uz(vl fcx}-)

Now it suffices to show that the diagram which is adjoint to the diagram in (a)
without its southeast (bottom right) corner, commutes. That adjoint diagram is the
outer border of the following one, where, to reduce clutter, we omit all occurrences
of the symbols R and F, write f* for f*, etc., and leave some obvious maps
unlabeled:

1—1
gy (va) f* 2o Llg(vive)f* ——— Qusuifof*  — Lubui

T I w e

L3 f~ B) [ g-vsvif* P Ljus gp,v7 f~
_;1 u2(vlf><)
45.2.8@ T T o
gelyvsly vi f* — LygosIy vif* ———— Luuig Iy vif>

0y-1
ﬁll ﬁll lﬁl

!k Xk / * X ok !,k X % !, ok, %k
gxIyva 9y uy —>w Ly g«va 9y uy o Iyuzgrgrur  —— Iyuzuy
2

It suffices then that each one of the subrectangles commute.
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For the three unlabeled subrectangles commutativity is clear.

As before, commutativity of subrectangle (A) follows from that of the first
diagram in Lemma 7.5.1.

Commutativity of (B) is easily checked after composition with the natural map
L[ g« (v1v2)* f* — g« (v1v2)*f*. (See the characterization of 1 in Proposition 7.2(a).)

Commutativity of (C) results from that of the following diagram:

0f
Hif —=—— quif* —— uwhfr ——

oo I |

/ * £ X / * £X / * X / *
91*Q1U1f —>¢ Fulguvlf —’9/71 Fulu1f*f - Fulul
1

o] |

91:97 i ui
Here subrectangle (D) commutes by the characterization of ¢ in Proposition 7.2(a);
and (E) commutes by the very definition of the base-change map (1.

(b) As in (a), we consider the adjoint diagram, essentially the outer border of
the following diagram (7.5.2.1).

(Note: The map : gy, Iyw*fo, fo /i — L{gr,w*fo, f5'fi* in the middle of
diagram 7.5.2.1 is defined because f,, [/ = Rfo, (fo)f (f1)fF € Dge(2), by
Proposition 5.2.6.)

For diagram 7.5.2.1, commutativity of subrectangle (B) (resp. (D)) is given by
the definition of B3 (resp. 81.) Commutativity of (C) follows from that of the second
diagram in Lemma 7.5.1. Commutativity of (A) is left as an exercise. (It is helpful
to compose with the natural map I 91, 92,0 f5 i — 91,92, 0" f5 7 and to use the
characterization of ¢ in Proposition 7.2(a).) The rest is straightforward. ]

via BQ

g Iy L ———— g9y 91:.92:.95 Ly w* i
~ »
g Iyv*f> 9192, 0" o i (B)
(A) ~| g (6571
Fﬁg*v*fx 91*Fv/\7W*f2* f2xf1X gl*F\//V U’*flx
~ »
ngl*gz*v*f;flx M Fﬁgl*U’*fz*fzxle - Fﬁgl*W*f1X L grlypw fi*
Ol ) le;fl
~ ©) D' fifo it — Luwtf fi© (D) 91.(B1)
- |
Qgv'f* ——— QLS —  Qu — gugiQu’

(7.5.2.1)
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7.6. This subsection, proving Lemma 7.6.1, is independent of the preceding
one.

LEMMA 7.6.1. Theorem 7.4 holds when f is a closed immersion.
PROOF. The natural isomorphisms RIjv*f'RIJF -~ RIjv*f'F and

(see Corollary 6.1.5(b)) let us replace F by RI}/F, i.e., we may assume F € D, (Y).

Recall from Example 6.1.3(4) that Rf. = f.: D(X) — D(Y) has a right ad-
joint f% such that f#(Dg. (Y¥)) C D (X); and that there is a natural isomorphism

JgRIXfG = 1fig=fg (G €DL(Y).
The canonical map f, f' — 1 is the natural composition

RF 2 SREP = L =1

Similar remarks hold for g—also a closed immersion [GD, p. 442, (10.14.5)(ii)].

As in the proof of Lemma 7.2.2, the map 0g: u*f,E == g,.v*E of Proposi-
tion 7.2 is an isomorphism for all £ € Dgc(X). (Recall Lemma 3.1.5.) This being
so, the base-change map (r is easily seen to factor naturally as

RIpo*['F = g g.RIGVFF = g g.0"['F = gu' L f'F = gu'F.

Also, we can define the functorial map ﬁg to be the natural composition

VfiC = g fiC = g ffC — gu'C (€ € Dye(Y)).

The maps ﬁ;- and [r are related by commutativity of the following diagram,
in which J is an ideal of definition of Y (so that JOx is an ideal of definition of X):

7@k
R0 R [ P RERL, v'ff — REv " 2 Ry gin
5.2.8(b
At |- i

RI{;U* ! 5 g!u*
(For the unlabeled isomorphism, see the beginning of the proof of Proposition 7.2.)
Since RIy is right-adjoint to the inclusion Dqct (V) — D(V) (Proposition 5.2.1), we
can verify this commutativity after composing with g'u* - RI’{;ghu* — giu*, at
which point the verification is straightforward.
Thus to prove Lemma 7.6.1 we need only show that 62 is an isomorphism, i.e.
(since g is a closed immersion), that g, (ﬁuf) is an isomorphism.

For that purpose, consider the unique functorial map
o=0(£,G): w*RHomy (&, G) — RHomy (u*E,u*G) (£ €D (Y), Ge DT (Y))
which for bounded-below injective complexes G is the natural composition
u*RHomy (&, G) = u*Homy (€, G) — Homj(u*E,u*G) — RHomy (u*E,u*G).
This map is an isomorphism. Indeed, it commutes with localization, so we need
only check for affine Y, and then, since every coherent Oy-module is a homomor-

phic image of a finite-rank free one ([GD, p.427, (10.10.2)]), a standard way-out
argument reduces the problem to the trivial case £ = Oy.
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Take £:= f,Ox = (say) Oy/J. The source and target of o(Oy/J, F) are
wRHom®*(Oy /T, F) = u*f, fF = g v*f*F,
RHom® (u*(Oy /9), u* F) = gug*u*F.

Let K be a K-injective Oy-complex quasi-isomorphic to u*F. Since the com-
plexes u*Hom}(Oy/J, F) and Hom? (u*Oy /I, K) = RHomy(u*Oy/I,u*F) are
both annihilated by JOy, we see that the isomorphism o(Oy/J, F) is isomorphic
to a map of the form g.(s) where ¢: v*f!F — gfu*F is a map in D(V). It suffices
then to show that ¢ = ﬂu}-, i.e. (by definition of ﬂg_-), that the natural composition

Th*
WFEF 2 gt fiF 2 g g F T
is induced by the natural map
i LfEF = RHom®(Oy /3, F) — RHom* (Oy, F) = F.

From Example 6.1.3(4) one sees, for injective F, that TjhT takes any homomor-
phism ¢: Oy/J — F over an open subset of Y to ¢(1); and similarly for Tuh*}-. The
conclusion follows from the above definition of o(Oy /T, F) = g.(s). O

7.7. In this subsection we prove Theorem 7.4 in case f: X — Y is a proper
map of ordinary noetherian schemes, by reduction to the case where X, Y, U and V
are all ordinary schemes—a case which we take for granted (see the introductory
remarks for section 7). Of course when wu is adic then U is already an ordinary
scheme, and no reduction is needed at all.

LEMMA 7.7.1. Let f: X — Y be a proper map of ordinary noetherian schemes.
For Theorem 7.4 to hold with this f it suffices that it hold whenever U and V are
ordinary schemes as well.

ProoOF. Without yet assuming that X and Y are ordinary schemes, we can
reduce Theorem 7.4 to the special case where the formal scheme U is affine and
u(U) is contained in an affine open subset of Y. Indeed, for the base-change map
Br = Br,u(F) of Theorem 7.4 to be an isomorphism, it clearly suffices that for any
composition of fiber squares

Vo —2 5y Y
oLl
U —— U —— Y

with wg the inclusion of an affine open Uy C U such that u(Up) is contained in an
affine open subset of Y, the map

5 ): RS F g F
be an isomorphism. Remark 5.2.10(6) yields that F € ﬁ;—c(y) T e ﬁg_c(u)

So if we assume the above-specified special case, then 3y ., (F) and Gy . (u*F) are
both isomorphisms. From Proposition 5.2.1(a) we have a natural isomorphism

v (BF) = RIp,v5 (Br.u(F)),

so Lemma 7.5.2(a) shows that v§(67) is in fact an isomorphism.
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With reference to the remarks just preceding Section 7.5, (a) and (b) having
already been proved, only (c¢) remains, i.e., we need only prove Theorem 7.4 for the
rear face of diagram (7.2.3).

In other words, with the notation of diagram (7.2.3), we may assume in proving
Theorem 7.4 that f = f,, (a proper map of ordinary schemes), and that u = u,.
Moreover Y, is a closed subscheme of Y, and so if U is affine and u(U) is contained
in an affine open subset of Y, then Y,, xy U is affine and u, (Y, xy U) is contained
in an affine open subset of Y,,. It follows that Y, xy U is the completion of an
ordinary affine Y,,-scheme. (That can be seen via the one-one correspondence from
maps between affine formal schemes to continuous homomorphisms between their
associated rings [GD, p.407, (10.4.6)]). Theorem 7.4 is thus reduced to the case
depicted in the following diagram, where f: X — Y is now a proper map of ordinary
noetherian schemes, U is an ordinary affine Y-scheme, x: U — U is a completion
map, and u: U — Y factors as shown.

LxyU —— XxylU —— X

| o | e s
v — U —Y
We will show that Theorem 7.4 holds for subdiagram (1) by identifying the
base-change map associated to x with the isomorphism ¢ in Corollary 6.1.8. As

subdiagram (2) is a fiber square of ordinary schemes, Lemma 7.7.1 will then result
from the preceding reduction and the transitivity Lemma 7.5.2(a).

It is convenient to re-represent subdiagram (1) in the notation of Corollary 6.1.8.
Consider then a diagram

X=Xz —2 X
1| |
Y:=Yw “—w) Y

as in Corollary 6.1.6, with Z = fo_lW. That ¢ is the base-change map means that
¢ is adjoint to the natural composition

RERIRGSS = RRLACS =3 RIWR 0. f5 — REjs) — s,

r—1
But by definition, ¢ is adjoint to the natural composition

RARIYKEY fy 52—“’4; )Rf*/Q}RFZfOX — RARYRI fi ky- kY (—>) Ky
2.4(c (kY

with 7{ as in Corollary 6.1.6—so that 7{(x}) factors naturally as
R fikXRI fo k- K7 i} KYRfo RIL fi ky- k)

— kYR fo, fo Ky« kY
— Ky Ky« Ry

71' *
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It will suffice then to verify that the following natural diagram commutes (where,
again, we omit all occurrences of R):

w 9/—1

EReefy i mpenfs L meihll —— LR
5.2.4(c)l (A) l l
f*’i?;cFZfOX ﬁ’ Hng*FZfoX — ’fgf()»jo>< — ’ig

l l | |l

f*n*xFZfoxﬂy*ni; ﬁ lii;fo*FZfOXliwﬂi; —_— Ii;fo*foxliy*li;; —— Kyky. Ky

Given that 7 = 1, the verification of commutativity is straightforward, except for
subrectangle (A).

Now there is a functorial isomorphism a: R fo.RI; == Rl R fo. which arises
in the obvious way, via “K-flabby” resolutions, from the equality fo.l, = Iy} fo«
(see the last paragraph in the Remark following (3.2.5) in [AJL, p.25]), and
whose composition with the natural map RIj,;Rfo. — Rfo. is the natural map
Rfo.RI; — Rfo.. And, again, we have the isomorphism RIjk} - xjRIy, of
Proposition 5.2.4(c), whose composition with the natural map ryRIy, — Ky is the
natural map RIjky — kj. Hence commutativity of (A) follows from that of the
outer border—consisting entirely of isomorphisms—of the following diagram:

W o’

f*Fjé’{*x E—— L:j/f*’{*x I—gﬁng*
5.2.4(c) | ~ feb% — Ky fox ~ | 5.2.4(c)
ferix Iy ;7 kY foulz E— &3 Ly fox

Since Ry is right-adjoint to the inclusion Dy(Y) — D(Y) (Proposition 5.2.1),
we can check commutativity after composing the outer border with the natural map
ng’ fiky — [k, so that it suffices to check commutativity of all the subdiagrams
of the preceding one. This is easy to do, as, with £ := f;*F, the maps denoted
by Os (= 0y,,,(€)) in Corollary 5.2.7 and in Proposition 7.2 are the same.

This completes the proof of Lemma 7.7.1, and of Theorem 7.4. O

8. Consequences of the flat base change isomorphism.

We begin with a flat-base-change theorem for the functor f* = Ay f' associated
to a pseudo-proper map f: X — Y of noetherian formal schemes. (As before,
fli= fX, and f* is right-adjoint to the functor RERIY: Dyc(X) — D(Y), where
D, (X) is the (full) A-subcategory of D(X) such that

F € Dye(X) & RIZF € Dyer(X),

see Corollary 6.1.4.)
We deduce a sheafified version Theorem 8.2 of Theorem 2 of the Introduction
(= Theorem 6.1 + Corollary 6.1.4). This is readily seen equivalent to the case of
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flat base change where u: U — Y is an open immersion; in other words, it expresses
the local nature, over Y, of f' and f*.

Section 8.3 establishes the local nature of f' and f* over X. From this we obtain
that f*(DF(Y)) € DF(X) (Proposition 8.3.2). This leads further to an improved
base-change theorem for bounded-below complexes with coherent homology, and to
Theorem 8.4, a duality theorem for such complexes under proper maps.

We consider as in Theorem 7.4 a fiber square of noetherian formal schemes
v 2 X
oL b
U ——=1Yy
u
with f and g pseudo-proper, u and v flat.
For any F € D;rc(‘d) we have the composed isomorphism

9: RIVU'F*F =5 RIVV'REOL*F = RIVS'F =5 ¢'u*F.
v f 5.27;(2) vv xf 6.14—5(;) U f —7 g

In particular, v*f*F € Dyc(V).
THEOREM 8.1. Under the preceding conditions, let
BE: v f*F — g*w'F (F e DL®Y))
be the map adjoint to the natural composition
(8.1.1) Rg.RIYv*f*F @ Rg.g'u*F — u*F.

Then the map Av(B%) is an isomorphism

Av(BF): Ayo* f*F = Ayg*u*F 6 125( )g#u*f'

Moreover, if w is an open immersion then 3§ itself is an isomorphism.

Proor. The map S* factors naturally as

(812) 'U*f# N Avv*f#ﬁhg%lgc)Avav*f# IXLV’L; Avg!u* — g#u*.

To see this, one needs to check that (8.1.2) is adjoint to (8.1.1). The natural map
1 — Ay factors naturally as 1 — AyRIy — Ay (easy check), and hence the
adjointness in question amounts to the readily-verified commutativity of the outer
border of the following diagram (with all occurrences of R left out):

g*[\‘;AvI\‘;’U*f# - g*wv* # ;{9> g*g'u*
via

| I I

g Ty AV f* —=— g IGAVIG Y —=— g.[yAvg'u®

That Ay(8%) is an isomorphism results then from the idempotence of Ay
(Remark 6.3.1(b)).
When u—hence v—is an open immersion, we have isomorphisms (the first of
which is obvious):
Avv*f# o~ U*Axf# o~ ’U*f#,
6.1.5(a)
and the last assertion follows. g
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Next comes the sheafification of Theorem 2. Let f: X — Y be a map of locally
noetherian formal schemes. For G and £ € D(X) we have natural compositions

RfARHom%(G,E) — RERHomY (Lf*RfG, E) — RHom}y(R£G, RLEE)
[Sp, p. 147, 6.7]

and
RHom%(G, &) — RHom%(RI¥G,E) 3 RHom%(RIY G, RIXE).

THEOREM 8.2. Let X and Y be noetherian formal schemes and let f: X — Y be
a pseudo-proper map. Then the following natural compositions are isomorphisms:

&*: RERHom% (G, f*F) — RHomy(RERILG, REARIY f*F)
— RHomy(RERIG, F) (G € Dge(X), F € DL (Y));

& RERHom&(G, f'F) — RHomy(RLG, REf'F) — RHomy(RLG, F)
(G € Dyee(X), F € D(Y)).

PROOF. The map &* is an isomorphism iff the same is true of RI'(U, 6*) for
all open U C Y. (For if £&—which may be assumed K-injective—is the vertex of
a triangle based on ¢* then ¢* is an isomorphism < & 2 0 & HY(E) = 0 for
all i € Z < the sheaf associated to the presheaf U — H'T(U,E) = H'RI(U, &)
vanishes for all i.) Set V:= f~'U, and let u: W — Y and v: V < X be the
respective inclusions. We have then the fiber square

v Y X

|

U—19,

and need only verify that RI'(U, 6*) is the composition of the following sequence of
isomorphisms:

RT (U, RERHom%(G, f*F)) = RT(V, RHom%(G, f*F))  [Sp,6.4,6.7,5.15]

—~ RHom?, (v*G, v*f*F) [Sp,5.14,5.12, 6.4]
— RHom? (v*G, g*u*F) (Theorem 8.1)

~, RHom%(Rg.RIE0*G, w*F)  (6.1.4,5.2.10(6))
— RHom{(Rg.v*RIY G, u*F) (elementary)
= RHom{(v*"RARIYG, u*F) (elementary)

—> RI(U, RHom}(RARIYG, F)) (as above).

This somewhat tedious verification is left to the reader (who may e.g., refer to the
proof of (4.3)° = (4.2) near the end of [L5]).

That &' is an isomorphism can be shown similarly—or be deduced via the
natural map f' = RI}f* — f* (Corollary 6.1.5), which for G € Dy (X) induces
an isomorphism RHom%(G, f'F) =~ RHom*%(G, f*F) (Corollary 5.2.3). O
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8.3. For pseudo-proper f: X — Y, the functors f':= f* and f* are local on X,
in the following sense.

PROPOSITION 8.3.1. Let there be given a commutative diagram

ui_l,xl

TP

Xo —— Y
f2
of noetherian formal schemes, with f1 and fa pseudo-proper and i1 and iy open
immersions. Then there are functorial isomorphisms

i = i, i
PROOF. The second isomorphism results from the first, since for any F € D(Y)
and for j = 1,2,

i fiF O S RHomS, (RIY Ox,, fiF) = RHomy(i'RIY, Ox,, i% f1F)
=~ RHom$ (RO, i f5F).

For the first isomorphism, Verdier’s proof of [V, p. 395, Corollary 1]—a special
case of Proposition 8.3.1—applies verbatim, modulo the following extensions (a),
(b) and (c) of some elementary properties of schemes to formal schemes.

(a) Since pseudo-proper maps are separated, the graph of i; is a closed immer-
sion y: U — X;xyU (see [GD, p. 445, (10.15.4)], where the “finite-type” hypothesis
is used only to ensure that X; xy U is locally noetherian, a condition which holds
here by the first paragraph in Section 7. And if U — Y is an open immersion, then
so is 7y (since then both 7;: X; xy U — X; and i; = 7; are open immersions).

(b) If s: U — V is an open and closed immersion, then the exact functors s,
and s* are adjoint, and by Example 6.1.3(4) there is a functorial isomorphism

SF2SF2s'F  (F € Dgu(V)).

(c) (Formal extension of [GD, p.325, (6.10.6)].) Let U < W & Z be maps
of locally noetherian formal schemes such that 7 is a closed immersion and w is
an open immersion. (We are interested specifically in the case W:= X2 xy U and
2 := Xg xy X1, see (a).) Set u:= wy. Then the closure U of uw(WU) is a formal
subscheme of Z, and the map U — U induced by u is an open immersion.

Indeed, U is the support of Oz /] where J is the kernel of the natural map
Oz — u.Oq; and it follows from [GD, p.441, (10.14.1)] that we need only show
that J is coherent. The question being local, we may assume that Z is affine, say
Z = Spf(A). Cover U by a finite number of affine open subschemes U; (1 < i < n),
with inclusions u;: U; < U. Then there is a natural injection

U Oy — U*(@?:l Uz*Oul) = @?:1(uui)*(9u“

so that J is the intersection of the kernels of the natural maps Oz — (uu;)«Oy,,
giving us a reduction to the case where U itself is affine, say U = Spf(B). Now if I
is the kernel of the ring-homomorphism p: A — B corresponding to u, then for any
f € A the kernel of the induced map pgsy: Agpy — Byyy is Ijyy; and one deduces

that J is the coherent Oz-module denoted by I in [GD, p. 427, (10.10.2)]. O
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ProrosiTiON 8.3.2. If f: X — Y is a pseudo-proper map of noetherian formal
schemes then
(DL (Y)) € DS ().
PROOF. Since f* commutes with open base change (Theorem 8.1) we may
assume Y to be affine, say Y = Spf(A). Since f is of pseudo-finite type, every point
of X has an open neighborhood U such that f|y factors as

U < Spf(B) 2 Spt(A) = Y

where B is the completion of a polynomial ring P:= A[Ty, T4, ..., T,] with respect
to an ideal I whose intersection with A is open, ¢ is a closed immersion, and
p corresponds to the obvious continuous ring homomorphism A — B (see footnote
in Section 1.2.2). This Spf(B) is an open subscheme of the completion P of the
projective space P;* along the closure of its subscheme Spec(P/I). Thus by Propo-
sition 8.3.1 and item (c) in its proof, we can replace X by a closed formal subscheme
of P having U as an open subscheme. In other words, we may assume that f factors

as X <& P 2L, Spf(A) = Y with ¢; a closed immersion and p; the natural map.
Then f* = i#*p* and we need only consider the two cases (a) f = p; and (b) f =i;.

Case (a) is given by Corollary 6.2.3. In case (b) we see as in example 6.1.3(4)
that for F € DF(Y) we have f°F € DF(X) and

6310)

f'F = AxRIUf'F == A ofiF 22 fiF e DF(X). 0

COROLLARY 8.3.3. Forall F € DCJr (9) the base-change map 3% of Theorem 8.1
is an isomorphism
B v R F = gtutF.
PROOF. Proposition 6.2.1 gives an isomorphism v*f*F =~ Ayv*f*F . O

We have now the following duality theorem for proper maps and bounded-below
complexes with coherent homology.

THEOREM 8.4. Let f: X — Y be a proper map of noetherian formal schemes,
so that Rf.(DF (X)) € DF(Y) and f*(DF(Y)) c DF(X) (see Propositions 3.5.1
and 8.3.2). Then for G € DF(X) and F € D} (Y) there are functorial isomorphisms

RfRHom® (G, f*F) 2> RHom®(RLRIYG, F)

SN—lzd)RHom (RIRLG, F) = RHom®(RLG, F).

In particular, f*: DF(Y) — DF(X) is right-adjoint to Rf.: DF(X) — D (Y).
If X is properly algebraic we can replace f* by the functor f> of Corollary 4.1.1.
PROOF Left to reader. (For the last assertion see Corollaries 6.2.2 and 3.3.4.)
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