1(a) Number of integers in the set = 322
Number divisible by 17 = 18
Number divisible by 19 = 16
Number divisible by both = 0
Number divisible by neither 17 nor 19 = 322
− 16 − 18 = 288

1(b) Number of integers in the set = 5490
Number divisible by 17 = \(\lfloor \frac{5490}{17} \rfloor = 322 \)
Number divisible by 19 = \(\lfloor \frac{5490}{19} \rfloor = 288 \)
Number divisible by both 17 and 19 = \(\lfloor \frac{5490}{17 \times 19} \rfloor = 16 \)
Number divisible by neither 17 nor 19 = 5490 − 322 − 288 + 16 = 4896

(2) \(100023 = 3 \times 30669 + 8016 \)
30669 = \(3 \times 8016 + 6621 = 4 \times 8016 − 1395 \)
8016 + 5 \times 1395 + 1041 = 6 \times 1395 − 354
1041 = \(3 \times 354 + 18 \)
354 = \(16 + 3 \)
g.c.d = 3

(3) If \(n \) is even there are \(2^{n/2} \) since we can fill in the first \(n/2 \) digits arbitrarily and then the last \(n/2 \) digits are determined.
If \(n \) is odd there are \(2^{n−1/2} \) since we can fill in the first \(n−1/2 \) digits arbitrarily, we can put a 0 or a 1 in the middle position, and then the last \(n−1/2 \) digits are determined.

4. It is sufficient to show that (i) \(n^9 − n \equiv 0 \mod 2 \), (ii) \(n^9 − n \equiv 0 \mod 3 \), and (iii) \(n^9 − n \equiv 0 \mod 5 \)
(i) is clear since \(n^9 − n \) is even when \(n \) is even and is even when \(n \) is odd.
(ii) If \(n \equiv 0 \mod 3 \) then \(n^9 − n \equiv 0 \mod 3 \) and if \(n \not\equiv 0 \mod 3 \) then \(n^2 ≡ 1 \mod 3 \) hence \(n^9 − n \equiv (n^2)^4 \cdot n − n \equiv n − n \equiv 0 \mod 3 \).
(iii) is similar to (ii) using that if \(n \not\equiv 0 \mod 5 \) then \(n^4 \equiv 1 \mod 5 \).

5. \((x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n−k} y^k.\)

6. An integer \(n = a_k2^k + a_{k−1}2^{k−1} + \cdots + a_12 + a_0 \) in binary notation is divisible by 3 exactly when
\[\sum_{i \text{ even}} a_i - \sum_{i \text{ odd}} a_i \]
is divisible by 3. To prove this observe that \(2 ≡ −1 \mod 3 \) so \(n ≡ \sum_{i=0}^{k} a_i2^i ≡ \sum_{i=0}^{k} a_i(-1)^i \mod 3.\)

7. (a) This is immediate: either there are two people who know each other or all four do not know each other.
(b) Let \(a \) be one of the 6 people. Let \(A \) be the set of people \(a \) knows, and let \(B \) be the set of people \(a \) does not know.
By the pigeon-hole principle either \(|A| ≥ 3 \) or \(|B| ≥ 3 \). If \(|A| ≥ 3 \) then either there are 2 people in \(A \) who know each other in which case they, together with \(a \) form a set of 3 people all of whom know each other, or all the people in \(A \) do not know each other, in which case we have a set of at least 3 people all of whom do not know each other. The case that \(|B| ≥ 3 \) is similar.
(c) Let \(a \) be one of the 10 people. Let \(A \) be the set of people \(a \) knows, and let \(B \) be the set of people \(a \) does not know. So \(|A| + |B| = 9 \).
Case (i) \(|A| ≥ 4 \). If 2 people in \(A \) know each other then they, together with \(a \) give a set of 3 people all of whom know each other. If no 2 people in \(A \) know each other then \(A \) is a set of at least 4 people all of whom do not know each other.
Case (ii) \(|A| ≤ 3 \). Then \(|B| ≥ 6 \), so by (b) either there are 3 people in \(B \) all of whom know each other and we are done, or, also by (b), there are 3 people in \(B \) all of whom do not know each other, and these 3 together with \(a \) give a set of 4 people all of whom do not know each other.