REAL CLOSED FIELDS WITH NONSTANDARD ANALYTIC STRUCTURE

R. CLUCKERS ¹, L. LIPSHITZ ², AND Z. ROBINSON ²

Abstract. We consider the ordered field which is the completion of the Puiseux series field over \(\mathbb{R} \) equipped with a ring of analytic functions on \([-1, 1]^n\) which contains the standard subanalytic functions as well as functions given by \(t \)-adically convergent power series, thus combining the analytic structures from [DD] and [LR3]. We prove quantifier elimination and \(o \)-minimality in the corresponding language. We extend these constructions and results to rank \(n \) ordered fields \(\mathbb{R}_n \) (the maximal completions of iterated Puiseux series fields). We generalize the example of Hrushovski and Peterzil [HP] of a sentence which is not true in any \(o \)-minimal expansion of \(\mathbb{R} \) (shown in [LR3] to be true in an \(o \)-minimal expansion of the Puiseux series field) to a tower of examples of sentences \(\sigma_n \), true in \(\mathbb{R}_n \), but not true in any \(o \)-minimal expansion of any of the fields \(\mathbb{R}, \mathbb{R}_1, \ldots, \mathbb{R}_{n-1} \).

1. Introduction

In [LR3] it is shown that the ordered field \(K_1 \) of Puiseux series in the variable \(t \) over \(\mathbb{R} \), equipped with a class of \(t \)-adically overconvergent functions such as \(\sum_n (n+1)! (tx)^n \) has quantifier elimination and is \(o \)-minimal in the language of ordered fields enriched with function symbols for these functions on \([-1, 1]^n\). This was motivated (indirectly) by the observation of Hrushovski and Peterzil, [HP], that there are sentences true in this structure that are not satisfiable in any \(o \)-minimal expansion of \(\mathbb{R} \). This in turn was motivated by a question of van den Dries. See [HP] for details.

In [DMM1] it was observed that if \(K \) is a maximally complete, non–archimedean real closed field with divisible value group, and if \(f \) an element of \(\mathbb{R}[[\xi]] \) with radius of convergence \(> 1 \), then \(f \) extends naturally to an “analytic” function \(I^n \to K \), where \(I = \{ x \in K : -1 \leq x \leq 1 \} \). Hence if \(\mathcal{A} \) is the ring of real power series with radius of convergence \(> 1 \) then \(K \) has \(\mathcal{A} \)-analytic structure i.e. this extension preserves all the algebraic properties of the ring \(\mathcal{A} \). In particular the real quantifier

2000 Mathematics Subject Classification. Primary 03C64, 32P05, 32B05, 32B20; Secondary 03C10, 03C98, 03C60, 14P15.

Key words and phrases. \(o \)-minimality, subanalytic functions, quantifier elimination, Puiseux series.

¹ The author has been supported as a postdoctoral fellow by the Fund for Scientific Research - Flanders (Belgium) (F.W.O.) during the preparation of this paper.

² The authors have been supported in part by NSF grant DMS-0401175. They also thank the University of Leuven and the Newton Institute (Cambridge) for their support and hospitality.
elimination of [DD] works in this context so K has quantifier elimination, is o–minimal in the analytic field language, and is even elementarily equivalent to \mathbb{R} with the subanalytic structure. See [DMM2] and [DMM3] for extensions.

In Sections 2 and 3 below we extend the results of [LR3] by proving quantifier elimination and o–minimality for K_1 in a larger language that contains the overconvergent functions together with the usual analytic functions on $[-1, 1]^n$. In Section 4 we extend these results to a larger class of non-archimedean real-closed fields, including fields \mathbb{R}_m, of rank $m = 1, 2, 3, \ldots$, and in Section 5 we show that the idea of the example of [HP] can be iterated so that for each m there is a sentence true in \mathbb{R}_m but not satisfiable in any o–minimal expansion of $\mathbb{R} = \mathbb{R}_0, \mathbb{R}_1, \cdots, \mathbb{R}_{m−1}$. In a subsequent paper we will give a more comprehensive treatment of both Henselian fields with analytic structure and real closed fields with analytic structure, see [CLR2].

2. Notation and Quantifier Elimination

In this section we establish notation and prove quantifier elimination (Theorem 2.16) for the field of Puiseux series over \mathbb{R} in a language which contains function symbols for all the standard analytic functions on $[-1, 1]^n$ and all the t–adically overconvergent functions on this set.

Definition 2.1.

$$K_1 := \bigcup_n \mathbb{R}(\{t^{1/n}\}), \text{ the field of Puiseux series over } \mathbb{R},$$

$$K := \hat{K}_1, \text{ the } t\text{-adic completion of } K_1.$$ K is a real closed, nonarchimedean normed field. We shall use $\| \cdot \|$ to denote the (nonarchimedean) t–adic norm on K, and $<$ to denote the order on K that comes from the real closedness of K. We will use $| \cdot |$ to denote the corresponding absolute value, $|x| = \sqrt{x^2}$.

$$K^\circ := \{x \in K : \|x\| \leq 1\}, \text{ the finite elements of } K$$

$$K^{\circ\circ} := \{x \in K : \|x\| < 1\}, \text{ the infinitesimal elements of } K$$

$$K_{alg} := K[\sqrt{-1}], \text{ the algebraic closure of } K$$

$$\xi = (\xi_1, \cdots, \xi_n)$$

$$A_{n, \alpha} := \{f \in \mathbb{R}[[\xi]] : \text{ radius of convergence of } f > \alpha\}, 0 < \alpha \in \mathbb{R}$$

$$\mathcal{R}_{n, \alpha} := A_{n, \alpha} \otimes_{\mathbb{R}} K = (A_{n, \alpha} \otimes_{\mathbb{R}} K)^\wedge, \text{ where } ^\wedge \text{ stands for the t-adic completion}$$

$$\mathcal{R}_{n, \alpha}^\circ := A_{n, \alpha} \otimes_{\mathbb{R}} K^\circ = (A_{n, \alpha} \otimes_{\mathbb{R}} K^\circ)^\wedge$$

$$\mathcal{R}_n := \bigcup_{\alpha > 1} \mathcal{R}_{n, \alpha}$$

$$\mathcal{R} := \bigcup_n \bigcup_{\alpha > 1} \mathcal{R}_{n, \alpha}$$

$$I := [-1, 1] = \{x \in K : |x| \leq 1\}.$$

Remark 2.2. (i) K has \mathcal{R}–analytic structure – in [DMM1] it is explained how the functions of $A_{n, \alpha}$ are defined on I^n. For example, if $f \in A_{1, \alpha}$, $\alpha > 1$, $a \in \mathbb{R}[−1, 1]$, $\beta \in K^{\circ\circ}$, then $f(a + \beta) := \sum_n f^{(n)}(a)\frac{\beta^n}{n!}$. The extension to functions in $\mathcal{R}_{n, \alpha}$ is clear from the completeness of K. We define these functions to be zero outside
This extension also naturally works for maximally complete fields and fields of LE-series, see also [DMM2] and [DMM3].

(ii) \(R \) contains all the “standard” real analytic functions on \([-1,1]^n\) and all the \(t \)-adically overconvergent functions in the sense of [LR3].

(iii) The elements of \(A_{n,\alpha} \) in fact define complex analytic functions on the complex polydisc \(\{ x \in \mathbb{C} : |x_i| \leq \alpha \text{ for } i = 1, \ldots, n \} \), and hence the elements of \(R_{n,\alpha} \) define “\(K_{\text{alg}} \)-analytic” functions on the corresponding \(K_{\text{alg}} \)-polydisc \(\{ x \in K_{\text{alg}} : |x_i| \leq \alpha \text{ for } i = 1, \ldots, n \} \).

(iv) We could as well work with \(K_1 \) instead of \(K \). Then we must replace \(R_{n,\alpha} \) by
\[
\mathcal{R}'_{n,\alpha} := \bigcup_m A_{n,\alpha} \hat{\otimes}_R R((t^{1/m})) = \bigcup_m (A_{n,\alpha} \hat{\otimes}_R R((t^{1/m})))^\top).
\]

Lemma 2.3. Every nonzero \(f \in R_{n,\alpha} \) has a unique representation
\[
f = \sum_{i \in \mathbb{N}} f_i t^{\gamma_i}
\]
where the \(f_i \in A_{n,\alpha} \), \(f_i \neq 0 \), \(\gamma_i \in \mathbb{Q} \), the \(\gamma_i \) are increasing and, either the sum is finite, or \(\gamma_i \to \infty \) as \(i \to \infty \). The function \(f \) is a unit in \(R_{n,\alpha} \) exactly when \(f_0 \) is a unit in \(A_{n,\alpha} \).

Proof. Observe that if \(a \in K, a \neq 0 \) then \(a \) has a unique representation \(a = \sum_{i \in \mathbb{N}} a_i t^{\gamma_i} \), where the \(0 \neq a_i \in \mathbb{R}, \gamma_i \in \mathbb{Q} \) and, either the sum is finite, or \(\gamma_i \to \infty \). If \(f_0 \) is a unit in \(A_{n,\alpha} \), then \(f \cdot f_0^{-1} \cdot t^{-\gamma_0} = 1 + \sum_{i=1}^{\infty} f_i \cdot f_0^{-1} \cdot t^{\gamma_i-\gamma_0} \) and \(\gamma_i-\gamma_0 > 0 \).

Definition 2.4. (i) In the notation of the previous definition, \(f_0 \) is called the top slice of \(f \). (ii) We call \(f \) regular in \(\xi_n \) of degree \(s \) at \(a \in [I \cap \mathbb{R}]^n \) if, in the classical sense, \(f_0 \) is regular in \(\xi_n \) of degree \(s \) at \(a \). (iii) We shall abuse notation and use \(\| \cdot \| \) to denote the \(t \)-adic norm on \(K \), and the corresponding gauss–norm on \(R_{n,\alpha} \), so, with \(f \) as in the above Lemma, \(\| f \| = \| t^{\gamma_0} \| \).

The standard Weierstrass Preparation and Division Theorems for \(A_{n,\alpha} \) extend to corresponding theorems for \(R_{n,\alpha} \).

Theorem 2.5. (Weierstrass Preparation and Division). If \(f \in R_{n,\alpha} \) with \(\| f \| = 1 \) is regular in \(\xi_n \) of degree \(s \) at \(0 \), then there is a \(\delta \in \mathbb{R}, \delta > 0 \), such that there are unique \(A_1, \ldots, A_s, U \) satisfying
\[
f = [\xi_n^s + A_1(\xi')\xi_n^{s-1} + \ldots + A_s(\xi')]U(\xi)
\]
and
\[
A_1, \ldots, A_s, \in R_{n-1,\delta}, \text{ and } U \in R_{n,\delta} \text{ a unit.}
\]

Then automatically
\[
\| A_1 \|, \ldots, \| A_s \|, \| U \| \leq 1, \quad \| A_1(0) \|, \ldots, \| A_s(0) \| < 1, \quad \text{and } \| U(0) \| = 1.
\]

Furthermore, if \(g \in R_{n,\alpha} \) then there are unique \(Q \in R_{n,\delta} \) and \(R_0(\xi'), \ldots, R_{s-1}(\xi') \in R_{n-1,\delta} \), satisfying
\[
\| Q \|, \| R_s \| \leq \| g \|
\]
and
\[
g = Qf + R_0(\xi') + R_1(\xi')\xi_n + \ldots + R_{s-1}(\xi')\xi_n^{s-1}.
\]
Proof. We may assume that \(f = \sum_{\gamma \in I} f_\gamma t^\gamma \), where \(I \subset \mathbb{Q}^+, 0 \in I, I = I + I \) and \(I \) is well ordered. (We do not require that \(f_\alpha \neq 0 \) for all \(\alpha \in I \), but we do require \(f_0 \neq 0 \).) We prove the Preparation Theorem. The proof of the Division Theorem is similar. We shall produce, inductively on \(\gamma \in I \), monic polynomials \(P_\gamma [\xi_n] \) with coefficients from \(\mathcal{R}_{n-1, \delta} \), and units \(U_\gamma \in \mathcal{R}_{n, \delta} \) such that, writing \(\gamma' \) for the successor of \(\gamma \) in \(I \), we have
\[
f \equiv P_\gamma \cdot U_\gamma \mod t^{\gamma'}
\]
and if \(\gamma < \beta \)
\[
P_\gamma \equiv P_\beta \text{ and } U_\gamma \equiv U_\beta \mod t^{\gamma'}.
\]
Using [GR], Theorem II.D.1 (p.80), or the proof on pp. 142-144 of [ZS], we see that there is a \(0 < \delta \leq \alpha \) such that for every \(g \in A_{n, \delta} \) the Weierstrass data on dividing \(g \) by \(f_0 \) are in \(A_{n, \delta} \).

\(P_0 \) and \(U_0 \) are the classical Weierstrass data for \(f_0 \), i.e. \(f_0 = U_0 P_0 \), where \(P_0 \in A_{n-1, \delta} [\xi_n] \) is monic of degree \(s \), and \(U \in A_{n, \delta} \) is a unit. Suppose \(P_\gamma \) and \(U_\gamma \) have been found. Then
\[
f \equiv P_\gamma \cdot U_\gamma \mod t^{\gamma'}
\]
so we have
\[
U_\gamma^{-1} \cdot f \equiv P_\gamma + g_\gamma t^{\gamma'} + o(t^{\gamma'}),
\]
where \(g_\gamma \in A_{n, \delta} \) and we write \(o(t^{\gamma'}) \) to denote terms of order \(> \gamma' \). By classical Weierstrass division we can write
\[
g_\gamma' = P_0 \cdot Q_\gamma' + R_\gamma',
\]
where \(Q_\gamma' \in A_{n, \delta} \) and \(R_\gamma' \in A_{n-1, \delta} [\xi_n] \) has degree \(< s \) in \(\xi_n \). Let
\[
P_\gamma' := P_\gamma + t^{\gamma'} R_\gamma'.
\]
Then
\[
U_\gamma^{-1} \cdot f = P_\gamma + t^{\gamma'} (P_0 Q_\gamma' + R_\gamma') + o(t^{\gamma'})
\]
\[
= (P_\gamma' + t^{\gamma'} P_\gamma Q_\gamma') + t^{\gamma'} (P_0 - P_\gamma' Q_\gamma') + o(t^{\gamma'})
\]
\[
= P_\gamma' (1 + t^{\gamma'} Q_\gamma') + o(t^{\gamma'}),
\]
since \(P_0 - P_\gamma = o(1) \), i.e. it has positive order. Take \(U_\gamma' := U_\gamma (1 + t^{\gamma'} Q_\gamma') \). The uniqueness of the \(A_1 \) and \(U \) follows from the same induction. \(\square \)

Remark 2.6. We remark, for use in a subsequent paper, that the argument of the previous proof works in the more general context that \(I \) is a well ordered subset of the value group \(\Gamma \) of a suitably complete field, for example a maximally complete field.

From the above proof or by direct calculation we have

Corollary 2.7. If \(g \in \mathcal{R}_1, \beta \in [-1, 1] \) and \(g(\beta) = 0 \) then \(\xi_1 - \beta \) divides \(g \) in \(\mathcal{R}_1 \).

Remark 2.8. Let \(f(\xi, \eta) \) be in \(\mathcal{R}_{m+n, \alpha} \). Then there are unique \(\overline{f}_\mu \) in \(\mathcal{R}_{m, \alpha} \) such that
\[
f(\xi, \eta) = \sum_{\mu} \overline{f}_\mu (\xi) \eta^\mu.
\]

The following Lemma is used to prove Theorem 2.10.
Lemma 2.9. Let \(f(\xi, \eta) = \sum_{\mu} \bar{f}_\mu(\xi)\eta^\mu \in R_{m+n,\alpha} \). Then the \(\bar{f}_\mu \in R_{m,\alpha} \) and there is an integer \(d \in \mathbb{N} \), a constant \(\beta > 0 \), \(\beta \in \mathbb{R} \) and \(g_\mu \in R_{m+n,\beta}^o \) for \(|\mu| < d \), such that

\[
 f = \sum_{|\mu| < d} \bar{f}_\mu(\xi)g_\mu(\xi, \eta).
\]

Proof. We may assume that \(\|f\| = 1 \), and choose a \(\nu_0 \) such that \(\|\bar{f}_{\nu_0}\| = 1 \). Making an \(\mathbb{R} \)-linear change of variables, and shrinking \(\alpha \) if necessary, we may assume that \(\bar{f}_{\nu_0} \) is regular at 0 in \(\xi_m \) of degree \(s \), say. Write \(\xi' \) for \((\xi_1, \ldots, \xi_{m-1}) \). By Weierstrass Division (Theorem 2.5) there is a \(\beta > 0 \) and there are \(Q(\xi, \eta) \in R_{m+n,\beta} \) and \(R(\xi, \eta) = R_0(\xi', \eta) + \cdots + R_{s-1}(\xi', \eta)\xi_m^{s-1} \in R_{m+n-1,\beta}[\xi_m] \) such that

\[
 f(\xi, \eta) = \bar{f}_{\nu_0}(\xi)Q(\xi, \eta) + R(\xi, \eta).
\]

By induction on \(m \), we may write

\[
 R_0 = \sum_{|\mu| < d} \bar{R}_{\nu_0}(\xi')g_\mu(\xi', \eta),
\]

for some \(d \in \mathbb{N} \), some \(\beta > 0 \) and \(g_\mu(\xi', \eta) \in R_{m+n-1,\beta}^o \). Writing \(R = \sum_{\nu} \bar{R}_\nu(\xi)\eta^\nu \), observe that each \(\bar{R}_\nu \) is an \(R_{m,\beta}^o \)-linear combination of the \(\bar{f}_\nu \), since, taking the coefficient of \(\eta^\nu \) on both sides of the equation \(f(\xi, \eta) = \bar{f}_{\nu_0}(\xi)Q(\xi, \eta) + R(\xi, \eta) \), we have

\[
 \bar{f}_\nu = \bar{f}_{\nu_0}Q + \bar{R}_\nu.
\]

Consider

\[
 f - \bar{f}_{\nu_0}Q - \sum_{|\mu| < d} \bar{R}_\mu(\xi)g_\mu(\xi', \eta) = S_1\xi_m + S_2\xi_m^2 + \cdots + S_{s-1}\xi_m^{s-1}
\]

\[
 = \xi_m[S_1 + S_2\xi_m + \cdots + S_{s-1}\xi_m^{s-2}]
\]

\[
 = \xi_m \cdot S, \text{ say,}
\]

where the \(S_i \in R_{m+n-1,\beta}^o \). Again, observe that each \(\bar{S}_\nu \) is an \(R_{m,\beta}^o \)-linear combination of the \(\bar{f}_\nu \). Complete the proof by induction on \(s \), working with \(S \) instead of \(R \). \(\square \)

Theorem 2.10. (Strong Noetherian Property). Let \(f(\xi, \eta) = \sum_{\mu} \bar{f}_\mu(\xi)\eta^\mu \in R_{m+n,\alpha} \). Then the \(\bar{f}_\mu \in R_{m,\alpha} \) and there is an integer \(d \in \mathbb{N} \), a constant \(\beta > 0 \), \(\beta \in \mathbb{R} \) and units \(U_\mu(\xi, \eta) \in R_{m+n,\beta}^o \) for \(|\mu| < d \), such that

\[
 f = \sum_{\mu \in J} \bar{f}_\mu(\xi)\eta^\mu U_\mu(\xi, \eta),
\]

where \(J \) is a subset of \(\{0, 1, \ldots, d\}^n \).

Proof. It is sufficient to show that there are an integer \(d \), a set \(J \subset \{0, 1, \ldots, d\}^n \), and \(g_\mu \in R_{m+n,\beta}^o \) such that

\[
 f = \sum_{\mu \in J} \bar{f}_\mu(\xi)\eta^\mu g_\mu(\xi, \eta),
\]

(2.11)
since then, rearranging the sum if necessary, we may assume that each \(g_\mu \) is of the form \(1 + h_\mu \) where \(h_\mu \in (\eta)R_{m+n,\beta}^\circ \). Shrinking \(\beta \) if necessary will guarantee that the \(g_\mu \) are units. But then it is in fact sufficient to prove (2.11) for \(f \) replaced by

\[
f_{I_i} := \sum_{\mu \in I_i} f_\mu(\xi)\eta^\mu
\]

for each \(I_i \) in a finite partition \(\{I_i\} \) of \(\mathbb{N}^n \).

By Lemma 2.9 there is an integer \(d \in \mathbb{N} \), a constant \(\beta > 0 \), \(\beta \in \mathbb{R} \) and \(g_\mu \in R_{m+n,\beta}^\circ \) for \(|\mu| \leq d \), such that

\[
f = \sum_{|\mu| \leq d} f_\mu(\xi)g_\mu(\xi,\eta).
\]

Rearranging, we may assume for \(\nu, \mu \in \{1, \ldots, d\}^n \) that \((g_\mu)_\nu \) equals 1 if \(\mu = \nu \) and that it equals 0 otherwise.

Focus on \(f_{I_1}(\xi, \eta) \), defined as above by

\[
f_{I_1}(\xi, \eta) = \sum_{\mu \in I_1} f_\mu(\xi)\eta^\mu
\]

with

\[
I_1 := \{0, \ldots, d\}^n \cup \{\mu: \mu_i \geq d \text{ for all } i\}
\]

and note that

\[
(2.12) f_{I_1}(\xi, \eta) = \sum_{|\mu| \leq d} f_\mu(\xi)g_{\mu,I_1}(\xi, \eta)
\]

with \(g_{\mu,I_1}(\xi, \eta) \in R_{m+n,\beta}^\circ \) defined by the corresponding sum

\[
g_{\mu,I_1}(\xi, \eta) = \sum_{\nu \in I_1} g_{\mu,\nu}(\xi)\eta^\nu.
\]

It is now clear that \(g_{\mu,I_1} \) is of the form \(\eta^\mu(1 + h_\mu) \) where \(h_\mu \in (\eta)R_{m+n,\beta}^\circ \).

One now proceeds by noting that \(f - f_{I_1} \) is a finite sum of terms of the form \(f_{I_j} \) for \(j > 1 \) and \(\{I_j\} \) a finite partition of \(\mathbb{N}^n \) and where each \(f_{I_j} \) for \(j > 1 \) is of the form \(\eta^j q(\xi, \eta') \) where \(\eta' = (\eta_1, \ldots, \eta_{j-1}, \eta_{j+1}, \ldots, \eta_n) \) and \(q \) is in \(R_{m+n-1,\beta}^\circ \). These terms can be handled by induction on \(n \).

\[\square\]

Definition 2.13. For \(\gamma \in K_{alg}^\circ \), let \(\gamma^\circ \) denote the closest element of \(\mathbb{C} \), i.e. the unique element \(\gamma - \gamma^\circ \in K_{alg}^\circ \).

Lemma 2.14. Let \(f \in R_1 \). If \(f(\gamma) = 0 \) then \(f_0(\gamma^\circ) = 0 \) (\(f_0 \) is the top slice of \(f \)). Conversely, if \(\beta \in \mathbb{R} \) (or \(\mathbb{C} \)) and \(f_0(\beta) = 0 \) there is a \(\gamma \in K_{alg} \) with \(\gamma^\circ = \beta \) and \(f(\gamma) = 0 \). Indeed, \(f_0 \) has a zero of order \(n \) at \(\beta \in \mathbb{C} \) if, and only if, \(f \) has \(n \) zeros \(\gamma \) (counting multiplicity) with \(\gamma^\circ = \beta \).

Proof. Use Weierstrass Preparation and [BGR] Proposition 3.4.1.1. \[\square\]

Corollary 2.15. A nonzero \(f \in R_{1,\alpha} \) has only finitely many zeros in the set \(\{x \in K_{alg}: |x| \leq \alpha\} \). Indeed, there is a polynomial \(P(x) \in K[x] \) and a unit \(U(x) \in R_{1,\alpha} \) such that \(f(x) = P(x) \cdot U(x) \).
Proof. Observe that f_0 has only finitely many zeros in $\{ x \in \mathbb{C} : |x| \leq \alpha \}$, that non-real zeros occur in complex conjugate pairs, and that f is a unit exactly when f_0 has no zeros in this set, i.e. when f_0 is a unit in $A_{1,\alpha}$, and use Lemma 2.14. □

Theorem 2.16. (Quantifier Elimination Theorem). Denote by L the language $\langle +, \cdot, -1, 0, 1, <, R \rangle$ where the functions in R_n are interpreted to be zero outside I^n. Then K admits quantifier elimination in L.

Proof. This is a small modification of the real quantifier elimination of [DD] as in [DMM1], using the Weierstass Preparation Theorem and the Strong Noetherian Property above. Crucial is that, in Theorems 2.5 and 2.10, as in [DD], δ is a positive real number so one can use the compactness of $[-1, 1]^n$ in \mathbb{R}^n. □

3. O–MINIMALITY

In this section we prove the o–minimality of K in the language L. Let $\alpha > 1$. As we remarked above, each $f \in A_{n,\alpha}$ defines a function from the poly-disc $(I_{c,\alpha})^n \rightarrow \mathbb{C}$, where $I_{c,\alpha} := \{ x \in \mathbb{C} : |x| \leq \alpha \}$, and hence each $f \in R_{n,\alpha}$ defines a function from $(I_{K_{alg},\alpha})^n \rightarrow K_{alg}$, where $I_{K_{alg},\alpha} := \{ x \in K_{alg} : |x| \leq \alpha \}$. In general $A_{n,\alpha}$ is not closed under composition. However, if $F(\eta_1, \ldots, \eta_m) \in R_{n,\alpha}$, $G_j(\xi) \in R_{n,\beta}$ for $j = 1, \ldots, m$ and $|G_j(x)| \leq \alpha$ for all $x \in (I_{K_{alg},\beta})^n$, then $F(G_1(\xi), \ldots, G_m(\xi)) \in R_{n,\beta}$.

This is clear if $F \in A_{n,\alpha}$ and the $G_j \in A_{n,\beta}$. The general case follows easily.

For $c, r \in K$, $r > 0$, we denote the “closed interval” with center c and radius r by

$$I(c, r) := \{ x \in K : |x - c| \leq r \}$$

and for $c, \delta, \varepsilon \in K$, $0 < \delta < \varepsilon$, we denote the “closed annulus” with center c, inner radius δ and outer radius ε by

$$A(c, \delta, \varepsilon) := \{ x \in K : \delta \leq |x - c| \leq \varepsilon \}.$$

On occasion we will consider $I(c, r)$ as a disc in K_{alg} and $A(c, \delta, \varepsilon)$ as an annulus in K_{alg}, replacing K by K_{alg} in the definitions. No confusion should result. Note that these discs and annuli are defined in terms of the real-closed order on K, not the non–archimedean absolute value $\| \cdot \|$, and hence are not discs or annuli in the sense of [BGR],[LR3] or [FP], which we will refer to as affinoid discs and annuli.

For $I = I(c, r)$, $A = A(c, \delta, \varepsilon)$ as above, we define the rings of analytic function on I and A as follows:

$$O_I := \left\{ f \left(\frac{x - c}{r} \right) : f \in R_1 \right\}$$

$$O_A := \left\{ g \left(\frac{\delta}{x - c} \right) + h \left(\frac{x - c}{\varepsilon} \right) : g, h \in R_1, \ g(0) = 0 \right\}.$$

The elements of O_I (respectively, O_A) are analytic functions on the corresponding K_{alg} disc (respectively, annulus) as well.

Remark 3.1. (i) Elements of O_A are multiplied using the relation $\frac{\delta}{\varepsilon} \cdot \frac{c - x}{c} = \frac{\delta}{\varepsilon}$ and the fact that $|\frac{\delta}{\varepsilon}| < 1$. Indeed, let $g(\xi_1) = \sum_i a_i \xi_1^i$, $h(\xi_2) = \sum_j b_j \xi_2^j$. Then,
using ξ_1 ξ_2 = \frac{4}{ε} we have
\[g \cdot h = \sum_{j<i} a_i b_j (\frac{δ}{ε})^j \xi_1^j + \sum_{i<j} a_i b_j (\frac{δ}{ε})^{j-i} \xi_2^{j-i} \]
\[= f_1(\xi_1) + f_2(\xi_2). \]
If g, h ∈ A_1, and \(\frac{δ}{ε} \in \mathbb{R} \) then f_1, f_2 ∈ A_1, and this extends easily to the case g, h ∈ R_1, and \(\frac{δ}{ε} \in K^0 \). Lemma 3.6 will show that in fact the only case of an annulus that we must consider is when \(\frac{δ}{ε} \in K^{oo} \).

(ii) We define the gauss-norm on O_I by \(||f(\frac{ε-δ}{ε})|| := \|f(ε)\| \), and on O_A by \(||g(\frac{δ}{ε}) + h(\frac{ε-δ}{ε})|| := \max\{\|g(ε)\|, \|h(ε)\|\} \). It is clear that the gauss-norm equals the supremum norm.

(iii) If \(f \in O_I \) then \(||(\frac{ε-δ}{ε})f|| = \|f\| \). If \(f \in O_A \) then \(||(\frac{ε-δ}{ε})f|| \leq \|f\| \) and if \(\frac{δ}{ε} \in K^{oo} \), (i.e. is infinitesimal) then \(\|g(\frac{ε-δ}{ε})\| = \|\frac{δ}{ε}\| \|g(\frac{δ}{ε})\| < \|g(\frac{ε-δ}{ε})\| \) and \(||(\frac{ε-δ}{ε})f|| = ||h(\frac{ε-δ}{ε})|| \).

(iv) If \(\|f\| < 1 \) then \(1 - f \) is a unit in O_A. (In fact it is a strong unit – a unit u satisfying \(\|1 - u\| < 1 \).)

Definition 3.2. (i) We say that \(f \in O_{I(0,1)} = R_1 \) has a zero close to \(a \in I(0,1) \) if \(f \), as a K_{alg} function defined on the K_{alg} disc \(\{x| |x| < α\} \) for some \(α > 1 \) has a K_{alg}–zero \(b \) with \(a - b \) infinitesimal in K_{alg}. We say \(f \) has a zero close to \(I(0,1) \) if it has a zero close to \(a \) for some \(a \in I(0,1) \). For an arbitrary interval \(I = I(c,r) \) we say that \(f = F(\frac{ε-δ}{ε}) \in O_I \) has a zero close to \(a \in I \) if \(F \) has a zero close to \(\frac{α-ε}{ε} \in I(0,1) \), and that \(f \) has a zero close to \(I(c,r) \) if \(F \) has a zero close to \(I(0,1) \).

(ii) For \(0 < a, b \in K^0 \) write \(a \sim b \) if \(\frac{a}{b} \), \(\frac{b}{a} \in K^0 \) and write \(a \ll b \) if \(\frac{a}{b} \in K^{oo} \).

(iii) Let \(X \) be an interval or an annulus, and let \(f \) be defined on a superset of \(X \). We shall write \(f \in O_X \) to mean that there is a function \(g \in O_X \) such that \(f|_X = g \).

Lemma 3.3. If \(f \in O_{I(c,r)} \) has no zero close to \(I(c,r) \), then there is a cover of \(I(c,r) \) by finitely many closed intervals \(I_j = I(c_j,r_j) \) such that \(\frac{1}{r} \in O_{I_j} \) for each \(j \).

Proof. It is sufficient to consider the case \(I(c,r) = I(0,1) \). Cover \(I(0,1) \) by finitely many intervals \(I(c_j,r_j) \) such that \(f \) has no K_{alg}–zero in the K_{alg}–disc \(I(c_j,r_j) \). Finally use Corollary 2.15. □

Remark 3.4. The function \(f(x) = 1 + x^2 \) has no zeros close to \(I(0,1) \). It is not a unit in \(O_{I(0,1)} \), but it is a unit in both \(O_{I(-\frac{1}{2}, \frac{1}{2})} \) and \(O_{I(\frac{1}{2}, \frac{3}{2})} \). The function \(g(x) = x \) is not a unit in \(O_{I(\delta, ε)} \) for any \(0 < δ \in K^{oo} \) and \(0 < ε \in K^0 \). It is of course a unit in \(O_{A(0,δ,ε)} \). The function \(\frac{1}{g} = \frac{1}{x} \) is in \(A(0,δ,1) \) but is not in \(O_I \) for \(I = I(\frac{1}{x} - \delta + \frac{1}{x}, \frac{1}{x}) \), for any \(δ \in K^{oo} \). Thus we see that if \(X_1 \subset X_2 \) are annuli or intervals it does not necessarily follow that \(O_{X_2} \subset O_{X_1} \). However the following are clear. If \(I_1 \subset I_2 \) are intervals, then \(O_{I_2} \subset O_{I_1} \). If \(0 < δ \in K^{oo}, 0 < r \in K^0 \) and \(A = A(0,δ,1), I = I(\frac{1}{x} - \delta + \frac{1}{x}), \) then \(O_{A} \subset O_{I} \). If \(A_1 \subset I \) are annuli that have the same center, then \(O_{A_2} \subset O_{A_1} \). If \(0 < δ < c \) and \(0 < r < \frac{ε}{δ} \) for some
1 < α ∈ ℝ, and I = I(c, r) ⊂ A(0, δ, 1) = A, then Ω_A ⊂ Ω_I. (Writing x = c − y, |y| ≤ r we see that \(\frac{δ}{x} = \frac{δ}{c-y} = \frac{δfc}{1-y/c} + \frac{δ}{c} \sum \left(\frac{y}{c} \right)^k = \frac{δ}{c} \sum \left(\frac{y}{c} \right)^k \).

Restating Corollary 2.15 we have

Corollary 3.5. If \(f \in Ω_I(c, r) \) there is a polynomial \(P \in K[ξ] \) and a unit \(U \in Ω_I(c, r) \) such that \(f(ξ) = P(ξ) \cdot U(ξ) \).

Lemma 3.6. If \(ε < Nδ \) for some \(N ∈ ℕ \), then there is a covering of \(A(c, δ, ε) \) by finitely many intervals \(I_j \) such that for every \(f ∈ Ω_A(c, δ, ε) \) and each \(j, f ∈ Ω_{I_j} \).

Proof. Use Lemma 3.3 or reduce directly to the case \(ε = 1, 0 < δ = r ∈ ℝ \) and the two intervals \([-1, 1] = I(-1+\frac{r}{2}, 1-r) \) and \([1, 1] = I(\frac{1+r}{2}, 1-r) \).

Lemma 3.7. Let \(f ∈ A(c, δ, ε) \). There are finitely many intervals and annuli \(X_j \) that cover \(A(c, δ, ε) \), polynomials \(P_j \) and units \(U_j ∈ Ω_X \) such that for each \(j \) we have \(f|_{X_j} = (P_j \cdot U_j)|_{X_j} \).

Proof. By the previous lemma, we may assume that \(c = 0, ε = 1 \) and \(δ ∈ K^{∞} \) (i.e. \(δ \) is infinitesimal, say \(δ = t^γ \) for some \(γ > 0 \)). Let

\[
 f(x) = g(\frac{δ}{x}) + h(x) \quad \text{with} \quad g(ξ), h(ξ) ∈ R_1, \; g(0) = 0.
\]

and

\[
g(ξ) = \sum_{i=0}^{∞} t^{α_i}ξ^{n_i}g_i(ξ),
\]

with \(n_i > 0, g_i(0) ≠ 0, g_i ∈ A_{1, α} \) for some \(α > 1 \). Observe that

\[
xg(\frac{δ}{x}) = \sum_{i=0}^{∞} (t^{α_i}δ)(\frac{δ}{x})^{n_i-1}g_i(\frac{δ}{x}).
\]

Hence (see Remark 3.1) for suitable \(n ∈ ℕ \), absorbing the constant terms into \(h \), we have

\[
x^n f(x) = \overline{g}(\frac{δ}{x}) + \overline{h}(x)
\]

where \(\overline{g}(0) = 0 \) and \(\|\overline{g}\| < \|\overline{h}\| \). (For use in Section 4, below, note that this argument does not use that \(K \) is complete or of rank 1.) Multiplying by a constant, we may assume that \(\|\overline{h}\| = 1 \). Let

\[
\overline{g}(ξ) = \sum_{i=0}^{∞} t^{β_i}ξ^{m_i}\overline{g}_i(ξ), \quad \text{with} \; m_i > 0 \quad \text{and} \; β_i > 0 \quad \text{for each} \; i,
\]

and

\[
\overline{h}(ξ) = ξ^{k_0}\overline{h}_0(ξ) + \sum_{i=1}^{∞} t^{γ_i}\overline{h}_i(ξ), \quad \text{with} \; \overline{h}_0(0) ≠ 0 \quad \text{and the} \; γ_i > 0.
\]

Since \(\|\overline{g}\| = \|t^{β_0}\| < 1 \) there is a \(δ' \) with \(δ ≤ δ' ∈ K^{∞} \) (i.e. \(\|δ'\| < 1 \)) such that \(\|t^{γ_i}\| < \|(δ')^{k_0}\| \) and \(\|\overline{g}\| < \|(δ')^{k_0}\| \). Splitting off some intervals of the form \(I(-1+\frac{r}{2}, 1-r) = [-1, 1] \) or \(I(\frac{1+r}{2}, 1-r) = [r, 1] \) for \(r > 0 \), \(r ∈ ℝ \) (on which the
result reduces to Corollary 3.5 by Remark 3.4) and renormalizing, we may assume that \(\overline{h}_0 \), is a unit in \(A_{1,\alpha} \), for some \(\alpha > 1 \). So

\[
x^n f(x) = \overline{h}(\frac{\delta}{x}) + \overline{h}(x)
\]

\[
= \overline{h}_0(x)x^{k_0} \left[1 + \sum_{i=1}^{\infty} \left(\frac{\delta'}{x} \right)^{k_0} t^{\gamma_i} \frac{h_i(x)}{\overline{h}_0(x)} + \frac{1}{\overline{h}_0(x)} \left(\frac{\delta'}{x} \right)^{k_0} \frac{\delta' \delta''}{x} \right].
\]

By our choice of \(\delta' \) and Remark 3.1 the quantity in square brackets is a (strong) unit. Hence we have taken care of an annulus of the form \(A(0, \delta', 1) \) for some \(\delta' \) with \(|\delta| \leq |\delta'| \) and \(|\delta'| < 1 \).

Observe that the change of variables \(y = \frac{\delta}{x} \) interchanges the sets \(\{ x: ||x|| = ||\delta|| \text{ and } \delta \leq ||x|| \} \) and \(\{ y: ||y|| = 1 \text{ and } |y| \leq 1 \} \). Hence, as above, there is a \(\delta'' \in K^{\times} \) with \(||\delta|| < ||\delta''|| \) and a covering of the annulus \(\delta \leq ||x|| \leq \delta'' \) by finitely many intervals and annuli with the required property.

It remains to treat the annulus \(\delta'' \leq ||x|| \leq \delta' \). Using the terminology of [LR3], observe that on the much bigger affinoid annulus \(||\delta''|| \leq ||x|| \leq ||\delta|| \) the function \(f \) is strictly convergent, indeed even overconvergent. Hence, as in [LR3], on this affinoid annulus we can write

\[f = \frac{P(x)}{x^k} \cdot U(x) \]

where \(P(x) \) is a polynomial and \(U(x) \) is a strong unit (i.e. \(||U(x) - 1|| < 1 \)). □

Corollary 3.8. If \(X \) is an interval or an annulus and \(f \in \mathcal{O}_X \), then the set \(\{ x \in X: f(x) \geq 0 \} \) is semialgebraic (i.e. a finite union of (closed) intervals).

Proof. This is an immediate corollary of 3.5 and 3.7 since units don’t change sign on intervals and since an annulus has two intervals as connected components. □

Definition 3.9. For \(c = (c_1, \ldots, c_n), r = (r_1, \ldots, r_n) \) we define the poly–interval \(I(c, r) := \{ x \in K^n: |x_i - c_i| \leq r_i, i = 1, \ldots, n \} \). This also defines the corresponding polydisc in \((K_{alg})^n \). The ring of analytic functions on this poly–interval (or polydisc) is

\[\mathcal{O}_{I(c, r)} := \left\{ f \left(\frac{x_1 - c_1}{r_1}, \ldots, \frac{x_n - c_n}{r_n} \right): f \in \mathcal{R}_n \right\}. \]

Lemma 3.10. Let \(\alpha, \beta > 1, F(\eta_1, \ldots, \eta_m) \in \mathcal{R}_{m,\alpha} \) and \(G_j(\xi_1, \ldots, \xi_n) \in \mathcal{R}_{n,\beta} \) with \(||G_j|| \leq 1 \) for \(j = 1, \ldots, m \). Let \(X = \{ x \in [-1,1]^n: |G_j(x)| \leq 1 \text{ for } j = 1, \ldots, m \} \). There are (finitely many) \(c_i = (c_{i1}, \ldots, c_{in}) \in \mathbb{R}^n, \varepsilon_i \in \mathbb{R}, \varepsilon_i > 0 \text{ with } \varepsilon_i < |c_{ij}| \) if \(c_{ij} \neq 0 \) such that the (poly) intervals \(I_i = I(c_i, \varepsilon_i) = \{ x \in K: |x_j - c_{ij}| < \varepsilon_i \text{ for } j = 1, \ldots, n \} \) cover \(X \), \(|G_j(x)| < \alpha \) for all \(x \in I_i, j = 1, \ldots, m \), and there are \(H_i \in \mathcal{O}_{I_i} \) such that

\[F(G_1, \ldots, G_m)|_{I_i} = H_i|_{I_i}. \]

Proof. Use the compactness of \([-1,1]^n \cap \mathbb{R}^n \) and the following facts. If \(||G_j|| = 1 \) then \(|G_j(x) - G_{j0}(x)| \) is infinitesimal for all \(x \in K^{\circ} \), where \(G_{j0} \) is the top slice of \(G_j \). If \(||G_j|| < 1 \) then \(|G_j(x)| \in K^{\circ \circ} \) for all \(x \in [-1,1]^n \). □
Corollary 3.11. (i) Let I be an interval, $F(\eta_1, \ldots, \eta_m) \in R_m$, and $G_j \in O_I$ for $j = 1, \ldots, m$. Then there are finitely many intervals I_i covering I and functions $H_i \in O_{I_i}$ such that for each i

$$F(G_1, \ldots, G_m)|_{I_i} = H_i|_{I_i}$$

(ii) Let A be an annulus, $F(\eta_1, \ldots, \eta_m) \in R_m$, and $G_j \in O_A$ for $j = 1, \ldots, m$. Then there are finitely many X_i, each an interval or an annulus, covering A and $H_i \in O_{X_i}$ such that for each i

$$F(G_1, \ldots, G_m)|_{X_i} = H_i|_{X_i}.$$

Proof. Part (i) reduces to Lemma 3.10 once we see that if $||G_j|| > 1$ we can use Corollary 2.15 to restrict to the subintervals of I around the zeros of G_j on which $|G_j| \leq C$ for some $1 < C \in \mathbb{R}$. On the rest of I, $F(G_1, \ldots, G_m)$ is zero.

For (ii), we may assume that $A = A(0, \delta, 1)$ with δ infinitesimal and that $G_j(x) = G_{j_1}(\frac{x}{2}) + G_{j_2}(x)$. As in (i), we may reduce to the case that $||G_j|| \leq 1$, using Lemma 3.7 instead of Corollary 2.15, and using Lemma 3.6 and Remark 3.4. Apply Lemma 3.10 to the functions F and $G_j(\xi_1, \xi_2) = G_{j_1}(\xi_1) + G_{j_2}(\xi_2)$. The case $c = (0, 0)$ gives us the annulus $|\frac{x}{2}| \leq \varepsilon$, $|x| \leq \varepsilon$ i.e. $\frac{\varepsilon}{2} \leq |x| \leq \varepsilon$. The case $c = (0, c_2)$ with $c_2 \neq 0$ gives us $\frac{\varepsilon}{2} \leq |x| \leq \varepsilon$ with $\varepsilon < |c_2|$. This is equivalent to $|x - c_2| \leq \varepsilon$ since $\varepsilon, c_1 \in \mathbb{R}$, and hence equivalent to $-\varepsilon \leq x - c_2 \leq \varepsilon$ or $c_2 - \varepsilon \leq x \leq c_2 + \varepsilon$ which is an interval bounded away from 0. The case $c = (c_1, 0)$ gives us $\frac{\varepsilon}{c_1} - |c_1| \leq \varepsilon$, $|x| \leq \varepsilon$ (since $\varepsilon < |c_1|$) which is equivalent to $\frac{\varepsilon}{c_1} - |c_1| \leq \varepsilon$ or $c_1 - \varepsilon \leq \frac{\varepsilon}{x} \leq c_1 + \varepsilon$ or (considering the case $c_1 > 0$, the case $c_1 < 0$ is similar) $\frac{\sqrt{\frac{\varepsilon}{x}}}{c_1 + \varepsilon} \leq x \leq \frac{\sqrt{\frac{\varepsilon}{x}}}{c_1 - \varepsilon}$ which is part of an annulus that can be reduced to intervals using Lemma 3.6. The case $c = (c_1, c_2)$ with both $c_1, c_2 \neq 0$ is vacuous since either x or $\frac{x^2}{2}$ is infinitesimal and $\varepsilon < |c_1|, |c_2|$.

Lemma 3.12. Let X be an interval or an annulus and let $f, g \in O_X$. There are finitely many subintervals and subannuli $X_i \subset X$, $i = 1, \ldots, \ell$ such that

$$\{ x \in X : |f(x)| \leq |g(x)| \} \subset \bigcup X_i \subset X,$$

and, except at finitely many points,

$$\frac{f}{g}|_{X_i} \in O_{X_i}.$$
Theorem 3.14. \(K \) is \(o \)-minimal in \(\mathcal{L} \).

4. Further Extensions

In this section we give extensions of the results of Sections 2 and 3 and the results of [LR3].

Let \(G \) be an (additive) ordered abelian group. Let \(t \) be a symbol. Then \(t^G \) is a (multiplicative) ordered abelian group. Following the notation of [DMM1] and [DMM2] (but not [DMM3] or [LR2]) we define \(\mathbb{R}(t^G) \) to be the maximally-complete valued field with additive value group \(G \) (or multiplicative value group \(t^G \)) and residue field \(\mathbb{R} \). So

\[
\mathbb{R}(t^G) := \left\{ \sum_{g \in I} a_gt^g : a_g \in \mathbb{R} \text{ and } I \subset G \text{ well-ordered} \right\}.
\]

We shall be a bit sloppy about mixing the additive and multiplicative valuations. \(I \subset G \) is well-ordered exactly when \(t^I \subset t^G \) is reverse well-ordered. The field \(K \) of Puiseux series, or its completion, is a proper subfield of \(\mathbb{R}_1 := \mathbb{R}(t^G) \). Considering \(G = \mathbb{Q}^m \) with the lexicographic ordering, we define

\[
\mathbb{R}_m := \mathbb{R}(t^{\mathbb{Q}^m}).
\]

It is clear that if \(G_1 \subset G_2 \) as ordered groups, then \(\mathbb{R}(t^{G_1}) \subset \mathbb{R}(t^{G_2}) \) as valued fields. Also, \(\mathbb{R}(t^{G_1}) \) is Henselian and, if \(G \) is divisible, then \(\mathbb{R}(t^G) \) is real-closed.

We shall continue to use \(< \) for the corresponding order on \(\mathbb{R}(t^G) \).
In analogy with Section 2, we define

Definition 4.1.

\[R_{n,\alpha}(G) := A_{n,\alpha} \otimes^* \mathbb{R}((t^G)) \]
\[R_n(G) := \bigcup_{\alpha>1} R_{n,\alpha}(G) \]
\[R(G) := \bigcup_n \bigcup_{\alpha>1} R_{n,\alpha}(G). \]

As in Section 2, the elements of \(R_n(G) \) define functions from \(I^n \subset \mathbb{R}((t^G))^n \) to \(\mathbb{R}((t^G)) \). Indeed this interpretation is a ring endomorphism. In other words, the field \(\mathbb{R}((t^G)) \) has analytic \(R(G) \)-structure. (See [CLR1] and especially [CLR2] for more about fields with analytic structure.) The elements of \(R_n(G) \) are interpreted as zero on \(\mathbb{R}((t^G))^n \setminus I^n \).

Theorem 4.2. The Weierstrass Preparation Theorem (Theorem 2.5) and the Strong Noetherian Property (Theorem 2.10) hold with \(R \) replaced by \(R(G) \).

Proof. Only minor modifications to the proofs of Theorems 2.5 and 2.10 are needed. □

The arguments of Sections 2 and 3 show

Theorem 4.3. If \(G \) is divisible then \(\mathbb{R}((t^G)) \) admits quantifier elimination and is \(o \)-minimal in \(L_G \).

Corollary 4.4. If \(G_1 \subset G_2 \) are divisible, then \(\mathbb{R}((t^{G_1})) \prec \mathbb{R}((t^{G_2})) \) in \(L_{G_1} \).

We shall show in Section 5 that, though for \(m < n \) we have \(\mathbb{R}_m \prec \mathbb{R}_n \) in \(L_{Q^n} \), there is a sentence of \(L_{Q^n} \) that is true in \(\mathbb{R}_n \) but is not true in any \(o \)-minimal expansion of \(\mathbb{R}_m \).

The results of [LR3] also extend to this more general setting.

Definition 4.5. We define the ring of *strictly convergent power series over \(\mathbb{R}((t^G)) \) as

\[\mathbb{R}((t^G))^* := \{ \sum_{g \in I} a_g(t^g) : a_g(\xi) \in \mathbb{R}[\xi] \text{ and } I \text{ well ordered} \}, \]

and the subring of *overconvergent power series over \(\mathbb{R}((t^G)) \) as

\[\mathbb{R}((t^G)^* \langle \langle \xi \rangle \rangle) := \{ f : f(\gamma \xi) \in \mathbb{R}((t^G))^* \langle \xi \rangle \text{ for some } \gamma \in \mathbb{R}((t^G)), \| \gamma \| > 1 \}, \]
\[\mathcal{R}(G)_{\text{over}} := \bigcup_n \mathbb{R}((t^G))^* \langle \{ \xi_1, \ldots, \xi_n \} \rangle, \]
and the corresponding overconvergent language as
\[\mathcal{L}_{G,\text{over}} := (+, \cdot, ^{-1}, 0, 1, <, \mathcal{R}(G)_{\text{over}}). \]

As in [LR3] we have

Theorem 4.6. If \(G \) is divisible then \(\mathbb{R}((t^G)) \) admits quantifier elimination and is \(o \)-minimal in \(\mathcal{L}_{G,\text{over}} \).

Of course the \(o \)-minimality follows immediately from Theorem 4.6.

5. **Extensions of the Example of Hrushovski and Peterzil** [HP]

In this section we show that with minor modifications, the idea of the example of [HP] can be iterated to give a nested family of examples. This relates to a question of Hrushovski and Peterzil whether there exists a small class of \(o \)-minimal structures such that any sentence, true in some \(o \)-minimal structure, can be satisfied in an expansion of a model in the class. Combining with expansions with the exponential function, one perhaps can elaborate the tower of examples further.

Consider the functional equation
\[(*) \quad F(\beta z) = \alpha z F(z) + 1, \]
and suppose that \(F \) is a “complex analytic” solution for \(|z| \leq 1\). By this we mean that, writing \(z = x + \sqrt{-1} y \), \(F(z) = f(x, y) + \sqrt{-1} g(x, y), F(z) \) is differentiable as a function of \(z \). This is a definable condition on the two “real” functions, \(f, g \) of the two “real” variables \(x, y \). Then
\[
F(z) = \sum_{k=0}^{\infty} a_k z^k
\]
where
\[
a_k = \frac{\alpha^k}{\beta^{k+1}}.
\]
(\(\alpha \), and \(\beta \) are parameters).

By this we mean that for each \(n \in \mathbb{N} \) there is a constant \(A_n \) such that
\[(** \quad |F(z) - \sum_{k=0}^{n} a_k z^k| \leq A_n |z^{n+1}| \]
is true for all \(z \) with \(|z| \leq 1\). Indeed, by [PS] Theorem 2.50, one can take \(A_n = C \cdot 2^{n+1} \), for \(C \) a constant independent of \(n \).

Consider the following statement: \(F(z) \) is a complex analytic function (in the above sense) on \(|z| \leq 1\) that satisfies (\(* \)). The number \(\beta > 0 \) is within the radius of convergence of the function \(f(z) = \sum_{n=1}^{\infty} (n-1)! z^n \) and \(\alpha > 0 \).

This statement is not satisfiable by any functions in any \(o \)-minimal expansion of the field of Puiseux series \(K_1 \), or the maximally complete field \(\mathbb{R}_1 = \mathbb{R}((t^\gamma)) \), because if it were, we would have \(\| \beta \| = \| t^\gamma \|, \| \alpha \| = \| t^\delta \| \), for some 0 < \(\gamma, \delta \in \mathbb{Q} \), and for suitable choice of \(n \) \((**) \) would be violated. On the other hand, if we choose
\(\alpha, \beta \in \mathbb{R}_2 \) with \(\text{ord}(\alpha) = (1, 0) \) and \(\text{ord}(\beta) = (0, 1) \) then \(\sum a_k z^k \in \mathbb{R}_2(\langle z \rangle)^* \) satisfies the statement on \(\mathbb{R}_2 \).

This process can clearly be iterated to give, in the notation of Section 4,

Proposition 5.1. For each \(m \) there is a sentence of \(\mathcal{L}_{Q_m} \) true in \(\mathbb{R}_m \) but not satisfiable in any \(\alpha \)-minimal expansion of \(\mathbb{R} = \mathbb{R}_0, \mathbb{R}_1, \ldots, \mathbb{R}_{m-1} \).

References

[LR1] L. Lipshitz and Z. Robinson, Rings of separated power series, Asterisque **264**.

