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Abstract. In the context of rigid analytic spaces over a non-Archimedean valued field, a rigid

subanalytic set is a Boolean combination of images of rigid analytic maps. We give an analytic

quantifier elimination theorem for (complete) algebraically closed valued fields that is independent

of the field; in particular, the analytic quantifier elimination is independent of the valued field’s

characteristic, residue field and value group, in close analogy to the algebraic case. This provides

uniformity results about rigid subanalytic sets. We obtain uniform versions of smooth stratification

for subanalytic sets and the  Lojasiewicz inequalities, as well as a unfiorm description of the closure

of a rigid semianalytic set.

1. Introduction. A rigid subanalytic set is a Boolean combination of images
of rigid analytic maps. Techniques of quantifier elimination have proved useful in
the theory of rigid subanalytic sets. In this paper, we give an analytic elimination
theorem for algebraically closed valued fields that is independent of the field; in
particular, the quantifier elimination is independent of the valued field’s charac-
teristic, residue field and value group. This uniform analytic elimination theorem
provides uniformity results about rigid subanalytic sets. We obtain, for example,
uniform versions of the smooth stratification of subanalytic sets and the  Lojasiewicz
inequalities.

The use of quantifier elimination in the theory of subanalytic sets is due to Denef
and van den Dries [DD], who combined the algebraic elimination theorem for Qp of
Macintyre [Mac1] with parameterized Weierstrass Preparation to prove an analytic
quantifier elimination theorem for the p-adic integers Zp. They used this as the
basis for the theory of p-adic subanalytic sets. Combining the algebraic elimination
theorem for algebraically closed valued fields of A. Robinson [Ro] and Weispfenning
[W] with parameterized Weierstrass Preparation for rings of separated power series,
[L], [LR1]–[LR7] gave a rigid analytic quantifier elimination and a theory of rigid
subanalytic sets. See also the papers [S1]–[S5] of Schoutens. For a survey of these
and other results, see [D2].

The rigid analytic elimination has the following uniform property. Let K ⊂ F be
an extension of complete, non-Archimedean valued fields, where F is algebraically
closed. Suppose X1, . . . , Xn are F -analytic varieties given as zero-sets of K-analytic
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power series (see [LR5].) Any Boolean combination of images of the Xi under co-
ordinate projection is defined by a quantifier-free LDan-formula that involves only
K-analytic power series. Furthermore, this formula does not depend on the par-
ticular choice of algebraic extension, F . Indeed, many properties such as a smooth
stratification and  Lojasiewicz inequalities of such a Boolean combination, i.e., a
subanalytic set, are independent of the field F . In other words, the theory of
K-subanalytic sets is uniform in F .

However, none of the above-mentioned theories of subanalytic sets fully exploited
the uniformity of the algebraic elimination. Consider a system (∗) that is a Boolean
combination of conditions of the form

|p(x, y)| ./ |q(x, y)|,

where ./∈ {=, <}, p, q ∈ Z[x, y], and x and y are several variables. It follows from
the algebraic elimination theorem that there are polynomials p′, q′ ∈ Z[x] and a
Boolean combination (∗∗) of conditions of the form

|p′(x)| ./ |q′(x)|,

./∈ {=, <} such that for every algebraically closed valued field F , (∗∗) defines the
image under projection from Fn × Fm to Fn of the set defined by (∗). Conditions
(∗∗) depend neither on the field F nor its characteristic. In this paper, we give a
full analytic analog, Theorem 4.2, of this uniform algebraic elimination theorem.

Parameterized Weierstrass Preparation provided a key step in going from al-
gebraic to analytic elimination theory. Where Denef and van den Dries used the
prime p of the valuation ring of Qp (which equals the characteristic of the residue
field,) we used variables ρ, interpreted to range over the maximal ideal of the val-
uation ring, to witness the inequalities arising in Weierstrass Preparation. This
syntactic uniformity in our language suggested that it would yield an approach
to a uniform analytic elimination theorem for all complete, algebraically closed,
non-Archimedean valued fields in a suitable language.

While there are elements of Z[[ξ]] \ Z[ξ] that belong to the ring Zp〈ξ〉 of strictly
convergent power series for all p, for example, f =

∑∞
n=1 n!ξn, no such power

series is strictly convergent in equicharacteristic zero, neither does it have a bound,
uniform in p, on the number of zeros in the set |ξ|p ≤ 1. (The lack of a uniform
bound can be seen by observing for each p that f is Weierstrass regular of degree
p − 1 in the ring Zp〈ξ〉.) If, however, we view f as a separated power series and
restrict its domain to |ξ| < 1 (i.e., change ξ to ρ), we see that f(ρ) is Weierstrass
regular of degree 1 in the ring Z[[ρ]], independent of the prime p. In general, for
any element f ∈ Z[ξ][[ρ]], there is a uniform bound on the degree of (pre)regularity,
even in parameters (Corollary 3.8).

Since the functions in Z[ξ][[ρ]] are separated power series, the geometry of sets
defined using them is known to be well-behaved for each fixed ultrametric field
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(see [LR5].) Indeed, we shall show that sets defined using such functions are uni-
formly well-behaved. Such sets, for example, have smooth stratifications defined
over Z[ξ][[ρ]] uniformly for all complete, algebraically closed, non-Archimedean val-
ued fields F (see Corollary 4.6.)

In [vdD], van den Dries introduced the concept of valued field with analytic Z[[t]]-
structure, where t is interpreted as a uniformizing parameter of the valuation ring.
This provides a vehicle for extending the uniform algebraic results of Pas [Pas] and
Macintyre [Mac2] to the category of (discretely valued) Henselian valuation rings
with analytic structure. He suggests that a similar development could be carried
out in the non-discretely valued (algebraically closed) case using rings of separated
power series. This is our starting point in Section 2.

In Section 2, we establish notational conventions, introduce some power series
rings, set up the first–order languages that are used throughout the rest of the
paper and introduce the axioms for the uniform theory of valued fields with ana-
lytic structure. In Section 3, we show how Weierstrass Division works in a uniform
context, and prove the corresponding division theorem as well as other technical re-
sults that are needed for the uniform analytic elimination theorem. In Section 4, we
prove the uniform elimination theorem (Theorem 4.2) and give some applications,
such as existence of prime models (Corollary 4.5) and uniform smooth stratification
(Corollary 4.6). In Section 5, we give the axioms for the theory of valued fields with
analytic structure that contain a fixed complete field K, and discuss certain non–
standard models of these theories. In Section 6, we use the non–standard models of
Section 5 to give an improved treatment of the rigid analytic  Lojasiewicz inequal-
ities, and to show that these inequalities are uniform in various ways. In Section
7, we use the  Lojasiewicz inequalities to give a uniform and elementary proof that
the closure of a rigid semianalytic set is also semianalytic that extends results of
Huber [H], Liu [Liu] and Schoutens [S5] and avoids use of valuation spectra and
resolution of singularities. In Section 8, we give an alternative proof of the curve
selection theorem of Huber [H].

2. Definitions and Notation. The basic open domains of non-Archimedean anal-
ysis over an algebraically closed (complete) valued field F are the unit polydiscs
(F ◦)m × (F ◦◦)n, where F ◦ is the valuation ring of the valued field F and F ◦◦ is
the maximal ideal of F ◦; i.e.,

F ◦ := {x ∈ F : |x| ≤ 1}
F ◦◦ := {x ∈ F : |x| < 1}.

(In Sections 4 and 5, we extend this to algebraically closed, valued fields F that
are elementarily equivalent to a complete field.) Taking the quotient, we obtain
the residue field F̃ := F ◦/F ◦◦. In this paper we employ the convention that
ξ = (ξ1, ..., ξm) are variables that range over F ◦ and ρ = (ρ1, ..., ρn) are variables
that range over F ◦◦. We also use the convention for a normed ring R that

R◦ := {x ∈ R : |x| ≤ 1}, and

R◦◦ := {x ∈ R : |x| < 1}.
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The ring
Tm(K) := {

∑
µ∈Nm

aµξ
µ : lim

|µ|→∞
aµ = 0}

of strictly convergent power series consists of those power series that converge on the
closed unit polydiscs (F ◦)m, where F is as above and K is a complete subfield. As in
[LR5], while the models F ◦ are algebraically closed, we do not require the coefficient
field K to be algebraically closed: for a fixed coefficient field K, the elimination
theorem of [LR5] is uniform in F ⊃ K. In the model theory of algebraically closed
valued fields with analytic structure, it is convenient to have well-behaved rings of
analytic functions on the polydiscs (F ◦)m × (F ◦◦)n. These are provided by the
rings Sm,n(E,K) of separated power series,

Sm,n(E,K) := K ⊗K◦

⋃
B∈B

B〈ξ〉[[ρ]],

where B is the collection of complete, quasi-Noetherian rings consisting of the rings

B := E[ai : i ∈ N]∧{a∈E[ai:i∈N ]:|a|=1},

and where E is a fixed complete, quasi-Noetherian subring of K◦ (for example, E
may be a field or DVR contained in K◦), {ai}i∈N is a zero-sequence of K◦ and ∧

denotes completion in the valuation topology (see [LR4].)

Note that K[[ξ, ρ]] ⊃ Sm,n ⊃ Tm. Let f =
∑
aµνξ

µρν ∈ Sm,n. The function

f 7→ max
µν

|aµν | ∈ |K|

is called the Gauss norm, which is a multiplicative norm on Sm,n extending the
norm on K.

Let Q denote the algebraic closure of Q and let Z denote the integral closure of
Z in Q. The rings

Um,n(Z): = Z[ξ][[ρ]],

Um,n(Z,Z): =
⋃

Z⊂E⊂Z
E finitely generated

E[ξ][[ρ]],

Um,n(Z,Q): =
⋃
`∈N

Z[
1
`

][ξ][[ρ]] and

Um,n(Z,Q): =
⋃

Z⊂E⊂Z
E finitely generated

`∈N

E[
1
`

][ξ][[ρ]]

have properties analogous to the Sm,n and can be interpreted uniformly as analytic
functions on (F ◦)m × (F ◦◦)n as follows. Fix the fields K ⊂ F . The natural
homomorphism Z → K ⊂ F extends, coefficient-wise, to a homomorphism

σ:Um,n(Z) → S◦m,n(E,K),
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where E is the completion of σ(Z) in K. This is a monomorphism if CharK = 0;
otherwise the kernel is generated by p = CharK. If K contains the algebraic
closure of its prime field then σ extends to a homomorphism of Um,n(Z,Z) into
S◦m,n(E,K). If K is an equicharacteristic zero field then σ extends to a monomor-
phism of Um,n(Z,Q) into S◦m,n(E,K); if in addition K contains the algebraic clo-
sure of its prime field, then σ extends to a monomorphism of Um,n(Z,Q) into
S◦m,n(E,K). Hence for any complete field F the power series in Um,n(Z) represent,
via σ, analytic functions on (F ◦)m × (F ◦◦)n. The homomorphisms σ (and their
extensions) allow us uniformly to represent analytic functions on (F ◦)m × (F ◦◦)n.

As usual L = 〈0, 1,+, ·, | · |, 0, 1, ·, <〉 denotes the three-sorted language of multi-
plicatively valued rings. The three sorts are: the valuation ring, its maximal ideal
and the value semigroup. We suppress the predicates for the sorts, and we will
usually write 0, 1 and · for the elements 0, 1 of the value semigroup and for multi-
plication in this semigroup; no confusion should arise. The standard interpretations
for L that we have in mind are the valuation rings F ◦alg, where F is a complete val-
ued field and Falg is its algebraic closure. We may enrich the language by adding
function symbols for all the elements of U :=

⋃
m,n Um,n(Z). We denote this ex-

tended language Lan(U). Function symbols and constant symbols are interpreted
in the obvious way modulo p under the homomorphism σ. When, as in [LR5],
the fields F are extensions of a fixed complete, valued field K, it is convenient to
use a language Lan(K), obtained from L by adding symbols for the elements of
S◦m,n(E,K), or certain of its subrings, as in [LR5].

More generally, the Lan(U)-structures in which we shall be interested are the
valuation rings F ◦ on which the functions of U are defined and satisfy all the power
series identities of U (see Definition 2.1(ii)). For any field F , complete in a nontrivial
non-Archimedean absolute value | · |:F → R+, the elements of Um,n(Z) naturally
define functions on (F ◦)m × (F ◦◦)n and satisfy the power series identities due to
the convergence of their power series expansions. There are, however, also natural
Lan(K)-structures F ◦ which are not complete, but on which the functions of S can
be defined so as to satisfy all the power series identities of S, as in Definition 5.1(ii).

The language LDan(U) is obtained from Lan(U) by adding two more function
symbols, D0:F ◦ × F ◦ → F ◦ and D1:F ◦ × F ◦ → F ◦◦, for restricted division:

D0(x, y) :=
{
x/y if |x| ≤ |y| 6= 0
0 otherwise

D1(x, y) :=
{
x/y if |x| < |y|
0 otherwise

.

Observe that D0(t1, t2) is a term of the valuation ring sort, and D1(t1, t2) is a term
of the maximal ideal sort. We will often refer to an LDan-term of either of these sorts
(i.e., not the value semi-group sort) as a D-function. In other words, a D-function
is a term obtained by composing D0, D1 and power series. Strictly speaking, a
D-function f is a term which is interpreted via σ as a function in each model F ◦

(of the theory described either by Definition 2.1 or by Definition 5.1).



6 LEONARD LIPSHITZ AND ZACHARY ROBINSON

Let F be a complete valued field that contains the algebraic closure of its prime
field and fix f ∈ Um,n(Z,Z). Since the coefficients of f lie in a fixed finite extension
of Z there is a term t ∈ Lan(U) and c1, . . . , cn ∈ Z such that

t(c1, . . . , ck, ξ1, . . . , ξm, ρ1, . . . , ρn)

represents σ(f) on (F ◦)m × (F ◦◦)n.

Let F be a complete, equicharacteristic zero, valued field that contains the alge-
braic closure of its prime field and let f ∈ Um,n(Z,Q). Then there is an LDan(U)-term
t(D0(c1, `), . . . , D0(ck, `), ξ1, . . . , ξm, ρ1, . . . , ρn), with c1, . . . , ck ∈ Z and ` ∈ Z,
that represents σ(f). Indeed, t represents σ(f) as long as CharK - `.

We now introduce the axioms Tan(U) in the (characteristic independent) lan-
guage Lan(U) for the uniform theory of algebraically closed valued fields with an-
alytic structure. In Section 5, we consider the analogous theory Tan(S) for fields
that contain a fixed complete field K.

(2.1) Definition. The axioms in the language Lan(U) for the uniform theory of
algebraically closed fields with analytic structure, Tan(U), are:

(i) the axioms, in the 3-sorted language L, for the valuation ring of an alge-
braically closed, non-Archimedean, non-trivially valued field, and

(ii) all identities of the form

f = F (g1, . . . , gm, h1, . . . , hn),

where F ∈ Um,n, g1, . . . , gm ∈ UM,N and h1, . . . , hn ∈ (ρ) · UM,N . Note
that this includes all Weierstrass data (see Section 3) 2.1and the diagram
of the ring U =

⋃
m,n

Um,n.

The axioms T Dan(U) in the language LDan are those of Tan(U) together with the
obvious axioms defining D0 and D1 as in Section 2.

3. Weierstrass Preparation and Division Theorems. In this section, we show
that the rings Um,n satisfy Weierstrass Division Theorems similar to those satisfied
by the rings Sm,n. Indeed, these theorems are all a consequence of the division
theorems for the rings A[[ρ]] and A〈ξ〉, where A is a complete, linearly topologized
ring (see Theorem 3.2). We define ‘preregularity’ (Definition 3.5) for the rings
Um,n and we show that the degree of preregularity and the Weierstrass data in
Um,n are preserved under the map σ, discussed in Section 2, by means of which
we interpret the elements of Um,n as analytic functions in various valued fields (see
Proposition 3.4 and Corollary 3.8).

For example, the element f = 4ρ + ρ2 ∈ U0,1(Z) is not regular of any degree in
the ring U0,1(Z). However the image of f in S0,1(Zp,Qp) is regular of degree 1 when
p 6= 2, and the image of f in S0,1(Z2,Q2) is regular of degree 2. More precisely,
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although f is not preregular of any degree, in every ultrametric field the following
is true:

(|4| < 1 ∧ f = D1(4, 1)ρ+ ρ2) ∨ (|4| ≥ 1 ∧ f = 4(ρ+D0(1, 4)ρ2).

Hence if we let F1 := λρ + ρ2 and F2 := ρ + ξρ2, then F1 is preregular of degree
(0, 2) and F2 is preregular of degree (0, 1), and in every ultrametric field K

σ(f) = F1(D1(4, 1), ρ) or σ(f) = 4F2(D0(1, 4), ρ).

We introduce some conventions for Theorem 3.2, Weierstrass Division. Let A
be a ring, equipped with a linear topology (for example, the I-adic topology for a
fixed ideal I of A.) We will be interested primarily in the cases that A = Um,n−1(Z)
or A = Um−1,n(Z) and I = (ρ′) or I = (ρ), where ρ′ = (ρ1, . . . , ρn−1), and that
A = S◦m,n−1 or S◦m−1,n and I = (ε, ρ′) or (ε, ρ), where ε ∈ Z is prime.

Consider the ring A[[ρn]] of formal power series in the variable ρn, and the ring

A〈ξm〉 := {
∞∑
i=0

aiξ
i
m: ai ∈ A, lim

i→∞
ai = 0}

of strictly convergent power series in the variable ξm. Let A be linearly topologized
by a family of ideals Iν of A. We endow A〈ξm〉 and A[[ρn]] with the linear topolo-
gies generated respectively by IνA〈ξm〉 and by (Iν , ρin)A[[ρn]]. Call an element f
topologically nilpotent iff lim

i→∞
f i = 0.

(3.1) Definition. (i) An element f ∈ A[[ρn]] is regular of degree d iff

f =
d−1∑
i=0

tiρ
i
n + ρdn(1 + sρn)

for some s ∈ A[[ρn]] and ti ∈ A topologically nilpotent.
(ii) An element f ∈ A〈ξm〉 is regular of degree d iff

f = t+ ξdm + a1ξ
d−1
m + . . .+ ad

with t ∈ A〈ξm〉 topologically nilpotent and a1, . . . , ad ∈ A.

As in [Ba1, Section 2.2] and [Ba2, Section 1.2], or [LR4, Section 2.3], we have
the following.

(3.2) Weierstrass Preparation and Division Theorems. Let A be a ring,
complete in a linear topology.

(i) Let f, g ∈ A〈ξm〉 with f regular of degree d. Then there are uniquely
determined elements q ∈ A〈ξm〉 and r0, . . . , rd−1 ∈ A such that

g = qf +
d−1∑
i=0

riξ
i
m.
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In particular, taking g = ξdm, we have

f = u · (ξdm + a1ξ
d−1
m + . . .+ ad),

for uniquely determined a1, . . . , ad ∈ A and unit u ∈ A〈ξm〉, where u = 1+t
with t ∈ A〈ξm〉 topologically nilpotent.

(ii) Let f, g ∈ A[[ρn]] with f regular of degree d. Then there are uniquely
determined elements q ∈ A[[ρn]] and r0, . . . , rd−1 ∈ A such that

g = qf +
d−1∑
i=0

riρ
i
n.

In particular, taking g = ρdn, we have

f = u · (ρdn + a1ρ
d−1
n + . . .+ ad),

for uniquely determined topologically nilpotent a1, . . . , ad ∈ A and unit u ∈
A[[ρn]], where u = 1 + t with t ∈ A[[ρn]] topologically nilpotent.

The rings Um,n and Sm,n satisfy the following Weierstrass Preparation and Di-
vision Theorems. Recall that we have endowed Um,n(Z) (respectively S◦m,n(E,K))
with the I-adic topology, where I = (ρ) (respectively, I = (ε, ρ) with |ε| < 1.)

(3.3) Corollary. Let f, g ∈ Um,n(Z) (respectively, S◦m,n(E,K)), and let ξ′ =
(ξ1, . . . , ξm−1) and ρ′ = (ρ1, . . . , ρn−1).

(i) Suppose f is regular in ξm of degree d. Then there are uniquely deter-
mined elements q ∈ Um,n(Z) (respectively, S◦m,n(E,K)) and r0, . . . , rd−1 ∈
Um−1,n(Z) (respectively, S◦m−1,n(E,K)) such that

g = qf +
d−1∑
i=0

riξ
i
m.

In particular, taking g = ξdm, we have

f = u · (ξdm + a1ξ
d−1
m + . . .+ ad),

for uniquely determined elements a1, . . . , ad of Um−1,n(Z) (respectively, of
S◦m−1,n(E,K)) and unit u ∈ Um,n(Z) (respectively, S◦m,n(E,K)), where
u = 1+t with t ∈ Um,n(Z) (respectively, S◦m,n(E,K)) topologically nilpotent.

(ii) Suppose f is regular of degree d in ρn. Then there are uniquely deter-
mined elements q ∈ Um,n(Z) (respectively, S◦m,n(E,K)) and r0, . . . , rd−1 ∈
Um,n−1(Z) (respectively, S◦m,n−1(E,K)) such that

g = qf +
d−1∑
i=0

riρ
i
n.
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In particular, taking g = ρdn, we have

f = u · (ρdn + a1ρ
d−1
n + . . .+ ad),

for uniquely determined topologically nilpotent a1, . . . , ad of Um,n−1(Z) (re-
spectively S◦m,n−1(E,K)) and unit u ∈ Um,n(Z) (respectively S◦m,n(E,K)),
where u = 1 + t with t ∈ Um,n(Z) (respectively, S◦m,n(E,K)) topologically
nilpotent.

Proof. (i) Endow Um−1,n(Z) = Z[ξ′][[ρ]] with the (ρ)-adic topology and observe
that

Um,n(Z) = Z[ξ][[ρ]] = Um−1,n(Z)〈ξm〉.

Now take A = Um−1,n(Z) in Theorem 3.2 (i).

For the assertions regarding Sm,n, find B ∈ B (where B is as in Section 2) such
that f, g ∈ B〈ξ〉[[ρ]], endow B〈ξ′〉[[ρ]] with the linear topology induced by the linear
topology on S◦m−1,n, and proceed as for Um,n.

(ii) Endow Um,n−1(Z) = Z[ξ][[ρ′]] with the (ρ′)-adic topology. Then we may take
A = Um,n−1(Z) = Z[ξ][[ρ′]] in Theorem 3.2 (ii). The assertions regarding Sm,n are
handled similarly to part (i). �

Similar Weierstrass Preparation and Division Theorems also hold for the rings
Um,n(Z,Z), Um,n(Z,Q) and Um,n(Z,Q). This follows formally from Theorem 3.2
and the observation, as in Section 2, that all elements of these rings are obtained
from elements of the rings Um+k,n for suitable k, by substituting some elements of
Z (respectively, Q or Q) for ξm+1, . . . , ξm+k. Note, moreover, that f ∈ Um,n(Z) is
a unit if, and only if, f = ±1 + g where g ∈ (ρ)Um,n(Z). Similarly, f ∈ Um,n(Z,Z)
(respectively, Um,n(Z,Q) or Um,n(Z,Q)) is a unit if, and only if, f = c + g where
c is a unit of Z (respectively, of Q or Q) and g ∈ (ρ)Um,n(Z,Z) (respectively,
(ρ)Um,n(Z,Q) or (ρ)Um,n(Z,Q)). Given f ∈ Um,n(Z,Z), there are c1, . . . , ck ∈ Z
and an F ∈ Um+k,n(Z) such that

f(ξ, ρ) = F (c1, . . . , ck, ξ, ρ).

If in addition f is a unit, we can write f in the form c0G(c1, . . . , ck, ξ, ρ) where
G ∈ Um+k,n is a unit of Um+k,n. Similar observations hold for f ∈ Um,n(Z,Q) or
Um,n(Z,Q) using D-functions as at the end of Section 2.

We wish to consider how the Weierstrass Theorems for Um,n(Z) relate to those
for σ(Um,n(Z)) ⊂ Sm,n(E,K).

(3.4) Proposition. Let σ:Um,n(Z) → Sm,n(E,K) be the homomorphism induced
by the homomorphism Z → K of the coefficient rings. If f ∈ Um,n(Z) is regular
in ρn (respectively ξm) of degree d, so is σ(f), and if g = qf + r is a Weierstrass
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Division in Um,n(Z) then σ(g) = σ(q)σ(f) + σ(r) is the corresponding Weierstrass
Division of σ(g) by σ(f) in Sm,n(E,K).

Proof. The topology on Sm,n(E,K) is induced by the I-adic topology on the subring
S◦m,n(E,K), where I is the ideal generated by (ρ) and an element ε ∈ K◦◦\{0}.
With the (ρ)-adic topology on Um,n, the homomorphism σ is then continuous; in
particular, if t ∈ Um,n(Z) is topologically nilpotent, so is σ(t). The statement
about the regularity of σ(f) follows. To complete the proof, note that Weierstrass
Division data are uniquely determined. �

As with the rings Sm,n(E,K), it is not always possible to make an f ∈ Um,n
regular by a Weierstrass change of variables, even after multiplying by a suitable
constant (see [LR4], Example 2.3.5). The following notion (cf. [L], [LR4]) is useful
in the proof of Lemma 4.1, the induction step of the analytic elimination theorem.

(3.5) Definition. Let f(ξ, η, ρ, λ) =
∑
µν aµν(ξ, ρ)ηµλν ∈ Um+M,n+N (Z). We say

that f is preregular of degree (µ0, ν0) iff
(i) aµ0ν0 = 1,
(ii) aµν is topologically nilpotent for ν < ν0 and all µ, and
(iii) aµν0 is topologically nilpotent for µ > µ0.
Let f(ξ′, ρ′, η, λ) be preregular of degree (µ0, ν0) and let xi(ξ, ρ) and tj(ξ, ρ) be

LDan-terms of sorts F ◦ and F ◦◦, respectively. Then we also call

f(x(ξ, ρ), t(ξ, ρ), η, λ)

preregular of degree (µ0, ν0). Note that every LDan-term in which D0, D1 are not
applied to any sub-term involving η or λ is of the form f(x(ξ, ρ), t(ξ, ρ), η, λ).

Let K be a complete ultrametric field, let F ⊃ K be a complete, algebraically
closed extension field (or an extension field satisfying the axioms Tan(U) of Defini-
tion 2.1) and let

σ:Um+M,n+N (Z) → Sm+M,n+N (E,K)

be the natural map as above. We shall say that σ(f) is preregular of degree (µ0, ν0)
at (a, b) ∈ (F ◦)m × (F ◦◦)n iff

(i) aµ0ν0(a, b) 6= 0,
(ii) |aµν(a, b)| ≤ |aµ0ν0(a, b)| for all µ, ν,
(iii) |aµν(a, b)| < |aµ0ν0(a, b)| for ν < ν0 and all µ, and
(iv) |aµν0(a, b)| < |aµ0ν0(a, b)| for µ > µ0.

We extend this definition as above to the case that the aµν are LDan-terms not
involving η or λ; i.e., the case that f is an LDan-term in which D0, D1 are not applied
to any sub-term involving η or λ.

Abusing terminology, we say that f is regular of degree µ0 in η (respectively, of
degree ν0 in λ) iff it is preregular of degree (µ0, 0) (respectively, (0, ν0)).
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(3.6) Remark. (i) Observe that if f ∈ Um+M,n+N (Z) is regular of degree µ0 in
η (respectively, of degree ν0 in λ), then after a Weierstrass change of variables
among the ηi only (respectively, the λi only), f will be regular in the usual sense
of Definition 3.1 in ηM (respectively λN ). Similarly, let f ∈ Um+M,n+N (Z) and
suppose that σ(f) is regular of degree µ0 in η (respectively, of degree ν0 in λ) at
the point (a, b) ∈ (F ◦)m × (F ◦◦)n. Then, after a Weierstrass change of variables
among the ηi only (respectively, the λi only), the power series

a−1
µ0,0

(a, b)σ(f)(a, b, η, ρ)

(respectively, a−1
0,ν0

(a, b)σ(f)) is regular in ηM (respectively, λN ).

(ii) If f =
∑
µν
aµν(ξ, ρ)ηµλν =

∑
ν
fνλ

ν , where fν =
∑
µ
aµνη

µ, is preregular of

degree (µ0, ν0), then fν0 is regular of degree µ0 in η.

The following lemma is the analogue for Um,n of [LR4, Lemma 3.1.6] and [LR5,
Lemma 4.1], and as in [LR5] plays a key role in the quantifier elimination.

(3.7) Lemma (Bound on degree of preregularity). Let ξ = (ξ1, . . . , ξm), η =
(η1, . . . , ηM ), ρ = (ρ1, . . . , ρn), λ = (λ1, . . . , λN ) and

f =
∑
µ,ν

fµν(ξ, ρ)ηµλν ∈ Um+M,n+N (Z),

where the fµν(ξ, ρ) ∈ Um,n(Z). There are d ∈ N, and gµν ∈ (ρ, λ)Um+M,n+N (Z),
|(µ, ν)| < d, such that

f =
∑

|(µ,ν)|<d

fµνη
µλν(1 + gµν).

Proof. Let J be the ideal of Um,n(Z) generated by the fµν . Since Um,n(Z) is
Noetherian, by the Artin-Rees Lemma [Mat, Theorem 8.5], there are c, d ∈ N such
that

(i) {fµν}|(µ,ν)|<d contains generators for both J and (ρ)c ∩ J , and
(ii) for any α ∈ Nm, β ∈ Nn and e ∈ N, if fαβ ∈ (ρ)e+cUm,n(Z) ∩ J , then

fαβ =
∑

|(µ,ν)|<d

hµνfµν

for some hµν ∈ (ρ)eUm,n(Z).
�

The following corollary is a consequence of Lemma 3.7.
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(3.8) Corollary. Let f(ξ, ρ, η, λ) be a D-function in which D is not applied to any
term containing η or λ, so

f =
∑
µ,ν

fµν(ξ, ρ)ηµλν .

There is a d ∈ N such that for any field F satisfying the axioms of Definition 2.1(ii)
and every (a, b) ∈ (F ◦)m × (F ◦◦)n, if σ(f)(a, b, η, λ) 6≡ 0 then f is preregular at
(a, b) of some degree (µ0, ν0) with |(µ0, ν0)| < d. Furthermore, for each such (µ0, ν0)
there is a D-function g in which D is not applied to any term containing η or λ
such that whenever f is preregular at (a, b) of degree (µ0, ν0),

(∗) f(a, b, η, λ) = fµ0ν0(a, b)g(a, b, η, λ)

for all (η, λ) ∈ (F ◦)M × (F ◦◦)N . Furthermore, g is preregular of degree (µ0, ν0).
Indeed, the coefficient of ηµ0λν0 is 1.

Proof. Replacing terms of the form D(t1, t2) in f by new variables, we may as-
sume that f ∈ Um+M,n+N (Z). By Lemma 3.7, there is a d ∈ N and gµν ∈
(ρ, λ)Um+M,n+N (Z), |(µ, ν)| < d, such that

f =
∑

|(µ,ν)|<d

fµνη
µλν(1 + gµν).

The first part of the Corollary now follows.

Now fix (µ0, ν0) with |(µ0, ν0)| < d. Put

g := ηµ0λν0(1 + gµ0,ν0) +
∑

(µ,ν)∈I

D1(fµν , fµ0ν0)ηµλν(1 + gµν)+

+
∑

(µ,ν)∈J

D0(fµν , fµ0ν0)ηµλν(1 + gµν),

where

I := {(µ, ν): |(µ, ν)| < d and either ν < ν0, or ν = ν0 and µ > µ0}, and

J := {(µ, ν): |(µ, ν)| < d and (µ0, ν0) 6= (µ, ν) /∈ I}.

To see that (∗) is satisfied for all points (a, b) at which f is preregular of degree
(µ0, ν0), use Definition 3.5, together with Definition 2.1 and the observation that I
and J are finite sets. �

(3.9) Remark. The analog of Corollary 3.8 with S in place of U and Definition 5.1
in place of Definition 2.1 also holds. The proof uses [LR5, Lemma 4.1] in place of
Lemma 3.7.
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4. Uniform Rigid Analytic Elimination. In this section we prove the Uniform
Analytic Elimination Theorem (Theorem 4.2.) The proof depends on a double
induction, which is isolated in Lemma 4.1. Corollaries 4.3, 4.4 and 4.5 give quantifier
simplification, model completeness and the existence of prime models. Corollary 4.6
gives a uniform version of the smooth stratification theorem of [LR7].

Let ϕ(ξ, ρ, η, λ) be a quantifier–free formula in LDan(U) or LDan(S) in which D is
not applied to terms involving η, λ. The (η, λ)–rank of ϕ is defined to be (m,n),
where m is the number of η’s (respectively n is the number of λ’s) which have
non-polynomial occurrence in ϕ. We order the set N×N of ranks lexicographically.

The proof of the Uniform Analytic Elimination Theorem 4.2 (see also [LR5,
Theorem 4.2]), proceeds by induction on rank. The induction step is provided by the
following lemma, together with the corresponding algebraic elimination theorem.

(4.1) Lemma. Let η = (η1, . . . , ηm), λ = (λ1, . . . , λn), η∗ = (η0, η), λ∗ = (λ0, λ)
and let ϕ(ξ, ρ, η, λ) be a quantifier-free LDan(U)-formula (respectively, an LDan(S)-
formula) in which D is not applied to terms involving η, λ. There is a finite set of
quantifier-free LDan(U)-formulas (respectively, LDan(S)-formulas) ψi(ξ, ρ, η∗, λ∗) with
(η∗, λ∗)-rank < (m,n) and in which D is not applied to terms involving η∗, λ∗, such
that

F ◦ � ∃η∃λϕ↔
∨
i

∃η∗∃λ∗ψi

for every field F that satisfies the power series identities of Definition 2.1(ii) (re-
spectively, Definition 5.1(ii)). For example, F can be any complete valued field
(respectively, any complete valued field containing the coefficient field K of S.)

Proof. We give the proof for ϕ an LDan(U)-formula. The proof for ϕ an LDan(S)-
formula is obtained by replacing use of Lemma 3.8 by [LR4, Lemma 3.1.6] and
Definition 3.5 by [LR4, Definition 2.3.4].

We will apply Corollary 3.8 to each function f (i) that occurs in ϕ. Write

f (i) =
∑

f (i)
µν η

µλν , i = 1, . . . , `,

where the f (i)
µν are D–functions in the parameters ξ and ρ. By Corollary 3.8, there

is a d ∈ N such that for every field F as in the statement of the lemma, every
point (ξ, ρ) ∈ (F ◦)M × (F ◦◦)N , and every index i, either σ(f (i))(ξ, ρ, η, λ) vanishes
identically or there is a |(µi, νi)| < d such that σ(f (i)) is preregular of degree
(µi, νi) at (ξ, ρ). Splitting into cases by conjoining the respective inequalities of
Definition 3.5 (for |(µ, ν)| < d), we may assume that f (i) is preregular of degree
(µi, νi) at any (ξ, ρ) that satisfies (the modified formula) ∃η∃λϕ. Corollary 3.8
allows us to write f (i) = f

(i)
µiνig

(i), where g(i) is preregular of degree (µi, νi). Writing

g(i) =
∑

g(i)
ν λν ,

as in Remark 3.6(ii), we have g(i)
νi regular of degree µi in η. Split further into cases

by conjoining one of the two conditions |g(i)
νi | = 1 or |g(i)

νi | < 1 for each i.
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Case A. A condition |g(i)
νi | < 1 occurs.

Let λ0 be a new variable of the maximal ideal sort. Conjoin the equation g(i)
νi −

λ0 = 0. After a Weierstrass change of variables among the ηi, we may assume that
g
(i)
νi − λ0 is regular in ηm of degree si. Using Corollary 3.3 and Proposition 3.4, we

may replace g(i)
νi − λ0 by a Weierstrass polynomial in ηm, and each other function

by its remainder on division by g(i)
νi − λ0. The resulting formula has rank at most

(m− 1, n+ 1) < (m,n).

Case B. The condition
∧̀
i=1

|g(i)
νi | = 1 occurs.

We may assume that each occurrence of f (i) is of the form |f (i)|. Because we
have conjoined the inequalities of Corollary 3.8, we may replace |f (i)| by |f (i)

µiνi ||g(i)|.
Since the bound variables η and λ do not occur in f (i)

µiνi , we focus on the occurrence
of |g(i)|.

Let η0 be a new variable of the valuation ring sort. Conjoin the equation

(∗) η0
∏̀
i=1

g(i)
νi
− 1 = 0.

Since the g(i)
νi are regular of some degree in η, so is g: = η0

∏̀
i=1

g
(i)
νi − 1. Hence after

a change of variables among the η, by Corollary 3.3 and Proposition 3.4, we may
replace g by a Weierstrass polynomial in η0. Since it is of absolute value 1, we
obtain an equivalent formula by multiplying each g(i) by

η0g
(1)
ν1 . . . ĝ

(i)
νi . . . g

(`)
ν`
,

where the factor marked ̂ is omitted. The coefficient of λνi is η0
∏`
i=1 g

(i)
νi , which

by (∗), we replace by 1. We continue to denote the result by g(i). After this
process, each g(i) is preregular of degree (0, νi). After a Weierstrass change of
variables among the λ, we may assume that each g(i) is regular in λn of some degree,
and hence by Corollary 3.3 and Proposition 3.4, that each g(i) is a Weierstrass
polynomial in λn. Using Corollary 3.3 and Proposition 3.4 to replace each coefficient
of each polynomial g(i) by its remainder upon division by g, we obtain an equivalent
formula that is polynomial in both η0 and λn, thus has rank ≤ (m,n − 1) <
(m,n). �

(4.2) Theorem (Uniform Analytic Elimination). Let ϕ be an LDan(U)–formula.
Then there is a quantifier–free LDan(U)–formula ψ such that for every valuation
ring F ◦ that satisfies the axioms of Definition 2.1 (for example, take F algebraically
closed and complete in the absolute value | · |:F → R) we have

F ◦ � ϕ↔ ψ.
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Proof. Let ϕ(ξ, ρ, η, λ) be a quantifier–free LDan(U)–formula. It suffices to show
that the formula ∃η∃λϕ is equivalent to a quantifier–free LDan(U)–formula. Since
the relations D0(x, y) = z and D1(x, y) = z are defined uniformly for all valued
fields by a quantifier–free L–formula, at the expense of more existential quantifiers
we may assume that D is not applied to any term involving η or λ in ϕ, which
is the condition of Lemma 4.1. We now proceed by induction on the rank of ϕ,
using the Algebraic Elimination Theorem [W] to eliminate existentially quantified
polynomially-occurring variables. Note that Lemma 4.1 and the Algebraic Elimi-
nation Theorem are independent of the valuation ring F ◦. �

Since the functions D0 and D1 are uniformly quantifier-free definable, Theo-
rem 4.2 yields the following.

(4.3) Corollary (Uniform Quantifier Simplification). Let ϕ be an Lan(U)-formula.
There is an existential Lan(U)–formula ψ such that in every valuation ring F ◦ that
satisfies the axioms of Definition 2.1,

F ◦ � ϕ↔ ψ.

(4.4) Corollary (Model-Completeness). Tan(U) is model-complete. In particular,
let ϕ(x1, . . . , xn) be an LDan(U)–formula, let F ◦1 ⊂ F ◦2 be two models of Tan(U) and
let a1, . . . , an ∈ F ◦1 ∪ F ◦◦1 ∪ |F ◦1 |. Then

F ◦1 � ϕ(a1, . . . , an) ↔ F ◦2 � ϕ(a1, . . . , an).

The theory Tan(U) is the uniform theory of rigid subanalytic sets; more precisely:

(4.5) Corollary. (i) Let F be a complete valued field. Then

F ◦alg � Tan(U).

(ii) For each prime p, the theories

Tan(U) ∪ {Characteristic is p}
Tan(U) ∪ {Characteristic is 0 and residue characteristic is p}
Tan(U) ∪ {residue characteristic is 0}

have prime models, namely

(Fp((t)))◦alg, (Qp)◦alg and (Frac Z[[t]])◦alg,

respectively, where Frac denotes the field of fractions. Hence each of these
theories is complete.

(iii) Any valuation ring can be extended to a model of Tan(U). In particular, the
valuation ring of any maximally complete, algebraically closed, valued field
is a model of Tan(U).
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Proof. Part (i) is immediate from Theorem 4.2.

For the equicharacteristic p case of Part (ii), let F ◦ be a model of Tan(U) of
equicharacteristic p. Since F ◦ is nontrivially valued, there must be some t ∈ F ◦

with 0 < |t| < 1. Consider the map

ε:U0,1 → F ◦: f 7→ σ(f)(t).

The identities of Definition 2.1(ii) guarantee that ε is a homomorphism. Let f ∈
U0,1. By Weierstrass Preparation (Corollary 3.3), there is a unit u of U0,1 and
a polynomial P ∈ Z[ρ] such that f = u · P . Thus f ∈ ker ε if, and only if,
ε(P ) = 0. Since t is transcendental over Fp, ker ε = (p). Therefore, F ◦ contains an
isomorphic copy of the valuation ring of the complete field Fp((t)). Moreover, since
Definition 2.1(i) guarantees that F is algebraically closed, F ◦ contains Fp((t))◦alg,
which by Part (i) is a model of Tan(U). The completeness of the theory Tan(U) ∪
{Characteristic is p} is now a consequence of Corollary 4.4. The equicharacteristic
zero and mixed characteristic cases are similar.

Part (iii) is an immediate consequence of Theorem 5.9, below. �

Let ϕ(ξ1, . . . , ξm) be an LDan(U)–formula. For each algebraically closed complete
ultrametric field F let Xϕ(F ) be the subanalytic set in (F ◦)m defined by ϕ; i.e.,

Xϕ(F ) := {(x1, . . . , xm) ∈ (F ◦)m:ϕ(x1, . . . , xm)}.

By [LR7] there is a stratification of Xϕ(F ) into a finite union of disjoint subanalytic
manifolds, defined in LDan(

⋃
m,n Sm,n(E,K)). The results of [LR5] show that the

same stratification is valid for all F ′ ⊃ K, F ′ algebraically closed and complete.
An examination of the proof of [LR7] shows that the stratification (for Xφ(F )) is
actually defined over LDan(U).

(4.6) Corollary (Uniform Smooth Stratification). Let ϕ be an LDan(U)–formula.
Then there are LDan(U)–formulas ψ0, . . . , ψd with the following properties. For every
valuation ring F ◦ that satisfies the axioms of Definition 2.1,

(i) Xϕ(F ) =
⋃d
i=0Xψi(F ),

(ii) Xψi(F ) ∩Xψj (F ) = ∅ if i 6= j and
(iii) Xψi(F ) is either ∅ or an F–analytic manifold of dimension i, i = 0, . . . , d.

(We say that ψ =
∨d
i=0 ψ

i defines a smooth stratification of Xϕ.)

Proof. First consider a model F ◦ of Tan(U) with Char F̃ = 0. Let ψ0 =
∨d
i=0 ψ

i
0 be

an LDan(U)–formula defining a smooth stratification of Xϕ(F ). By Corollary 4.5, ψ0

defines a smooth stratification of Xϕ(F ′) for every algebraically closed, complete
ultrametric field F ′ of equicharacteristic zero. An application of Theorem 4.2 to the
formula “ψ0 gives a smooth stratification of the set defined by ϕ”, where smooth-
ness is detected by the non–vanishing of a certain Jacobian, yields a variable-free
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sentence χ in LDan which is true in equicharacteristic zero, and hence in residue
characteristic ≥ e. Let ψp =

∨d
i=0 ψ

i
p and θp =

∨d
i=0 θ

i
p define smooth stratifi-

cations, respectively, of Xϕ(F ) where CharF = 0 and Char F̃ = p (respectively,
CharF = p) for p < e. Now, for i = 1, . . . , d, let ψi be the formula

(|e!| = 1 ∧ ψi0) ∨
∨
p<e

(0 6= |p| < 1 ∧ ψip) ∨
∨
p<e

(p = 0 ∧ θip).

�

(4.7) Remark. A one-dimensional subanalytic set is semi–algebraic (see [LR1]),
hence is a finite Boolean combination of discs. For each value x of the parameters
x, an LDan(S(K))–formula ϕ(x1, . . . , xn, t) defines a subanalytic set in the “line”
F ◦. It was shown in [LR3] that there is a bound b, independent of the value of the
parameter x, on the minimum number of discs needed to describe the set ϕ(x, t)
as a Boolean combination of these discs. By model–completeness, the bound is
uniform in all models of the theory Tan(K) described in Definition 5.1, below. If
ϕ is an LDan(U)–formula, then the bound depends only on the pair χ = (p, q) of
characteristics of the fields K, K̃. It follows from the Uniform Rigid Analytic Elim-
ination Theorem 4.2 that there is, in fact, a uniform bound b valid for all models
F of Tan(U) of any characteristic (p, q) and all values x of the parameters x. (See
also [vHM] for a p-adic analogue.)

(4.8) Remark (Uniform Analytic Continuation). One consequence of the quasi–
affinoid Acyclicity Theorem of [LR6] is that if U0, . . . , UN is an admissible [LR6,
Definition 2.3.1] cover of the polydisc (F ◦)m × (F ◦◦)n and if fi ∈ O(Ui) (i.e., the
fi are quasi–affinoid functions on Ui) such that the restrictions fi|Ui∩Uj = fj |Ui∩Uj

then there is an f ∈ Sm,n such that f |Ui
= fi. In particular, in characteristic zero,

if 0 ∈ U0, the Taylor series expansion of f0 is f . The Uniform Rigid Analytic
Elimination Theorem 4.2 yields a uniform version of this, as follows. Suppose
that the LDan(U)–formulas ψ0, . . . , ψN define an admissible cover U0, . . . , UN of
(F ◦)m × (F ◦◦)n where F is an equicharacteristic 0 model of the theory Tan(U).
(It is equivalent to assume that {U0, . . . , UN} is an admissible cover of (F ◦)m ×
(F ◦◦)n for models F of Tan(U) of all but finitely many characteristics χ = (p, q).)
Let t0, . . . , tN be terms of LDan(U) such that each ti|Ui

∈ O(Ui) and ti|Ui∩Uj
=

tj |Ui∩Uj
, i, j = 0, . . . , N . Note that this can all be expressed by an LDan(U)–formula.

The Acyclicity Theorem of [LR6] guarantees that there is an f ∈ Sm,n(Q) such that
f |Ui = ti, i = 0, . . . , N . Assume 0 ∈ U0. Comparing partial derivatives of t0 at
0 with partial derivatives of f at 0, using the Chain Rule and Quotient Rule, and
the fact that t0 is an analytic D–function on U0, we see that all coefficients of
f are in Z[1/`] for some ` 6= 0, so f ∈ Um,n(Q). Applying the Uniform Rigid
Analytic Elimination Theorem 4.2 to the LDan(U)–formulas f |Ui = ti yields the
desired conclusion for all but finitely many characteristics χ = (p, q). The same is
true for admissible covers of uniformly defined varieties.
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5. Axioms and Non-standard Models of the Analytic Theory. It is clear
from the proofs of the quantifier elimination and simplification theorems of [LR5]
that those theorems hold for the valuation ring F ◦ of any algebraically closed valued
field F extending the coefficient field K on which the functions in S(E,K) (or E(T )
or E(H), see [LR5]) “make sense” and satisfy the identities true of these functions in
the rings Sm,n(E,K). We summarize the statements of those theorems below, and
make our assertion concerning non-standard models of the analytic theory more
precise in Definition 5.1 and Theorem 5.2 and in Definition 5.4 and Theorem 5.9,
where we show that any model can be extended to one that is maximally complete.
The results of this section are useful for the treatment of the  Lojasiewicz Inequalities
given in Section 6.

We showed in [LR5] that if S =
⋃
m,n Sm,n(E,K), if K ⊂ F is any complete

valued field extending K and if Falg is the algebraic closure of F , then F ◦alg admits
quantifier elimination in the language LDan(S). (The language LDan(S) is the lan-
guage L enriched with D0, D1 and symbols for the elements of S◦ :=

⋃
m,n S

◦
m,n.)

We further obtained quantifier elimination theorems for many sublanguages of
LDan(S). The most interesting example is that F ◦alg admits elimination of quantifiers
in the language Lan(E(T )) where T =

⋃
m Tm(K) and E(T ) is (roughly speaking)

the set of analytic functions given by LDan(S)–terms which are existentially definable
over the ring of strictly convergent power series T . This yields a quantifier simplifi-
cation theorem in the language Lan(T ). These quantifier elimination and quantifier
simplification theorems were shown to be uniform in F ◦alg, for all complete, valued
field extensions F of the coefficient field K (see [LR5], Theorem 4.2, Corollary 4.4
and Corollary 4.5). In this section, we extend that result to a larger class of field
extensions F of K. For technical reasons, we restrict the class of separated power
series rings Sm,n(E,K) to those where E is a discrete valuation ring.

(5.1) Definition. Let S :=
⋃
m,n S

◦
m,n(E,K), where E ⊂ K◦ is a discrete valu-

ation ring. The axioms Tan(K) in the language Lan(S) for the analytic theory of
Kalg are:

(i) the axioms, in the 3-sorted language L, for the valuation ring of an alge-
braically closed, non-Archimedean, non-trivially valued field containing K,
and

(ii) all identities of the form

f = F (g1, . . . , gm, h1, . . . , hn),

where F ∈ S◦m,n, g1, . . . , gm ∈ S◦M,N and h1, . . . , hn ∈ (ρ) · S◦M,N + S◦◦M,N .
Note that this includes all Weierstrass data and the diagram of the ring
S◦ =

⋃
m,n

S◦m,n.

The axioms T Dan(K) in LDan are those of Tan(K) together with the obvious axioms
defining D0 and D1.

The theories in the various sublanguages mentioned at the beginning of this
section are obtained by restriction.
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The proofs in [LR5] only use facts about S and the various subsets, such as
the strong Noetherian property, the Weierstrass Division Theorem, the algebraic
elimination theorem, etc., all of which are coded into Tan and T Dan. Hence we have
the following.

(5.2) Theorem. The theories Tan(K) of Definition 5.1 admit quantifier simplifi-
cation in Lan and quantifier elimination in LDan.

The following simple example will be useful in Section 6.

(5.3) Remark. An obvious example of a model of Tan(K) which is not complete
(and not the algebraic closure of a complete field) is F := (Kalg)∗, a nonprincipal
ultrapower of the algebraic closure of K. A more interesting class of examples is
given by the following. Let F be any model of Tan(K), e.g., F = (Kalg)∗. Thus F
is a valued field extending Kalg. Let I ⊂ F ◦ be a prime ideal with I ∩K◦ = (0).
Let F1 be the quotient field of F ◦/I. In the example F = (Kalg)∗ we could take I
to be the set of all infinitesimals of F . We then have that F1 is a model of Tan(K).
This is clear since all the functions in S(K) are uniformly continuous. Indeed,
let f ∈ Sm,n(K) and x, y ∈ (F ◦)m × (F ◦◦)n, and suppose xi − yi ∈ I for all
i = 1, . . . ,m + n. Since |f(x) − f(y)| ≤ ‖f‖|x − y|, and since for any ideal I of
a valuation ring, a ∈ I and |b| ≤ |a| implies b ∈ I, it follows that we can define
f(x+I) := f(x)+I. Note, however, that D(x+I, y+I) is not in general contained
in D(x, y) + I. For example, take y ∈ I and x: = y+ y. But since F1 is a valuation
ring, there are functions D0 and D1 on F1 that satisfy the axioms.

(5.4) Definition. A valued field F is maximally complete iff there is no proper
extension F ( F1 with F̃1 = F̃ and |F1| = |F |.

Let K be a valued field. For a given algebraically closed residue field extension
k ⊃ K̃ and ordered divisible group G ⊃ |K| there is a unique maximally complete
field F containing K such that F̃ = k and |F | = G. See [Kap1, Kap2] and [Po].
Such a field is algebraically closed.

Our next goal is to show that the functions of S◦m,n(E,K) extend to functions
on any maximally complete F ⊃ K, so that F ◦ becomes a model of Tan(K). Recall
that E ⊂ K◦ is a discrete valuation ring.

Fix a maximally complete algebraically closed extension field F ⊃ K with
(algebraically closed) residue field F̃ ⊃ K̃ and (ordered divisible) value group
G = |F | ⊃ |K|. Following Poonen [Po, Sections 4 and 5], let E′ be a discrete
valuation ring with residue field F̃ ; without loss of generality, we can assume that
E′ ⊃ E, the discrete valuation ring used in the above definition of Sm,n(E,K).
Consider the Mal’cev-Neumann ring E′((G)) of formal sums

∑
g∈G eg · g, where

the set {g ∈ G: eg 6= 0} is reverse well-ordered (we have to reverse the given order
on G because we write our valuations multiplicatively) by [Po], F = E′((G))/N ,
where N is the maximal ideal of null series. Let S be a set of representatives of
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equivalence classes of E′ modulo its maximal ideal. By [Po, Proposition 4.4], any
element a ∈ F has a unique representation in E′((G)) of the form β =

∑
g∈G βg · g,

with βg ∈ S. We define

Supp(a) := {g ∈ G:βg 6= 0};

note that Supp(a) is reverse well-ordered because β ∈ E′((G)).

Let B ∈ B (in the definition of Sm,n(E,K)), so B ⊂ K◦ and

B = E[ai: i ∈ N]∧{a∈E[ai:i∈N]:|a|=1},

where {ai} is a null-sequence of K◦.

(5.5) Lemma. Supp(B) :=
⋃
a∈B

Supp(a) is reverse well-ordered.

Proof. It is no loss of generality to assume that Ẽ = K̃ and that E ⊂ E′. We have

K ⊂ E((|K∗|))/(N ∩ E((|K∗|)) ⊂ E′((G))/N,

and, without loss of generality, we may assume that S is chosen so that (S∩K )̃ = K̃.
Thus, since |K∗| ⊂ R+, SuppK ⊂ R+. By [Pass, Lemmas 13.2.9 and 13.2.10],

Supp(E[ai : i = 1, . . . , n]) =: An

is reverse well-ordered, and An+1 \ An ⊂ [0, εn] ⊂ R for some sequence {εn} with
εn → 0. It follows that⋃

n

Supp(E[ai : i = 1, . . . , n]) = Supp(E[ai : i ∈ N])

is reverse well-ordered. For any ε > 0, Supp(E[ai : i ∈ N]∧) ∩ [ε, 1] = Supp(E[ai :
i ∈ N] ∩ [ε, 1] and hence

Supp(E[ai : i ∈ N]∧) = Supp(E[ai : i ∈ N]),

and so is reverse well-ordered. Finally, observe that

Supp(B) = Supp(E[ai : i ∈ N]∧{a∈E[ai:i∈N]:|a|=1})

= Supp(E[ai : i ∈ N]∧)

because Ẽ = K̃, and hence is reverse well-ordered. �
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(5.6) Lemma. Let ξ1, . . . , ξm ∈ F ◦, ρ1, . . . , ρn ∈ F ◦◦ and let

A = [Supp(B) ∪
m⋃
i=1

Supp(ξi) ∪
n⋃
j=1

Supp(ρj)]\{1}.

Then Ã :=
⋃
n∈N

An is well–ordered and
⋂
n∈N

Ãn = ∅.

Proof. [Pass] Lemma 13.2.10. �

(5.7) Lemma. Let f =
∑
aµνξ

µρν ∈ B〈ξ〉[[ρ]] and let ξ ∈ (F ◦)m, ρ ∈ (F ◦◦)n.
Then the sum f(ξ, ρ) =

∑
aµνξ

µ
ρν =

∑
g∈G eg · g is well-defined in F ; i.e., only

finitely many terms contribute to the coefficient of each g, and the support of the
sum is well-ordered. Furthermore, all the identities of Definition 5.1(ii) that hold
in Sm,n(E,K) also hold among these functions on (F ◦)m × (F ◦◦)n.

Proof. Keep the notation from the previous lemma. There are a1, . . . , am ∈ S ⊂ E′

such that Supp(τi) ⊂ A, where τi := ξ̄i − ai, i = 1, . . . ,m. Note that Supp(B[a]) =
Supp(B) is reverse well-ordered so for any h ∈ B〈ξ〉, h(a) is well-defined and
Supp(h(a)) ⊂ Supp(B). Let λ1, . . . , λm be variables and put

g(λ, ρ) := f(a+ λ, ρ) ∈ B〈a〉[[λ, ρ]],

λ̄ := ξ̄ − a.

Note that Supp(µ) ⊂ A for each monomial µ of g(λ̄, ρ̄) of positive degree. Thus,
by Lemma 5.6, g(λ̄, ρ̄) = f(ξ̄, ρ̄) is well-defined. �

(5.8) Proposition. Let F be a (non-trivially) valued field such that F ◦ is an
Lan(K)-structure (respectively, Lan(U)-structure) satisfying the power series iden-
tities of Definition 5.1(ii) (respectively, Definition 2.1(ii)). Then F ◦ is a Henselian
valuation ring.

Proof. It suffices to show that any polynomial of the form P (X) :=
∑d
i=0 aiX

i ∈
F ◦[X], with a0 ∈ F ◦◦ and a1 = 1, has a zero in F ◦◦. Put

f(η;λ, ρ) := λ+ ρ+ η2ρ
2 + · · ·+ ηdρ

d ∈ Ud,2(Z) ⊂ Sd,2.

Observe that f is regular in ρ of degree 1, so there is a unit v of Ud,2 and an element
g(η, λ) ∈ (λ) · Ud,1 such that f = v · (ρ− g). By the power series identities

P (g(a′, a0)) = v(a′, a0, g(a′, a0))(g(a′, a0)− g(a′, a0)) = 0,

and since g ∈ (λ), we have that g(a′, a0) ∈ F ◦◦. �
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(5.9) Theorem. Let K be a complete, non-Archimedean valued field.
(i) Let F be a maximally complete, algebraically closed, valued field extension

of K. Then F can be expanded to a model of Tan(K).
(ii) Let F ◦ be as in the statement of Proposition 5.8. Then F ◦ can be extended

to a model of Tan(K) (respectively, of Tan(U)).

Proof. (i) This is immediate from Lemma 5.7.

(ii) Let Falg be the algebraic closure of F . Since F ◦ is Henselian, F ◦alg is integral
over F ◦, so F ◦alg is the direct union of its subextensions A which are finite F ◦-
modules. The general case is similar to the following example. Take A = F ◦[α]
with |α| < 1. Then α satisfies a polynomial equation λd + a1λ

d−1 + · · ·+ ad, where
a1, . . . , ad ∈ F ◦◦. Let f(ξ, ρ, λ) ∈ Sm,n+1 and fix ξ̄ ∈ (F ◦)m and ρ̄ ∈ (F ◦◦)n; we
must define f(ξ̄, ρ̄, α). Put g := λd + τ1λ

d−1 + · · · + τd. By Weierstrass Division
(all such divisions are coded in axiom group (ii)),

f = q · g +
d−1∑
i=0

ri(ξ, ρ, τ)λi,

for some q ∈ Sm,n+d+1 and ri ∈ Sm,n+d. Now we may define f(ξ̄, ρ̄, α) to be∑d−1
i=0 ri(ξ̄, ρ̄, a)αi. �

6.  Lojasiewicz Inequalities. In this section, we give an improved treatment of
the  Lojasiewicz inequalities proved in [L], and show that these inequalities are
uniform in various ways.

By analytic set, we mean the zero-set of finitely many functions, analytic in
an appropriate open domain. There are several rings of analytic functions under
consideration for which the analogues of the following lemma are valid. However,
we only need the lemma for the case of analytic sets defined over Sm,n.

(6.1) Lemma. The closure of a Boolean combination X of analytic sets is an
analytic set.

Proof. By the Noetherianness of Sm,n, we reduce to the case that X = Y \ Z,
where Y and Z are analytic sets and Y is irreducible. We may suppose Z 6⊃ Y ;
then it suffices to show that Z contains no non–empty open set of Y . Suppose not;
i.e., suppose Y ∩ U ⊂ Z for some non–empty polydisc U ⊂ MaxSm,n. There
is a finitely generated ideal I such that Z = V (I) and a prime ideal p such that
Y = V (p). Let x ∈ U and let m (respectively, M) be the maximal ideal of Sm,n
(respectively, O(U)) corresponding to x. Since V (p) ∩ U ⊂ V (I), and since I is
finitely generated, the Nullstellensatz [LR4, Theorem 4.1.1] yields I` ⊂ p · O(U)
for some ` ∈ N. Since the natural map (Sm,n)m → O(U)M is faithfully flat ([LR4,
Lemma 4.2.8(i)] and its proof), we have I` ⊂ p(Sm,n)m. In other words, since I is
finitely generated, g · I` ⊂ p for some g 6∈ m ⊃ p. Since p is prime, we have I ⊂ p,
contradicting Z 6⊃ Y . �
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(6.2) Lemma. Let X be closed and subanalytic; then X is the projection of an
analytic set.

Proof. By [LR5, Corollary 5.3], X is the image under a coordinate projection of a set
X ′ defined by a quantifier–free Lan–formula. Adding new variables η (respectively,
λ) for each of its atomic subformulas |t1| ≤ |t2| (respectively, |t1| < |t2|), and
replacing each such subformula by t1− ηt2 = 0 (respectively, t1−λt2 = 0∧ t2 6= 0),
we may assume that X ′ is a Boolean combination of analytic sets. Since X is closed
and coordinate projection is continuous, we may replace X ′ by its closure, which is
an analytic set by Lemma 6.1. �

(6.3) Lemma. Let X ⊂ (F ◦)m be a closed subanalytic set. Suppose that for every
ε ∈ F ◦\{0} there is a (ξ1, . . . , ξm) ∈ X with |ξm| < |ε|. Then there are ξ1, . . . , ξm−1

such that (ξ1, . . . , ξm−1, 0) ∈ X. In particular, if f is an LDan–definable, continuous
function with closed domain, then taking X to be its graph, we see that 0 = inf |f(x)|
implies that f(x0) = 0 for some x0.

Proof. By Lemma 6.2, it suffices to consider only the case that X is an analytic
set, say X = V (f1, . . . , fn). Let F ∗ be a nonprincipal ultrapower of F , and let

I = {x ∈ F ∗: |x| < |ε| for all ε ∈ F\{0}}

be the ideal of infinitesimals of (F ◦)∗ = (F ∗)◦. By hypothesis, there are elements
ξ1, . . . , ξm ∈ (F ◦)∗ such that fi(ξ) = 0, 1 ≤ i ≤ n, and ξm ∈ I. Let F be the
fraction field of (F ◦)∗/I; by Remark 5.3, F is a model of Tan(F ). Since fi(ξ+ I) ⊂
fi(ξ) + I, 1 ≤ i ≤ n, we have fi(ξ1, . . . , ξm−1, 0) = 0, 1 ≤ i ≤ n, where ξj := ξj + I.
The lemma follows by Theorem 5.2. �

Let F ◦ be a model of Tan(S(K)), suppose that fF is a (partial) function on (F ◦)n

defined by an Lan(S(K))–formula ϕ, and that XF is a subset of (F ◦)n defined by an
Lan(S(K))–formula ψ. Then by model–completeness and the existence of a prime
model of Tan(S(K)) (Corollary 4.3), ϕ defines a function fF ′ and ψ defines a set XF ′

in each model F ′ of Tan(S(K)), and fF ′ and XF ′ have the same definable properties
(such as continuity and closedness) as fF and XF . For convenience of notation, in
the statement of Theorem 6.4, below, the term subanalytic function (respectively
subanalytic set) refers to the family of functions fF (respectively sets XF ) defined
uniformly by ϕ (respectively ψ) in all models F of Tan(S(K)). The  Lojasiewicz data
defined in Theorem 6.4 depends only on the corresponding Lan(S(K))–formulas and
not on the particular model.

(6.4) Theorem ( Lojasiewicz Inequalities).
(i) Let f be a continuous subanalytic function with closed domain and zeroset

Z. Let d(x,Z) be the distance from x to Z (put d(x, ∅) := 1). Then there
are α ∈ Q+ = Q ∩ [0,∞) and c ∈

√
|K| \ {0} such that

|f(x)| ≥ c d(x,Z)α
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for all x in the domain of f .
(ii) Let f1, . . . , fn be continuous subanalytic functions defined on the closed sub-

analytic set X. Then there are α ∈ Q+ and c ∈
√
|K| \ {0} such that for

any 0 < ε ≤ 1, if x0 ∈ X satisfies

max
1≤i≤n

|fi(x0)| ≤ cεα,

there is an x ∈ X with

f1(x) = . . . = fn(x) = 0 and |x− x0| ≤ ε.

(iii) Let f and g be continuous subanalytic functions defined on the closed sub-
analytic set X. Suppose that g−1(0) ⊂ f−1(0). Then there are α ∈ Q+ and
c ∈

√
|K| \ {0} such that

|g(x)| ≥ c|f(x)|α

for all x ∈ X.
(iv) Let X and Y be closed subanalytic sets with X ∩ Y 6= ∅. Then there are

α ∈ Q+ and c ∈ |K| \ {0} such that for any 0 < ε ≤ 1, if x0 satisfies

d(x0, X), d(x0, Y ) ≤ cεα

then there is an x ∈ X ∩ Y with |x− x0| ≤ ε.
In each of (i)–(iv), let α0 be the infimum of the set of all α for which there is a
c 6= 0 satisfying the respective statement. Then α0 ∈ Q+ and there corresponds a
c 6= 0 satisfying the statement. Furthermore, fixing α = α0, either the statement
is satisfied for all c ∈

√
|K| \ {0} or the set of all c ∈ |K| \ {0} satisfying the

statement is bounded and has a maximal element c0. The pair (α0, c0) is called the
 Lojasiewicz data.

Proof. (i) Define

µ(δ): =
{

1 if d(x, Z) < δ for all x
inf{|f(x)|: d(x, Z) ≥ δ} otherwise.

By Theorem 5.2, there is a quantifier–free LDan–formula ϕ(δ, µ) such that µ = µ(δ)
if, and only if, ϕ(δ, µ) is true. Since δ and µ are both of the value semi–group sort,
µ(δ) must be piecewise defined on finitely many intervals by equations of the form

µa = γδb,

where γ ∈ |K| \ {0} and a, b ∈ N, a 6= 0. One such equation must hold for all δ
less than some δ0 ∈ |K| \ {0}. Put

α: = b/a
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(note that α0 must equal α), and put

c: = inf
δ∈|F◦|

µ(δ) · δ−α.

By Lemma 6.3,
0 6= inf

δ≥δ0
µ(δ) · δ−α,

and for all δ < δ0,
0 6= µ(δ) · δ−α = γ1/a.

We have µ(δ) ≥ c · δα for all δ. Since c is quantifier–free L(K)–definable, c ∈√
|K| \ {0}, as required.

(ii) This follows by applying (i) to

f(x): = max
1≤i≤n

|fi(x)|.

(iii) Consider the Lan–definable function

µ(δ): =
{

1 if |f(x)| < δ for all x
inf{|g(x)|: |f(x)| ≥ δ} otherwise,

and argue as in (i).

(iv) Take
f1(x): = d(x,X), f2(x): = d(x, Y )

and apply (ii). �

Let ϕ(ξ1, . . . , ξm, η) be an LDan(U)–formula, and suppose that ϕ defines a (par-
tial) function fF :Fm → F in each model F of Tan(U). We refer to the family {fF }
as a uniformly defined family of subanalytic functions. Such a family is called con-
tinuous if each member is continuous, and similarly for other definable properties.
An LDan(U)–formula ψ(ξ1, . . . , ξm) defines a subset X ⊂ Fm in each model F of
Tan(U). The family {XF } is called a uniformly defined family of subanalytic sets.
Such a family is called closed if each XF is closed, and similarly for other definable
properties. Note that it is sufficient to verify these properties for each prime model
of Tan(U), see Corollaries 4.4 and 4.5.

(6.5) Theorem (Uniform  Lojasiewicz Data). Let χ = (p, q) be a pair of a charac-
teristic and residue characteristic. In each  Lojasiewicz Inequality (i)–(iv), assume
that the subanalytic functions and sets are uniformly defined, and let (αχ, cχ) be the
corresponding  Lojasiewicz data obtained in the models F ◦ of Tan(U) with charac-
teristic p and residue characteristic q. There is a q0 such that for every χ = (p, q)
with q ≥ q0, (αχ, cχ) = (α0, c0), the  Lojasiewicz data in equicharacteristic zero.
Furthermore, each αχ ∈ Q+, cχ ∈ Q.

Proof. Since all the functions and sets are uniformly definable, we may replace
use of Theorem 5.2 with the Uniform Elimination Theorem 4.2 in the proof of
Theorem 6.4. �
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(6.6) Remark. There are parameterized versions of Theorems 6.4 and 6.5. Let
ϕ(ξ1, . . . , ξm, η1, . . . , ηn+1) be an LDan(S) formula such that ϕ(ξ, η) defines the graph
of a function fξ for each ξ ∈ (F ◦)m. We call the family {fξ} continuous if each
fξ is continuous, and similarly for other definable properties of functions. We treat
parameterized families of sets and their definable properties analogously. In each
 Lojasiewicz Inequality 6.4(i)–(iv), assume the functions and sets are parameterized
families, and let {(αξ, cξ)} be the corresponding  Lojasiewicz data. Applying the
proof of Theorem 6.4 yields finitely many LDan(S)–terms tj(ξ), finitely many non-
negative integers sj and an integer r > 0 such that for each ξ there is some j with
(αξ, cξ) = (sj/r, |tj(ξ)|1/r). If, in addition, the parameterized families are given by
LDan(U)–formulas, we obtain the parameterized analogue of Theorem 6.5.

7. Closure of semi–analytic sets.

Several different classes of rigid semianalytic sets have been studied in the litera-
ture. Some of them have been shown to be closed under the operation of topological
closure. For example, using his valuation spectra, Huber [H] shows that the class
of sets defined by equations and inequalities among strictly convergent power series
has that property. Using resolution of singularities, Schoutens [S5] independently
proved the same result in the characteristic zero case. In this section, we use the
 Lojasiewicz inequalities of the previous section to give an elementary and uniform
proof that the closure of a semianalytic set is semianalytic. This proof yields the
additional information that the closure may be described by functions belonging to
the Z–algebra generated by the functions in ϕ and their (Hasse) derivatives.

The setting of G–topological spaces (X, T (X), Cov(X)) provides a common
framework for the various classes of semianalytic sets. Examples of such spaces
are: (i) an affinoid variety X with admissible open sets T (X) the rational do-
mains and admissible covers Cov(X) the finite covers by rational domains, (ii) the
“wobbly” quasi–affinoid variety X = (F ◦)m × (F ◦◦)n with admissible open sets
T (X) the R–domains and admissible covers CovW (X) the finite ones, and (iii) the
“rigid” quasi–affinoid variety (X, T (X), CovR(X)) with X and T (X) as in (ii), but
CovR(X) restricted to those covers that have suitable overlap, see [LR6]. Suppose
X is a G–topological space with a pre–sheaf OX of algebras of (analytic) func-
tions. For example, if X is an affinoid variety and U is a rational subdomain of
X, OX(U) is the naturally associated affinoid algebra [BGR, Section 8.2.1], and if
X is a quasi–affinoid variety and U is an R–subdomain, OX(U) is the naturally
associated quasi–affinoid algebra [LR4, Section 5.3].

(7.1) Definition. Let F be a non–Archimedean valued field, let X be a G–topo-
logical space and let OX be a pre–sheaf of rings of (analytic) functions into F . Let
U be an admissible open set of X. A globally semianalytic subset of U is a set
defined by a finite Boolean combination of conditions of the forms

f(ξ) = 0, |f(ξ)| < |g(ξ)| or |f(ξ)| ≤ |g(ξ)|,

where f, g ∈ OX(U). A semianalytic subset of U is a set Y ⊂ U such that there is
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an admissible cover {V } of U for which each set Y ∩ V is a globally semianalytic
subset of V .

(7.2) Remark. One could define the class of semianalytic subsets of an affinoid
X to be the finite Boolean combinations of sets Yi that are globally semianalytic in
some rational domain Ui ⊂ X (see, e.g., [S5]). By modifying the topology of X and
the sheaf OX , this too fits the above definition: By T (X) denote the collection of
rational subdomains of X. Let T ′(X) consist of all finite Boolean combinations of
elements of T (X); these are the admissible open sets of a finer G–topology on X.
Let Cov′(X) consist of all finite covers of X by members of T ′(X); these are the
admissible covers. Finally, for U ∈ T ′(X), define

O′
X(U): = lim

U⊂V ∈T (X)
OX(V ).

The next theorem shows that the closure of a semianalytic set is semianalytic.

(7.3) Theorem. Let X be a subset of (F ◦)m× (F ◦◦)n defined by a quantifier–free
Lan(S)–formula ϕ. Then X, the closure of X, is also defined by a quantifier–free
Lan(S)–formula ψ. Moreover, ψ can be chosen so that the functions occurring
in ψ belong to the Z–algebra generated by the functions in ϕ and their (Hasse)
derivatives. Hence if a subring H ⊂ S is closed under derivatives and if ϕ is a
quantifier–free Lan(H)–formula, then so is the corresponding ψ. This applies in
particular when H =

⋃
m
Tm and when H = E, the existentially definable separated

power series of [LR5] to yield in the respective categories that the closure of a
semianalytic set is semianalytic.

Proof. Since the closure of a finite union is the union of the closures, it is sufficient
to consider formulas ϕ of the form

L∧
i=1

fi(x) = 0 ∧
M∧
i=1

|gi(x)| ≤ |hi(x)| ∧
N∧
i=1

|g′i(x)| < |h′i(x)|,

where the Gauss norm of all functions occurring in ϕ is at most 1. We shall show
how to produce a quantifier free formula ψ that says “y ∈ X.”

Note that
ϕ↔ [ϕ ∧ (hi0(x) = 0)] ∨ [ϕ ∧ (0 < |hi0(x)|)].

The first disjunct is equivalent to a formula of the same form as ϕ where M has
decreased. Hence by induction on M , we may replace ϕ by its conjunction with∧

(0 < |hi(x)|); in other words, we may assume that all the hi occur among the h′i.

Consider the function

µ(y, z): = sup
|x|≤|z|
y+x∈X

min
i
{|h′i(y + x)|}.
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It is a continuous, subanalytic function on the closed subanalytic set X × F ◦. The
zero set of µ is contained in X×{0} because if a ∈ X, mini |h′i(a)| 6= 0, and if z 6= 0
and y ∈ X, there is an a ∈ X such that |y − a| < |z|. By Theorem 6.4(iii) applied
to the pair of functions µ and |z|, there is an α ∈ N such that for all |z| sufficiently
small,

(∗) |µ(y, z)| ≥ |z|α−1.

By Theorem 6.4(ii) applied to f1, . . . , fL, there is a β ∈ N such that for any
ε > 0, if

max
i
|fi(u)| < εβ ,

there exists a v with |v| < ε such that

f1(u+ v) = . . . = fL(u+ v) = 0.

We show that the following formula defines X:

(∗∗)

∀ε > 0∃x[(0 6= x) ∧ (|x| < ε) ∧
L∧
i=1

(|fi(y + x)| < |x|βα)∧

∧
N∧
i=1

(|h′i(y + x)| ≥ |x|α) ∧
M∧
i=1

(|gi(y + x)| ≤ |hi(y + x)|)∧

∧
N∧
i=1

|g′i(y + x)| < |h′i(y + x)|].

Indeed, if y ∈ X and ε > 0 there is some a ∈ X with |y − a| < ε, which by (∗) can
be chosen to satisfy

min
i
{|h′i(a)|} ≥ εα > |y − a|α.

Thus, setting x: = a−y, we see that (∗∗) is satisfied. Conversely, suppose y satisfies
the formula, let ε > 0, and let x be as guaranteed by (∗∗). Then by the definition
of β, there is a v with |v| < |x|α and

f1(y + x+ v) = . . . = fi(y + x+ v) = 0.

Since the hi are all among the h′i, since all the functions have Gauss norm at most
1 and hence satisfy a Lipschitz condition with constant at most 1, it follows from
the inequalities in (∗∗) that y + x+ v ∈ X, as required.

It remains to eliminate the quantifiers in (∗∗). By the algebraic elimination
theorem, it suffices to show that the conditions in (∗∗) are equivalent to conditions
that are polynomial in x. Note that

|fi(y + x)| < |x|βα ⇔ |
∑

Dνfi(y)xν | < |x|βα

⇔ |
∑

|ν|≤βα

Dνfi(y)xν | < |x|βα,
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which is a polynomial condition in x. The other clauses may be handled similarly,
expanding each function as a power series in x. Since |x|α ≤ |h′i(y+x)|, these series
may be truncated at order α in x to yield an equivalent system of inequalities that
are polynomial in x. The algebraic elimination theorem produces an equivalent
quantifier–free formula all functions occurring in which belong to the Z–algebra
generated by the functions fi, gi, g′i, hi, h

′
i and their Hasse derivatives. �

Note that U is closed under Hasse derivatives, that the  Lojasiewicz inequalities
Theorem 6.4 have a uniform version, Theorem 6.5, and that the algebraic elimina-
tion theorem is uniform; thus each step of the proof of Theorem 7.3 holds in the
uniform setting. The following uniform version of Theorem 7.3 is an immediate
consequence.

(7.4) Corollary. Let ϕ be a quantifier–free Lan(U)–formula. For any model F ◦

of Tan(U), let XF be the globally semianalytic set defined by ϕ and let XF be its
closure. Then there is a quantifier–free Lan(U)–formula ψ such that ψ defines XF

in each F ◦.

Making use of the parameterized  Lojasiewicz inequalities of Remark 6.6, we
obtain the following.

(7.5) Corollary. Let ϕ(ξ, η) be a quantifier–free LDan–formula in which D is not
applied to any term involving η. Then there is a quantifier–free LDan–formula
ψ(ξ, η) in which D is not applied to any term involving η such that for each
ξ ∈ (F ◦)m, ψ(ξ, η) defines the closure of the set defined by ϕ(ξ, η).

8. Curve Selection. In this section, we prove curve selection for rigid subanalytic
sets, a result which has already been established by Huber [H]. The proof of Theo-
rem 8.1 proceeds by a reduction to curve selection for semianalytic sets. Lemma 8.2
reduces the problem to treating the open and one–dimensional semianalytic cases.
Lemma 8.3 treats the one–dimensional case, and Lemma 8.4 reduces the open case
to the one–dimensional semi–algebraic case (which can be handled by Lemma 8.3).

Let F be an algebraically closed complete valued field extension of K.

(8.1) Theorem. Let X ⊂ (F ◦)m be subanalytic and let a ∈ X, the closure with
respect to the metric topology on F . Then there is an analytic curve ξ = ξ(t) ∈
(F{t})m, where F{t} is the ring of convergent power series over F in the variable
t, such that ξ(0) = a and ξ(t) ∈ X for t 6= 0 and |t| sufficiently small.

Proof. By the Quantifier Simplification Theorem 5.2, there is a semianalytic subset
Y ⊂ (F ◦)m+n such that X = π(Y ), where π : (F ◦)m+n → (F ◦)m is the pro-
jection onto the first m coordinates. For b in the closed subanalytic set {a} ×
(F ◦)n, consider the continuous subanalytic function µ(b) := infy∈Y |b − y|. Since
infb∈{a}×(F◦)n µ(b) = 0, by Lemma 6.3, there is some b0 ∈ Y such that π(b0) = a.
The theorem now follows from Lemma 8.2. �
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(8.2) Lemma. Let F be an algebraically closed, complete valued field extension of
K. Let X ⊂ (F ◦)m be semianalytic and let a ∈ X. Then there is an analytic curve
ξ = ξ(t) ∈ (F{t})m such that ξ(0) = a and ξ(t) ∈ X for t 6= 0 and |t| sufficiently
small.

Proof. We may assume a = 0. First, suppose 0 /∈ Y , the closure of the interior
of X. Then there is a rational polydisc B 3 0 such that B does not meet the
interior of X. It suffices to prove the lemma for B ∩ X in place of X. Note that
dimB ∩X < m. By shrinking B, we may assume that B ∩X is contained in the
zeroset of some f ∈ F{ξ} \ {0}. After a change of variables, we may assume that
f is regular in ξm of some degree. By the local Weierstrass Preparation Theorem
and Algebraic Elimination, it follows that π(B∩X) ⊂ (F ◦)m−1 is semianalytic. By
induction on m, there is an ideal I ′ of F{ξ} such that (shrinking B if necessary) 0
belongs to the closure of V (I ′) ∩ π(B ∩X), and dimV (I ′) = 1.

Let I be the ideal of F{ξ} generated by f and the elements of I ′. Then
dimV (I) = 1 and 0 belongs to the closure of V (I) ∩ B ∩ X. This is a semiana-
lytic subset of X of dimension 1. An application of Lemma 8.3 completes the proof
in this case.

It remains to treat the case that 0 ∈ Y, which, by Theorem 7.3 is semianalytic.
This is taken care of by Lemma 8.4. �

(8.3) Lemma. Let X ⊂ (F ◦)m be semianalytic. Suppose dimX ≤ 1, and let
a ∈ X. Then there is an analytic curve ξ = ξ(t) ∈ (F{t})m such that ξ(0) = a and
ξ(t) ∈ X for t 6= 0 and |t| sufficiently small.

Proof. We may assume that a = 0. Let I be the ideal of all f ∈ F{ξ} that vanish
on X; then F{ξ}/I has Krull dimension 1. Since F{ξ} is Noetherian and since the
closure of a finite union is the union of the closures, we may replace I by one of its
prime divisors; i.e., we assume that I is prime. By Noether Normalization, after a
change of variables the inclusion σ : F{ξ1} → F{ξ}/I is finite.

Let f =
∑
aiξ

i
1 ∈ F{ξ1} \ {0} and define |f | := (2−d, |ad|) where ad 6= 0 and

ai = 0 for i < d. Order |F{ξ}| lexicographically. Note that |·| extends the valuation
on F . It follows from the Weierstrass Preparation Theorem 3.3 as in the proof of
Theorem 5.9(ii) that F◦ := (F{ξ1}, | · |) is a Henselian valuation ring.

Since X is semianalytic, we may assume that it is defined by a quantifier–free
Lan(F )–formula ϕ. Furthermore, by Weierstrass Division, we may write all func-
tions occurring in ϕ as polynomials in ξ2, . . . , ξm with coefficients in F{ξ1}. Since
F◦alg is a model of Tan(F ), since ξ1 belongs to the projection of X (because the
projection is a Boolean combination of F–rational discs and |ξ1| < |F \{0}|), for at
least one of the conjugates of (ξ2, . . . , ξm), ϕ(ξ) must hold. Since F◦ is Henselian,
the valuation on F◦ extends uniquely [E] to Falg, and hence for all conjugates of
(ξ2, . . . , ξm), ϕ(ξ) holds. It follows that there is an F–rational disc B 3 0 such that
X∩B = V (I)∩B. Therefore, it suffices to find an analytic curve ξ = ξ(t) ∈ (F{t})m
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such that ξ(0) = 0 and ξ(t) ∈ V (I) for |t| sufficiently small.

Let N be the integral closure of F{ξ}/I in its field of fractions. By [BGR,
Proposition 6.1.2.4], N is finite over F{ξ}/I. Let m be a maximal ideal of N ;
the localization Nm is a one–dimensional Noetherian, normal, local ring. By [Mat,
Theorem 11.2], it is therefore a discrete valuation ring. Let t be a generator of its
maximal ideal; we have a natural map Nm → F{t}. The composition F{ξ}/I →
Nm → F{t} yields the desired curve ξ. �

(8.4) Lemma. Let X ⊂ (F ◦)m be an open semianalytic set and let a ∈ X. Then
there is a rational polydisc B and a one–dimensional algebraic variety Z such that
a is in the closure of B ∩ Z ∩ X. In particular, Lemma 8.3 yields analytic curve
selection for X at a.

Proof. We may assume that a = 0. Let ϕ be a quantifier–free Lan(F )–formula
defining X. Since X is open, by breaking into finitely many open pieces, we may
assume that ϕ is

|f1(ξ)| ./1 · · · ./n−1 |fn(ξ)|,
where ./i∈ {<,≤}. We may assume f1(0) = · · · = fn(0) = 0.

Define µ(ξ) := sup{|fi(η)| : η ∈ X, |η| ≤ |ξ|}. Note that µ−1(0) = {0} ⊂ f−1
1 (0).

So by Theorem 6.4(iii), there are α ∈ N, c ∈ F such that µ(ξ) ≥ |cξ|α. The set
defined by

(∗) ϕ ∧ |cξ|α+1 < |f1(ξ)|
is open, nonempty and has 0 in its closure.

Write each fi =
∑
aiνξ

ν ; in (∗), we may replace each fi by
∑

|ν|≤α aiνξ
ν . In par-

ticular, we may assume that ϕ is a quantifier–free L(F )–formula (i.e., all variables
occur polynomially).

By algebraic elimination, there is some rational disc 0 ∈ B ⊂ F ◦ of radius ε such
that B ⊂ π(X), where π : (F ◦)m → F ◦ is coordinate projection. Let aij , z be
new constant symbols, and let pi(x) be an enumeration of all polynomials in one
variable, x, with coefficients in F [z] and suppose the degree of pi is ni. Let γi be
the formula that asserts that all the zeroes of pi and are among ai1, . . . , aini

, and
let TF be the theory of F (i.e., all L–sentences true in F ). Consider the theory

T := Tp ∪ {γi} ∪ {¬ϕ(z, ai1j1 , . . . , ain−1jn−1} ∪ {|z| < ε}.
Suppose (F ′)◦ were a model of T . Taking the submodel F := F (z)alg, we see that

∀x1, . . . , xn−1¬ϕ(z, x1, . . . , xn−1)

holds in F , which, by model completeness, contradicts the definition of ε. By model–
theoretic compactness, there is a finite set of polynomials p1, . . . , pk, such that in
every algebraically closed, valued field F ′ ⊃ F and for every z ∈ F ′ with |z| < ε
there are a1, . . . , an−1 among the zeros of p1, . . . , pk such that ϕ(z, a1, . . . , an−1)
holds. Let P (x) :=

∏k
i=1 pi(x), then putting Z := V (P (ξ1), . . . , P (ξn)) satisfies the

lemma. �
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(8.5) Corollary. Let F ◦ � Tan(U) (respectively Tan(K)) and let XF be a subana-
lytic subset of (F ◦)m defined by an Lan(U)–formula (respectively Lan(K)–formula)
ϕ with parameters from F ◦. Let a ∈ XF . There is an Lan(U)–formula (respectively
Lan(K)–formula) ψ with parameters from F which defines a one–dimensional vari-
ety near a and an F–rational ball B 3 a such that a is in the closure of B∩XF ∩YF .

(8.6) Remark. Similar arguments can be used to prove a parametrized analogue
of Theorem 8.1.
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