Here we continue the preliminary project.

Calculus on Polynomials

There's a certain pattern in defining many generic functions:

```
(define-generic (do-something (f))
  ;; define it for appropriate non-Meroon objects, numbers perhaps
  ;; throw an error if do-something is not appropriate for f
  )

(define-method (do-something (f Polynomial))
  ;; define do-something for Polynomials.
  ;; apply do-something-to-termlist to (Polynomial-terms f)
  ;; to implement do-something on Polynomials
  )

(define (do-something-to-termlist terms)
  ;; go through the terms of the polynomial,
  ;; calling do-something-to-term on each term and
  ;; accumulating the result as appropriate
  )

(define (do-something-to-term term)
  ;; basic operation of do-something on one polynomial term
)
```

Following this pattern, define generic functions

```
(define-generic (differentiate (f) variable)
  (if (number? f)
      0
      (error "differentiate: argument not of correct type " f)))

(define-generic (integrate (f) variable #!optional (a #f) (b #f))
  (if (number? f)
      (if (and (number? a)
                   (number? b))
          (multiply f (subtract b a))
          (instantiate Polynomial
            variable: variable
            terms: (adjoin-term (make-term 1 f) (the-empty-termlist)))
          )
      (error "integrate: unknown argument type " f variable)))
```

and then define appropriate methods for Polynomials. In integrate a and b are the optional two endpoints; if they aren't given return an indefinite integral, if they are given, return a definite integral, as such:

```
(define-method (integrate (p Polynomial) variable #!optional (a #f) (b #f))

```
(if (Polynomial-variable= (Polynomial-variable p) variable)
 (let ((indefinite-integral
 (instantiate Polynomial
 variable: variable
 terms: (integrate-termlist (Polynomial-terms p)))))
 (if (and (number? a)
 (number? b))
 (subtract (evaluate indefinite-integral b)
 (evaluate indefinite-integral a))
 indefinite-integral))
 (error "integrate: The variable of integration is not the variable of the polynomial " p variable)))

(At this point I’m wondering whether just carrying around all these variables; they just seem to get in the way, and if we think of polynomials as symbolic expressions, they’re OK, but if we think of polynomials as functions of a certain type, they just get in the way. SICP is treating them as symbolic expression.)

Orthogonal polynomials

Now we can define inner products:

(define (make-inner-product weight variable left right)
 (lambda (p q)
 (integrate (multiply p (multiply q weight)) ;; weight can be a constant
 variable left right)))

This function takes four arguments and itself returns a function of two arguments:

$$\int_a^b p(\text{variable})q(\text{variable}) \, d\text{variable} = \langle p, q \rangle.$$

Given an inner product, the recursion for orthogonal polynomials is

$$\begin{align*}
P_{-1}(x) &= 0; & P_0(x) &= 1; \\
S_i &= \langle P_i(x), P_i(x) \rangle, & B_i &= \frac{\langle xP_i(x), P_i(x) \rangle}{S_i} \\
C_i &= \begin{cases}
 \text{arbitrary}, & i = 0, \\
 \frac{S_i}{S_{i-1}}, & i > 0
\end{cases} \\
P_{i+1}(x) &= (x - B_i)P_i(x) - C_i P_{i-1}(x), \quad i = 0, 1, 2, \ldots.
\end{align*}$$

See Conte and de Boor, *Elementary Numerical Analysis*, third edition, page 254. (We take $A_i = 1$ for all i.)

We define the Gauss-Lobatto weight and inner product on (-1,1):

;; The Gauss-Lobatto weight on (-1, 1)
(define (G-L-weight variable)
 (let ((X (variable->Polynomial variable)))
 (2 - variable^2))
 (let ((X (variable->Polynomial variable)))
 (2 - variable^2)))
\[
\left(\text{negate } (\text{subtract } (\text{multiply } X \times X) 1)) \right)
\]
\[
\text{define } (\text{G-L-inner-product variable left right})
\]
\[
(\text{make-inner-product } (\text{G-L-weight variable}) \text{ variable left right})
\]

Write a function
\[
(\text{define } (\text{make-orthogonal-polynomials inner-product variable n})
\]
\[
\text{;; fill in the blanks}
\]

that calculates \(P_0, P_1, \ldots, P_n \) given an inner product and a variable. You should be able to do something like this:

```scheme
euler-6\% gsi++
[ Meroon V3 Paques2001+1 $Revision: 1.1$ ]
Gambit v4.1.2
> (load "all")
"/export/users/lucier/programs/615project/2007/project-1/all.scm"
> (define weight (G-L-weight 'x))
> (define inner-product (G-L-inner-product 'x))
> (define ps (make-orthogonal-polynomials inner-product 'x 10))
> (for-each show ps)
x^10-15/7x^8+30/19x^6-150/323x^4+15/323x^2-3/4199
x^9-36/19x^7+378/323x^5-84/323x^3+63/4199x
x^8-28/17x^6+14/17x^4-28/221x^2+7/2431
x^7-7/5x^5+7/13x^3-7/143x
x^6-15/13x^4+45/143x^2-5/429
x^5-10/11x^3+5/33x
x^4-4/3x^2+1/21
x^3-3/7x
x^2-1/5
x
1
0
```

Now we need to find the zeros \(x_n \) of \(P_n(x) \). One of the best (the stablest, the most accurate) ways to find the zeros of a polynomial

\[
P(x) = x^n + p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \cdots + p_1x + p_0
\]

is to use \texttt{dgeev.f} from LAPACK to compute the eigenvalues of the matrix

\[
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & & & \\
-p_0 & -p_1 & -p_2 & \cdots & -p_{n-1}
\end{pmatrix}.
\]
There’s no point to rewriting \texttt{dgeev.f} in Scheme, so we should use a so-called \textit{Foreign Function Interface} (FFI) to call Fortran functions from Scheme. FFIs aren’t standardized, but Gambit has one. (You run into the same problem calling functions defined in one language from functions in another language.)

I thought I could compile \texttt{dgeev.f} and its dependencies and link them into Gambit, but I’ve run out of time. Because of the special form of the Gauss-Lobatto orthogonal polynomials, you can use \texttt{sqrt} and \texttt{quadratic-solver} to find (by hand) the zeros of \(P_5 \), which, together with the two endpoints, gives you a 7-point integration rule that’s exact for all polynomials of degree \(2 \times 7 - 3 = 11 \). That’s good enough for now.

To repeat what was written in the first part:

The Gauss-Lobatto quadrature rules with \(n \) points have the form

\[
\int_{-1}^{1} f(x) \, dx \approx \frac{2}{n(n-1)}[f(1) + f(-1)] + \sum_{\nu=0}^{n-3} \gamma_{n\nu} f(x_{n\nu}).
\]

Here \(x_{n\nu} \) are the zeros of the degree \(n - 2 \) orthogonal polynomial over \([-1, 1]\) with the weight

\[
w(x) = 1 - x^2.
\]

If we define

\[
\ell_{n\kappa}(x) = \prod_{\nu=0, \nu\neq \kappa}^{n} \frac{x - x_{n\nu}}{x_{n\kappa} - x_{n\nu}}
\]

then \(\ell_{n\kappa} \) has degree \(n - 1 \) and satisfies

\[
\ell_{n\kappa}(x_{n\nu}) = \begin{cases} 1, & \nu = \kappa, \\ 0, & \nu \neq \kappa. \end{cases}
\]

The weights \(\gamma_{n\nu} \) satisfy

\[
\gamma_{n\nu} = \int_{-1}^{1} \ell_{n,\nu}(x) \, w(x) \, dx.
\]

So now we have all the pieces to find the integration points and weights for a serious numerical integration scheme, which we will use below.