Project 1: Part 1

Project 1 will be to implement a finite element method for a two-point boundary-value problem. It will have several parts.

Warmup: Solving quadratic equations

The quadratic formula says that the solutions of \(ax^2 + bx + c = 0 \) are given by

\[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

If \(b^2 - 4ac < 0 \) then \(\sqrt{b^2 - 4ac} \) is imaginary, so there is no problem with round-off error.

If \(b^2 - 4ac > 0 \) then cancellation can occur in \(-b + \sqrt{b^2 - 4ac} \) if \(b > 0 \) and in \(-b - \sqrt{b^2 - 4ac} \) if \(b < 0 \).

Thus, if \(b > 0 \) one would want to use the computations

\[
 x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{2c}{-b - \sqrt{b^2 - 4ac}}.
\]

Similarly if \(b < 0 \).

Write a function \(\text{(quadratic-solver} \ a \ b \ c) \) that returns a list of the two roots of \(ax^2 + bx + c = 0 \) as accurately as possible. Test your code on the following problems:

euler-126% gsi
Gambit v4.1.2
> (sqrt -1)
+1
> (sqrt +i)
.7071067811865476+.7071067811865475i
> (load "quadratic-solver")
"/export/users/lucier/programs/615project/2007/project-1/quadratic-solver.scm"
> (quadratic-solver 1 2 5)
(-1+2i -1-2i)
> (quadratic-solver 1 -1 1)
(1/2+.48602540378443861i 1/2-.48602540378443861)
> (quadratic-solver 1 2 -1)
(-2.414213562373095 .4142135623730951)
> (quadratic-solver 4 1 1)
(-1/8+.4841229182759271i -1/8-.4841229182759271i)
> (quadratic-solver 4 4 1)
(-1/2 -1/2)
> (quadratic-solver 4 0 1)
(+1/2i -1/2i)
> (quadratic-solver 0 0 1)
*** ERROR IN (console)@11.1 -- not a quadratic: 0 0 1
1>
Meroon

Standard Scheme (so-called R5RS Scheme, which Gambit implements) does not have an object system. We use an object system provided by the software package Meroon.

To use Gambit, you need to have /pkgs/Gambit-C/current/bin/ in your path. The Gambit interpreter is called gsi and the Gambit compiler is called gsc.

To have Gambit load Meroon automatically, just call gsi++ or gsc++.

Our system has two differences with standard Meroon:

1. In standard Meroon, keywords begin with a colon; in our Meroon keywords end with a colon:

   ```scheme
   (define-class Polynomial Object
      ((= variable immutable:)
      (= terms immutable:)))
   ```

2. In standard Meroon, so-called setters begin with `set-` and end with `!`. In our Meroon, setters end with `-set!`:

   ```scheme
   euler-130% gsi++
   [ Meroon V3 Paques2001+1 $Revision: 1.2 $ ]
   Gambit v4.1.2
   > (define-class Point Object (x y))
   Point
   > (define p (make-Point 0 1))
   > (unveil p)
   (a Point <------------- [Id: 1]
    x: 0
    y: 1 end Point)
   #t
   > (Point-x-set! p 1)
   #<meroon #2>
   > (unveil p)
   (a Point <------------- [Id: 1]
    x: 1
    y: 1 end Point)
   #t
   >
   ```
Numerical Integration

This first part will be about numerical integration (quadrature rules).

The Gauss-Lobatto quadrature rules with \(n \) points have the form

\[
\int_{-1}^{1} f(x) \, dx \approx \frac{2}{n(n-1)}[f(1) + f(-1)] + \sum_{\nu=0}^{n-3} \gamma_{n\nu} f(x_{n\nu}).
\]

Here \(x_{n\nu} \) are the zeros of the degree \(n - 2 \) orthogonal polynomial over \([-1,1]\) with the weight

\[
w(x) = 1 - x^2.
\]

If we define

\[
\ell_{n\kappa}(x) = \prod_{\substack{\nu=0 \\ \nu \neq \kappa}}^{n} \frac{x - x_{n\nu}}{x_{n\kappa} - x_{n\nu}}
\]

then \(\ell_{n\kappa} \) has degree \(n - 1 \) and satisfies

\[
\ell_{n\kappa}(x_{n\nu}) = \begin{cases} 1, & \nu = \kappa, \\ 0, & \nu \neq \kappa. \end{cases}
\]

The weights \(\gamma_{n\nu} \) satisfy

\[
\gamma_{n\nu} = \int_{-1}^{1} \ell_{n,\nu}(x) w(x) \, dx.
\]

So, the first part of the project is to write code to manipulate polynomials. We’re going to start with the code at

and modify it to use Meroon’s framework of classes/objects and generics/methods.

We’ll define a polynomial class:

\[
\begin{aligned}
&\text{define-class Polynomial Object} \\
&(\text{ (= variable immutable:)} \\
&(\text{ (= terms immutable:))})
\end{aligned}
\]

and a way to check whether two Polynomial variables are the same:

\[
\begin{aligned}
&(\text{define (Polynomial-variable= var1 var2)} \\
&(\text{ eq? var1 var2}))
\end{aligned}
\]

The terms of a polynomial is just a list of nonzero terms, in decreasing order by degree (unfortunately called “order” at that web page), so we need some code to manipulate terms and lists of terms:

\[
\begin{aligned}
&\text{;; a term is a pair (coeff order) (order should really be degree, but ...)} \\
&\text{;; (Polynomial-terms p) is a list of terms in decreasing orders.}
\end{aligned}
\]

;; operation on terms and term-lists

\[
\begin{aligned}
&(\text{define (adjoin-term term term-list)} \\
&(\text{ if (=zero? (term-coeff term))} \\
&(\text{ term-list} \\
&(\text{ (cons term term-list))}))
\end{aligned}
\]

\[
\begin{aligned}
&(\text{define (the-empty-term-list)}
\end{aligned}
\]
\[
\]
(define (first-term term-list)
 (car term-list))
(define (rest-terms term-list)
 (cdr term-list))
(define (empty-termlist? term-list)
 (null? term-list))
(define (make-term order coeff)
 (list order coeff))
(define (term-order term)
 (car term))
(define (term-coeff term)
 (cadr term))

The web page has code for adding two polynomials. Putting it into our terms we define a generic function add that should work for everything, and we start with it working with numbers:

(define-generic (add (x) y)
 (if (and (number? x)
 (number? y))
 (+ x y)
 (error "add: This generic is not defined on these objects: " x y)))

and then we define a method for adding Polynomials:

(define-method (add (p_1 Polynomial) p_2)
 (cond ((number? p_2)
 (add p_1 (number->Polynomial p_2 (Polynomial-variable p_1))))
 ((and (Polynomial? p_2)
 (Polynomial-variable= (Polynomial-variable p_1)
 (Polynomial-variable p_2)))
 (instantiate Polynomial
 variable: (Polynomial-variable p_1)
 terms: (add-terms (Polynomial-terms p_1)
 (Polynomial-terms p_2))))
 (else
 (error "add: p_2 is neither a number nor a polynomial with the same variable as p_1" p_1 p_2))))

This method is called only when p_1 is a polynomial; if p_2 is a number, it converts p_2 to a Polynomial with the same variable as p_1 and calls add again with both arguments now a Polynomial.

The web page has code for add-terms:

(define (add-terms l1 l2)
 (cond ((empty-termlist? l1) l2)
 ((empty-termlist? l2) l1)
 (else
 This method is called only when p_1 is a polynomial; if p_2 is a number, it converts p_2 to a Polynomial with the same variable as p_1 and calls add again with both arguments now a Polynomial.
(let ((t1 (first-term l1))
 (t2 (first-term l2)))
 (cond ((> (term-order t1)
 (term-order t2))
 (adjoin-term t1
 (add-terms (rest-terms l1) 12)))
 ((< (term-order t1)
 (term-order t2))
 (adjoin-term t2
 (add-terms l1 (rest-terms 12))))
 (else
 (adjoin-term
 (make-term (term-order t1)
 (add (term-coeff t1)
 (term-coeff t2)))
 (add-terms (rest-terms l1)
 (rest-terms 12)))))))

So you need to define number->Polynomial, which takes two arguments.

You need to define a multiply generic that works with numbers by default, and a method for multiply that works on Polynomials; follow this same pattern as for add. The web page has the guts of the code:

(define (multiply-terms l1 l2)
 (if (empty-termlist? l1)
 (the-empty-termlist)
 (add-terms (multiply-term-by-all-terms (first-term l1) l2)
 (multiply-terms (rest-terms l1) l2))))

(define (multiply-term-by-all-terms t1 L)
 (if (empty-termlist? L)
 (the-empty-termlist)
 (let ((t2 (first-term L)))
 (adjoin-term
 (make-term (+ (term-order t1)
 (term-order t2))
 (multiply (term-coeff t1)
 (term-coeff t2)))
 (multiply-term-by-all-terms t1 (rest-terms L))))))

So that’s pretty much the code that comes on the web page. Meron defines a generic function show that we can specialize for Polynomials as such:

(define-method (show (p Polynomial) . stream)
 (let ((port (if (null? stream)
 (current-output-port)
 (car stream))))
 ...
(if (=zero? p)
 (display 0)
 (show-terms (Polynomial-variable p)
 (Polynomial-terms p)
 port))

 (newline port)))

(define (show-terms variable terms port)
 (show-first-term variable (first-term terms) port)
 (for-each (lambda (term)
 (show-term variable term port))
 (rest-terms terms)))

(define (show-first-term variable term port)
 (let ((coeff (term-coeff term))
 (order (term-order term)))
 (print port: port
 (list (if (and (= coeff 1)
 (positive? order))
 ()
 coeff)
 (cond ((zero? order) '('))
 ((= order 1) variable)
 (else
 (list variable "^" order)))))))

(define (show-term variable term port)
 (let ((coeff (term-coeff term))
 (order (term-order term)))
 (print port: port
 (list (if (negative? coeff)
 "-"
 "+")
 (let ((abs-coeff (abs coeff)))
 (if (and (eq? coeff 1)
 (< 0 order))
 ()
 (abs coeff)))
 (cond ((zero? order) '('))
 ((= order 1) variable)
 (else
 (list variable "^" order)))))))

It will probably help your debugging.
So, here are some problems.

(1) The above code uses a function =zero?. Define a generic function =zero? that handles numbers. Define a method that works with Polynomials.

(2) Define a generic function (negate (x)) that handles numbers by default. Define a method for negate that works with Polynomials. Use the generic negate to define a regular function (subtract x y).

(3) Define a function (exponentiate x n) that uses multiply to exponentiate anything that multiply can multiply. Use the discussion of exponentiation on page http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2 as your model.

(4) Define a function (variable->Polynomial x) that takes a symbol x and returns a Polynomial that represents the polynomial x, i.e., a single term with coefficient 1 and order 1.

(5) Define a generic function (evaluate f x) that evaluates the function f at x. If f is a number, assume that it means a function that constantly returns f. Define a method for Polynomials.

If you’ve done the exercises until now, something like the following should work.

```scheme
;;; evaluation
(define-generic (evaluate (f) x)
  (if (number? f)
      f
      (error "evaluate: unknown argument types " f x)))
(define-method (evaluate (p Polynomial) x)
  (evaluate-terms (Polynomial-terms p) x))
(define (evaluate-terms terms x)
  (if (empty-termlist? terms)
      0
      (add (evaluate-term (first-term terms) x)
           (evaluate-terms (rest-terms terms) x))))
(define (evaluate-term term x)
  (multiply (exponentiate x (term-order term))
            (term-coeff term)))
```

Can you write a method that uses Horner’s rule for evaluating Polynomials in our representation?