Project 1: Part 1

Project 1 will be to calculate orthogonal polynomials. It will have several parts.

Warmup: Solving quadratic equations

The quadratic formula says that the solutions of \(ax^2 + bx + c = 0 \) are given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

If \(b^2 - 4ac < 0 \) then \(\sqrt{b^2 - 4ac} \) is imaginary, so there is no problem with round-off error. If \(b^2 - 4ac > 0 \) then cancellation can occur in \(-b + \sqrt{b^2 - 4ac} \) if \(b > 0 \) and in \(-b - \sqrt{b^2 - 4ac} \) if \(b < 0 \). Thus, if \(b > 0 \) one would want to use the computations

\[
x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{2c}{-b - \sqrt{b^2 - 4ac}}.
\]

Similarly if \(b < 0 \).

Write a function \((\text{quadratic-solver } a \ b \ c)\) that returns a list of the two roots of \(ax^2 + bx + c = 0 \) as accurately as possible. Test your code on the following problems:

- \((\text{quadratic-solver } 1 \ 2 \ 5)\)
- \((\text{quadratic-solver } 1 \ -1 \ 1)\)
- \((\text{quadratic-solver } 1 \ 2 -1)\)
- \((\text{quadratic-solver } 4 \ 1 \ 1)\)
- \((\text{quadratic-solver } 4 \ 0 \ 1)\)
- \((\text{quadratic-solver } 0 \ 0 \ 1)\)

*** ERROR IN (console)@11.1 -- not a quadratic: 0 0 1
Meroon

Standard Scheme (so-called R5RS Scheme, which Gambit implements) does not have an object system. We use an object system provided by the software package Meroon.

To use Gambit, you need to have /pkgs/Gambit-C/current/bin/ in your path. The Gambit interpreter is called gsi and the Gambit compiler is called gsc.

To have Gambit load Meroon automatically, just call gsi++ or gsc++.

Our system has two differences with standard Meroon:

(1) In standard Meroon, keywords begin with a colon; in our Meroon keywords end with a colon:

```
(define-class Polynomial Object
  ((variable immutable:)
   (terms immutable:)))
```

(2) In standard Meroon, so-called setters begin with set- and end with !. In our Meroon, setters end with -set!:

```
euler-130% gsi++
[ Meroon V3 Paques2001+1 $Revision: 1.2 $ ]
Gambit v4.1.2
> (define-class Point Object (x y))
Point
> (define p (make-Point 0 1))
> (unveil p)
(a Point <------------- [Id: 1]
x: 0
y: 1 end Point)
#t
> (Point-x-set! p 1)
#<meroon #2>
> (unveil p)
(a Point <------------- [Id: 1]
x: 1
y: 1 end Point)
#t
> 
```

Numerical Integration

This first part will be about numerical integration (quadrature rules).

The Gauss-Lobatto quadrature rules with \(n\) points have the form

\[
\int_{-1}^{1} f(x) \, dx \approx \frac{2}{n(n-1)[f(1) + f(-1)]} + \sum_{\nu=0}^{n-3} \gamma_{n\nu} f(x_{n\nu}).
\]

Here \(x_{n\nu}\) are the zeros of the degree \(n - 2\) orthogonal polynomial over \([-1, 1]\) with the weight

\[w(x) = 1 - x^2.\]

If we define

\[
\ell_{n\kappa}(x) = \prod_{\nu=0, \nu \neq \kappa}^{n} \frac{x - x_{n\nu}}{x_{n\kappa} - x_{n\nu}}
\]

then \(\ell_{n\kappa}\) has degree \(n - 1\) and satisfies

\[
\ell_{n\kappa}(x_{n\nu}) = \begin{cases}
1, & \nu = \kappa, \\
0, & \nu \neq \kappa.
\end{cases}
\]
The weights $\gamma_{n\nu}$ satisfy

$$\gamma_{n\nu} = \int_{-1}^{1} \ell_{n,\nu}(x) \, dx.$$

So, the first part of the project is to write code to manipulate polynomials. We’re going to start with the code at

and modify it to use Meroon’s framework of classes/objects and generics/methods.

We’ll define a polynomial class:

```scheme
(define-class Polynomial Object
  ((= variable immutable:))
  ((= terms immutable:))))
```

and a way to check whether two Polynomial variables are the same:

```scheme
(define (Polynomial-variable= var1 var2)
  (eq? var1 var2))
```

The terms of a polynomial is just a list of nonzero terms, in decreasing order by degree (unfortunately called “order” at that web page), so we need some code to manipulate terms and lists of terms:

```scheme
;;; a term is a pair (order coeff) (order should really be degree, but ...)
;;; We’re going to use a Meroon class for terms to aid debugging.
(define-class term Object
  ((= order))
  ((= coeff)))
```

We will need some operations on lists. The functions `map` and `for-each` are built into Scheme (learn them!) but we will need some more:

```scheme
;;; See the Haskell Wiki page
;;; http://www.haskell.org/haskellwiki/Fold
;;; for a good explanation, together with pictures, for how
;;; fold-left and fold-right work.
(define (fold-left operator initial-value list)
  (if (null? list)
      initial-value
      (fold-left operator
        (operator initial-value (car list))
        (cdr list))))

(define (fold-right operator initial-value list)
  (if (null? list)
      initial-value
      (operator (car list)
        (fold-right operator initial-value (cdr list))))))

;;; map is a builtin function that works on lists, but it could
;;; be defined as follows:
(define (my-map f list)
  (fold-right (lambda (v l)
    (cons (f v) l))
    ()
    (cons term term-list)))
```

And one can use the usual functions `car`, `cdr`, `cadr`, `null?` and the usual empty list `()', but we need a better way to add a term to a list of terms, since we don’t want any zero terms in our term-lists:

```scheme
(define (adjoin-term term term-list)
  (if (=zero? (term-coeff term))
      term-list
      (cons term term-list)))
```

```scheme
(define (map-termlist f list)
  (fold-right (lambda (v l)
    (cons (f v) l))
    ()
    list))
```
In \texttt{map-termlist}, the function \texttt{f} must return a \texttt{term} and we let the \texttt{initialize!} method for \texttt{Polynomials} take care that the order of the terms is decreasing.

The web page has code for adding two polynomials. Putting it into our terms we define a generic function \texttt{add} that should work for everything, and we start with it working with numbers:

\begin{verbatim}
(define-generic (add (x) y)
 (if (number? x)
 (if (number? y)
 (+ x y) ; we know how to do this
 (add y x)) ; perhaps we have a method for y
 ;; If x isn't a number, we don't have a method for it.
 (error "add: This generic is not defined on these objects: " x y)))
\end{verbatim}

and then we define a method for adding \texttt{Polynomials}:

\begin{verbatim}
(define-method (add (p_1 Polynomial) p_2)
 (cond ((number? p_2)
 (add p_1 (number->Polynomial p_2 (Polynomial-variable p_1))))
 ((and (Polynomial? p_2)
 (Polynomial-variable= (Polynomial-variable p_1)
 (Polynomial-variable p_2)))
 (instantiate Polynomial
 variable: (Polynomial-variable p_1)
 terms: (add-terms (Polynomial-terms p_1)
 (Polynomial-terms p_2))))
 (else
 (error "add: p_2 is neither a number nor a polynomial with the same variable as p_1" p_1 p_2)))
\end{verbatim}

This method is called only when \texttt{p_1} is a polynomial; if \texttt{p_2} is a number, it converts \texttt{p_2} to a \texttt{Polynomial} with the same variable as \texttt{p_1} and calls \texttt{add} again with both arguments now a \texttt{Polynomial}.

The web page has code for \texttt{add-terms}:

\begin{verbatim}
(define (add-terms l1 l2)
 (cond ((null? l1) l2)
 ((null? l2) l1)
 (else
 (let ((t1 (car l1))
 (t2 (car l2)))
 (cond (> (term-order t1)
 (term-order t2))
 (adjoin-term t1
 (add-terms (cdr l1) l2))
 ((< (term-order t1)
 (term-order t2))
 (adjoin-term t2
 (add-terms l1 (cdr l2)))
 (else
 (adjoin-term
 (make-term (term-order t1)
 (add (term-coeff t1)
 (term-coeff t2)))
 (add-terms (cdr l1)))
\end{verbatim}
So you need to define `number->Polynomial`, which takes two arguments.

You need to define a `multiply` generic that works with numbers by default, and a method for `multiply` that works on Polynomials; follow the same pattern as for `add`. The web page has the guts of the code:

```lisp
(define (multiply-terms l1 l2)
  (if (null? l1)
      l1
      (add-terms (multiply-term-by-all-terms (car l1) l2)
                 (multiply-terms (cdr l1) l2))))

(define (multiply-term-by-all-terms t1 L)
  (if (null? L)
      L
      (let ((t2 (car L)))
        (adjoin-term
         (make-term (+ (term-order t1)
                        (term-order t2))
                    (multiply (term-coeff t1)
                              (term-coeff t2)))
        (multiply-term-by-all-terms t1 (cdr L)))))
```

So that’s pretty much the code that comes on the web page. Meroo defines a generic function `show` that we can specialize for Polynomials as such:

```lisp
(define-method (show (p Polynomial) . stream)
  (let ((port (if (null? stream)
                (current-output-port)
                (car stream))))
    (if (=zero? p)
        (display 0)
        (show-terms (Polynomial-variable p)
                    (Polynomial-terms p)
                    port)
        (newline port))

  (define (show-terms variable terms port)
    (show-first-term variable (car terms) port)
    (for-each (lambda (term)
               (show-term variable term port))
              (cdr terms)))

  (define (show-first-term variable term port)
    (let ((coeff (term-coeff term))
          (order (term-order term)))
      (print port: port
             (list (if (and (= coeff 1)
                             (positive? order))
                    '()
                    coeff)
                    (cond ((zero? order) '())
                           ((= order 1) variable)
                           (else
                            (list variable "^" order))))))

  (define (show-term variable term port)
    (let ((coeff (term-coeff term))
          (order (term-order term)))
      (print port: port
             (list (if (and (= coeff 1)
                             (positive? order))
                    '()
                    coeff)
                    (cond ((zero? order) '())
                           ((= order 1) variable)
                           (else
                            (list variable "^" order)))))))
```

(cdr l2)))))))

(cdr l2)))))))

(cdr l2)))))))
(list (if (negative? coeff)
 "-"
 "+")
 (let ((abs-coeff (abs coeff)))
 (if (and (eq? coeff 1)
 (< 0 order))
 ()
 (abs coeff)))
 (cond ((zero? order) '())
 ((= order 1) variable)
 (else
 (list variable "^" order)))))))

It will probably help your debugging.
So, here are some problems.

(1) The above code uses a function =zero?. Define a generic function =zero? that handles numbers. Define a method that works with Polynomials.

(2) Define a generic function (negate (x)) that handles numbers by default. Define a method for negate that works with Polynomials. Use the generic negate to define a regular function (subtract x y). (Remember that a polynomial in x may have coefficients that are polynomials in y, so write negate so it works with these types of polynomials.)

(3) Define a function (exponentiate x n) that uses multiply to exponentiate anything that multiply can multiply. Use the discussion of exponentiation on page http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2 as your model. You should be able to exponentiate a polynomial.

(4) Define a function (variable->Polynomial x) that takes a symbol x and returns a Polynomial that represents the polynomial x, i.e., a single term with coefficient 1 and order 1.

(5) Define a generic function (evaluate f x) that evaluates the function f at x. If f is a number, assume that it means a function that constantly returns f (so the generic is supposed to work with both numbers v and Scheme functions f). Define a method for Polynomials. If p is a polynomial, then you should be able to say (evaluate p p), i.e., evaluate a polynomial with another polynomial as an argument.

If you’ve done the exercises until now, something like the following should work.

;;; evaluation
(define-generic (evaluate (f) x)
 (cond ((number? f) f)
 ((procedure? f) (f x))
 (else (error "evaluate: unknown argument types " f x))))
(define-method (evaluate (p Polynomial) x)
 (evaluate-terms (Polynomial-terms p) x))
(define (evaluate-terms terms x)
 (if (null? terms)
 0
 (add (evaluate-term (car terms) x)
 (evaluate-terms (cdr terms) x))))
(define (evaluate-term term x)
 (multiply (exponentiate x (term-order term))
 (term-coeff term)))

Can you write a method that uses Horner’s rule for evaluating Polynomials in our representation?

Changes made 2012/02/27

(1) The project will just be about orthogonal polynomials.
(2) Corrected the formula for \(\gamma_{np} \).
(3) Changed the definition of add so it can add polynomials to numbers in either order.
I added some comments to the problems:

1. Added map-termlist as an exercise.
2. Made more explicit my expectations for negate, exponentiate, and evaluate.
3. Redid the definition of the evaluate generic to match its specification.

Changes made 2012/03/07

1. Make a term a Meroon object for easier debugging.
2. (Polynomial-terms p) was a regular list, so I’m just going to use the regular list operations, except for adjoin-term and map-termlist, which check that the term is nonzero before adding it to the list. Got rid of first-term, rest-terms, empty-termlist?, etc., and changed their uses to regular list operations.
3. Since map-termlist is already defined, don’t have it as an exercise.
4. Defined fold-left and fold-right earlier, so I could use them in map-termlist.