
Numerical Partial Differential Equations in Scheme∗

Bradley J. Lucier
Department of Mathematics

Purdue University
West Lafayette, IN 47907-1395

1 Introduction

I worked with the students in my one-semester graduate
course CS615 “Numerical methods for partial differential
equations” at Purdue University to write a set of rou-
tines to use the finite element method to solve elliptic and
parabolic partial differential equations (PDEs). We used
hacked versions of gcc-2.95.1, the Gambit-C 3.0 Scheme
system by Marc Feeley, and the Meroon object system by
Christian Queinnec as our software tools. We developed
and ran the code on a Compaq DS20 clone with two 500
MHz Alpha 21264 processors and two GB of memory run-
ning RedHat 6.0. Our system performance is competitive
with similar systems written in C or Fortran. The URL
is http://www.math.purdue.edu/~lucier/615. We discuss
the process of developing the software in this paper.

2 Scope of the system

We defined objects and methods for two-dimensional points
in the plane; vertices, edges, and triangles of planar triangu-
lations; refinement of those triangulations; code to triangu-
late an arbitrary polygon; general vectors and operators (at
the level of linear spaces, not at the level of Rn), together
with generic functions for the usual vector operations plus
Operator-apply and Operator-compose; sparse vectors and
matrices in Rn; various orderings of the geometric objects
to attempt to be more cache friendly; linear finite elements
on triangulations, spaces of such elements, vectors in those
spaces, and operators on those vectors; construction of vari-
ous operators from the coefficients of the problem PDE; and
general conjugate-gradient and multigrid iterative methods
for solving the resulting linear systems.

3 Good things about the tools

Generic functions plus classes seem to be a good fit for this
problem domain. Complex algorithms that have a brief
high-level description (e.g., multigrid) can be implemented
in a relatively straightforward way by mixing the functional
and object-oriented approaches.

Homogeneous vectors of flonums are essential, as are
declarations for fixnum and flonum arithmetic. The de-
bugging support in Gambit-C for interpreted code is excel-
lent. Meroon objects are just specially tagged structure in
∗This work was supported in part by the Office of Naval Research,

Contract N00014-91-J-1152.

Gambit-C, so object access, etc., is very fast. The beta-
reduction pass of the Gambit-C compiler, which is user-
controllable via declarations, is very useful for inlining rou-
tines and loop unrolling.

The initialize! methods in Meroon are very useful for er-
ror checking, complex initialization of some fields based on
values in other fields, etc. The with-co-instantiation macro
allows one to easily create co-dependent objects (e.g., trian-
gles, edges, and vertices in a refine method).

4 Things that could be improved about the tools

Keeping flonums unboxed as long as possible is important
for iterative algorithms. Gambit-C currently boxes flonums
across all jumps; this can be a performance issue (e.g., the
code for Gauss-Seidel preconditioning is not competitive
with C). Gambit-C uses an on-the-fly register allocation
algorithm that behaves poorly for heavily nested, lambda-
lifted, iterations. While many small routines that return
Points (two-vectors) are inlined by Gambit-C, a structure
analysis that eliminates the allocation of temporary vectors
that are not referenced outside a function would improve
performance somewhat.

When Meroon creates an object, and not all the fields of
that object have been explicitly initialized, it calls fill-other-
fields! to check that each uninitialized field has an initializer
thunk or can remain uninitialized. This information is avail-
able at compile time, and should be used at that time by
the macro expanders. Ensuring that all fields are initialized
cut the time to refine a triangulation in half.

Although Meroon objects are given special treatment by
the Gambit-C compiler backend, the front end knows noth-
ing about Meroon, so redundant type-checks, say, must be
elided by hand with the with-access Meroon macro, or they
remain. Also, the Gambit-C printer does not know about
Meroon objects–there are hooks in Gambit-C’s runtime li-
brary that can be used to print Meroon objects, but that is
a difficult procedure, since most of the objects we created
in this application are recursive. Meroon’s unveil function
deals properly with this, but it is quite verbose.

5 Changes made to the tools

Queinnec used Meroon’s MOP to allow us to use field set-
ters of the form FIELD-NAME-set! rather than set-FIELD-
NAME!. This reduced the number of typing and cut-and-
paste error with names like Polygon-vertex-forward-edge-
set!.



Meroon does a lot of dynamic error checking to ensure
that one does not, say, apply vector-ref to a pair. This allows
us to compile Meroon in unsafe mode in Gambit-C. On the
other hand, Meroon makes heavy use of macros and code-
walkers, and if that code is handed misformed Scheme code,
it can crash if compiled in unsafe mode. So we compiled
this code in safe mode. Nonetheless, we sometimes needed
to run the Meroon system and our own code interpreted to
avoid system crashes when debugging.

Queinnec changed the simple accessors and setters to
expose more code to the possibility of inlining.

We use IEEE arithmetic, and gcc’s register allocator had
problems with some of the hardware scheduling constraints
of the Alpha 21264. Feeley modified Gambit-C’s floating-
point code generator to generate Static-Single-Assignment
(SSA) type code for the floating-point variables; this led
to near-optimal code with twice the performance in some
routines.

In gcc, we added a flag -fno-math-errno to not set errno
when sqrt is given a negative number, since we rely on IEEE
arithmetic error checking, not errno-based error checking.
This sped up some routines by 20%. We submitted a patch
to remove the trapb instructions for correct IEEE arithmetic
implementation on the Alpha 21264, which are needed for
correct implementation on earlier Alpha processors. A sim-
ilar patch is contained in gcc-2.95.1 and the development
version of gcc (but not gcc-2.95.2).

6 What we learned

Many small objects (vertices, edges, etc.) are long-lived;
many large objects (Finite-element-vectors, etc.) are short-
lived.

The Scheme code for about a dozen low-level routines
(vector addition, scalar multiplication, dot products, sparse-
matrix–vector multiplication, etc.) is hand optimized and is
as fast as equivalent code in C. That is not an issue.

The generic function dispatch overhead for points in the
plane was too high. Writing special code for points cut the
execution time for one routine to fill the nonzero entries of a
matrix from 45 seconds to 17 seconds. On the other hand, a
better algorithm cut the constant in the complexity bound
so much that the new routine for the same purpose ran in
0.5 seconds. Overall, Meroon’s performance as an object
system, even with its dynamic properties, was good enough.

We are working with a layered system—Meroon on top
of Gambit-C on top of gcc. Unfortunately, there is little
or no upward knowledge between these systems—gcc does
not know about Gambit-C, and Gambit-C does not know
about Meroon. And it is difficult to link information about
routines in a downward direction—Meroon generic functions
and methods are not compiled to named, global, Scheme
routines, but to anonymous lambdas, so their names do not
appear directly in the C code that Gambit-C generates. And
Gambit-C generates a single C routine for all the Scheme
routines in a single file, so the names of the Scheme routines
do not appear at all in the assembly code generated by gcc.

Last summer, gcc’s routines for register allocation, jump
analysis, flow analysis, calculation of dominators, and global
common subexpression elimination were all quadratic or
worse in the number of blocks/jumps/pseudo-registers/etc.
This is not very good when trying to compile a single, two-
megabyte, routine with 20,000 blocks and similar numbers
of jumps and pseudo-registers. Gcc’s development team has
responded to my notes and come up with new routines that
are faster for the first three problems; a fix exists but has

not yet been integrated for the dominators calculation, and
I believe that the GCSE calculation will be streamlined,
too. That doesn’t mean challenges to gcc’s algorithms will
end—the next version of Gambit-C uses the gcc extension
of computed goto’s and label addresses to increase perfor-
mance by 50% in many applications. A naive analysis leads
to millions of edges in the flow graph, but I believe that this
can be avoided.

Performance profiling is essential, and it is difficult in
this environment. To find and “fix” the register alloca-
tion problem on the 21264 required reading assembly code,
trying early (buggy) SSA transformations in gcc and star-
ing at the debugging table of scheduled instructions (of the
nonfunctional code) to get enough information to change
Gambit-C’s floating-point expression generation. Finding
the problem with fill-other-fields! required instrumenting the
C output of Gambit-C with gcov and finding, not the most-
executed statements, but the ones with the largest prod-
uct of number-of-executions and execution-path length, and
then associating that C code with the Scheme code that it
came from. Gcc’s profiling code operates at the function
level, so with all Scheme functions compiled to one large C
routine, it was useless.

Finally, in this and similar problem domains, high-level
transformations (beta reduction, partial evaluation, tempo-
rary structure elimination, etc.) can provide profound per-
formance improvements. This was recognized years ago by
Jim Boyle with his TAMPR system, and others. Many
current researchers in these areas concentrate on only one
aspect of the performance problem—parallelization, fast
(e.g., multipole) algorithms, time-stepping methods, etc.
Providing an expressive, high-performance programming
system like Gambit-C+Meroon (or Common Lisp+CLOS,
or ...) offers researchers an environment where the entire
problem can be attacked, and the most promising avenues
to improve global performance and/or functionality can be
revealed.

7 Acknowledgements

Marc Feeley, Christian Queinnec, and (without knowing
it) the gcc developers, especially Richard Henderson and
Michael Matz, were effectively partners in this effort.

8 Appendix I—Comparison with C

Over 85% of the floating-point operations needed to solve
a typical multigrid problem occur in sparse matrix–vector
multiply. Today (August 13, 2000) the sparse matrix–vector
multiply code runs at a rate of 63 Mflops (8.25 cycles/flop)
in our Scheme system and at exactly the same rate in C. Our
Scheme code for complete solution of a multigrid problem
runs at 40 Mflops.

9 Appendix II—Essential language and implementation
features

For high performance, I would say that the most important
implementation features are: (0) Compilation; (1) Special-
ized fixnum and (unboxed) flonum arithmetic; (2) Uniform
(homogeneous) vectors of floating-point numbers; (3) Com-
pilation of the object system; (4) Efficient β-reduction (in-
lining) and λ-lifting in the compiler; and (5) Fast method
dispatch.

For functionality, The combination of Meroon/CLOS ob-
ject programming (with classes, objects, generic functions,



and methods) plus the functional programming approach
can’t be topped. As for specific language features, initial-
ization methods are very helpful. In places, it would have
been nice to have mixin classes if not full multiple inheri-
tance.

10 Selected Bibliography

10.1 Basic texts

H. Abelson and G. J. Sussman, with J. Sussman, Structure
and Interpretation of Computer Programs (SICP), 2nd edi-
tion, McGraw-Hill, New York, 1996.

V. S. Manis and J. J. Little, The Schematics of Com-
putation, Prentice Hall, Englewood Cliffs, N.J., 1995. SICP
for mortals.

10.2 Advanced texts

A. W. Appel, Modern Compiler Implementation in Java,
Cambridge University Press, New York, 1998.

S. C. Brenner and L. R. Scott, The Mathematical The-
ory of Finite Element Methods, Springer-Verlag, New York,
1994.

D. P. Friedman, M. Wand, C. T. Haynes, Essentials of
Programming Languages, McGraw-Hill, New York, 1992.

C. Queinnec, Lisp in Small Pieces, Cambridge University
Press, New York, 1996 (translated by K. Callaway).

10.3 Papers on program transformation, programming,
and Lisp for Scientific Computing

A. Berlin, ”Partial evaluation applied to numerical compu-
tation”, ACM Conference on Lisp and Functional Program-
ming, June 1990.

A. A. Berlin, R. J. Surati, “Partial evaluation for Scien-
tific Computing: The Supercomputer Toolkit experience”,
PEPM 1994 - Proceedings of the ACM SIGPLAN Workshop
on Partial Evaluation and Program Transformation Tech-
niques, Orlando, FL, 1994, pp. 133–141.

A. Berlin and D. Weise, “Compiling scientific code us-
ing partial evaluation”, IEEE Computer, vol. 23, no. 12,
Dec. 1990.

J. M. Boyle, T. J. Harmer and V. L. Winter, “The
TAMPR program transforming system: Simplifying the de-
velopment of numerical software” in Modern Software Tools
in Scientific Computing, E. Arge, A.M. Bruaset and H.P.
Langtangen (eds.) pp 353-72 (Birkhuser, 1997).

J. Cuny, R. Dunn, S. T. Hackstadt, C. Harrop, H. H.
Hersey, A. D. Malony, and D. Toomey, “Building domain-
specific environments for Computational Science: A case
study in seismic tomography”, International Journal of Su-
percomputing Applications and High Performance Comput-
ing, vol. 11, no. 3.

R. J. Fateman, K. A. Broughan, D. K. Willcock and D.
Rettig, “Fast floating-point processing in Common Lisp”,
ACM Transactions on Mathematical Software, 1995, pp. 26-
62.

M. Frigo and S. G. Johnson, “FFTW: An adaptive soft-
ware architecture for the FFT”, Proceedings of ICASSP
1998, vol. 3, p. 1381.

P. Norvig, “Design patterns in dynamic programming,”
http://www.norvig.com/vita.html


