Project 1: Part 2
Here we continue the preliminary project.

Calculus on Polynomials

There’s a certain pattern in defining many generic functions:
(define-generic (do-something (£f))
;; define it for appropriate non-Meroon objects, numbers perhaps
;; throw an error if do-something is not appropriate for f
)
(define-method (do-something (f Polynomial))
;; define do-something for Polynomials.
;3 apply (map-termlist do-something-to-term (Polynomial-terms f))
;; to implement do-something on Polynomials
)
(define (do-something-to-term term)
;; basic operation of do-something on one polynomial term
)
Following this patterm, define generic functions
(define-generic (differentiate (f) variable)
(if (number? f)
0
(error "differentiate: argument not of correct type " £)))
(define-generic (integrate (f) variable #!optional (a #f) (b #f))
(if (number? f)
(if (and (number? a)
(number? b))
(multiply f (subtract b a))
(instantiate Polynomial
variable: variable
terms: (adjoin-term (make-term 1 f) ’())))
(error "integrate: unknown argument type " f variable)))
and then define appropriate methods for Polynomials. In integrate a and b are the optional two endpoints;
if they aren’t given return an indefinite integral, if they are given, return a definite integral, as such:
(define-method (integrate (p Polynomial) variable #!optional (a #f) (b #f))
(if (Polynomial-variable= (Polynomial-variable p)
variable)
(let ((indefinite-integral
(instantiate Polynomial
variable: variable
terms: (map-termlist integrate-term (Polynomial-terms p)))))
(if (and (number? a)
(number? b))
(subtract (evaluate indefinite-integral b)
(evaluate indefinite-integral a))
indefinite-integral))
(error "integrate: The variable of integration is not the variable of the polynomiall]
" p variable)))
(At this point I'm wondering whether just carrying around all these variables; they just seem to get in the
way, and if we think of polynomials as symbolic expressions, they’re OK, but if we think of polynomials as
functions of a certain type, they just get in the way. SICP is treating them as symbolic expression.)

Orthogonal polynomials

Now we can define inner products:
(define (make-inner-product weight variable left right)
(lambda (p q)
(integrate (multiply p (multiply q weight)) ;; weight can be a constant
variable left right)))
This function takes four arguments and itself returns a function of two arguments:

b
/ p(variable) g(variable)w(variable)dvariable = (p, q).
a

Given an inner product, the recursion for orthogonal polynomials is

P_i(z)=0; Py(z)=1;
(xPi(z), Bi(x))
Si

arbitrary, ¢ =0,
Ci={ S
Siflj
PZ+1(I):(.I—Bl)PZ(I)—C%PZ,l(I), i:O,l,Q,... .

$; = (Pi(x), P:()), B; =

1 >0

See Conte and de Boor, Elementary Numerical Analysis, third edition, page 254. (We take A; = 1 for all i.)
We define the Gauss-Lobatto weight and inner product on (-1,1):
;33 The Gauss-Lobatto weight on (-1, 1)
(define (G-L-weight variable)
5y 1-x72
(let ((X (variable->Polynomial variable)))
(subtract 1 (multiply X X))))
(define (G-L-inner-product variable left right)
(make-inner-product (G-L-weight variable) variable left right))
See Hammerlin and Hoffmann, Numerical Mathematics, page 302.
Write a function
(define (make-orthogonal-polynomials inner-product variable n)
;3 £111 in the blanks
)
that calculates Py, P, ..., P, given an inner product and a variable. You should be able to do something
like this:
euler-6% gsi++
[Meroon V3 Paques2001+1 $Revision: 1.1 $]
Gambit v4.1.2
> (load "all")
"/export/users/lucier/programs/615project/2007/project-1/all.scm"
> (define weight (G-L-weight ’x))
> (define inner-product (G-L-inner-product ’x -1 1))
> (define ps (make-orthogonal-polynomials inner-product ’x 10))
> (for-each show ps)
x"10-15/7x"8+30/19x~6-150/323x"4+15/323x72-3/4199
x"9-36/19x"7+378/323x"5-84/323x"3+63/4199x
x"8-28/17x"6+14/17x"4-28/221x"2+7/2431
x"7-7/5x"5+7/13x"3-7/143x
X"6-15/13x"4+45/143x"2-5/429

x"5-10/11x"3+5/33x

x"4-2/3x"2+1/21

x"3-3/7x

x~2-1/5

X

1

0
Please time your routine for various numbers of polynomials with the built-in macro time, like

> (define ps (time (make-orthogonal-polynomials (G-L-inner-product ’x -1 1) ’x 30)))
Try it for n = 5,6,7,... and make sure the time increases linearly:

Now we need to find the zeros z,, of P,(z). One of the best (the stablest, the most accurate) ways to
find the zeros of a polynomial

P(z) = 2" + pp12™ 4 ppot™ 2 + -+ prz+po

is to use dgeev.f from LAPACK to compute the eigenvalues of the matrix

0 1 0 . 0
0 0 1 . 0
—Po —P1r —PpP2 ... —Pn-1

There’s no point to rewriting dgeev.f in Scheme, so we should use a so-called Foreign Function Interface
(FFI) to call Fortran functions from Scheme. FFIs aren’t standardized, but Gambit has one. (You run into
the same problem calling functions defined in one language from functions in another language.)

I thought I could compile dgeev.f and its dependencies and link them into Gambit, but I've run out of
time. Because of the special form of the Gauss-Lobatto orthogonal polynomials, you can use sqrt and
quadratic-solver to find (by hand) the zeros of Ps, which, together with the two endpoints, gives you a
7-point integration rule that’s exact for all polynomials of degree 2 x 7 —3 = 11. That’s good enough for
now.

To repeat what was written in the first part:

The Gauss-Lobatto quadrature rules with n points have the form

1 n
/1 f(x)dr ~ Z”Ym/f(xm/)-
- v=1

Here x,,, are the zeros of the degree n — 2 orthogonal polynomial over [—1,1] with the weight

w(z) =1 — 2?

adjoined with —1 and 1. If we define

n

tac(@) =[] LT T

Tnk — Tny
v=1

VH#R

then ¢,, has degree n — 1 and satisfies

, V=K

0, v#&k.

3

buntins) = {

The weights v, satisfy

1
Ynv = / gnﬂj(!@) dx.

-1

So now we have all the pieces to find the integration points and weights for a (semi-)serious numerical
integration scheme.
In Part 1, we defined the function fold-left. So you can add a list of objects by
(fold-left add O list)
and multiply a list of objects by
(fold-left multiply 1 list)
We also define
(define (list-remove 1 n)
(if (=n 0)
(cdr 1)
(cons (car 1) (list-remove (cdr 1) (- n 1)))))
which removes item n from the list 1 (numbering from 0).
Exercises

(1) Use quadratic-solver and sqrt to find the list of Lagrange interpolation points of the polynomial
x"5-10/11x"3+5/33x. Adjoin 1 and —1 to that list.

(2) Define (interpolation-points->polynomials 1) that takes a list of points {z,} and returns a list
of the interpolating Lagrange polynomials at those points.

(3) Define (polynomials->weights polys left right) that takes a list of polynomials and integrates
them from left to right to get a list of weights.

(4) Use the previous functions and list of interpolation points to define (approximate-integral f) that
uses the numerical integration rule described above to approximate the integral of f on the interval
(—1,1). Apply approximate-integral to x%, i = 0,...,12, and e® (which is exp). Compare the
answers you get to the true integrals.

Changes made 2014/02/18
(1) Fixed code to time program.
Changes made 2014/02/16

(1) Fix calls to GL-weight and GL-inner-product in the script.
(2) Removed definition of fold-left, as it was given in Part 1 of the project.

Changes made 2012/02/27

(1) T corrected the spacing of some functions by converting TAB characters to the associated number of
spaces.

(2) I used map-termlist in the definition of do-something

(3) I changed the definition of G-L-weight because now we should be able to subtract polynomials from
numbers.

(4) T corrected the defintion of the list of interpolating points to include 1 and —1.

(5) T added the definitions of fold-left and list-remove

(6) I added explicit exercises that broke the numerical integration part into steps.

Changes made 2012/02/27

(1) Use map-termlist in the definition of integrate.
(2) Fix the arguments to G-L-weight in the example.
(3) Added the note to check that the CPU time increases linearly for make-orthogonal-polynomials.

Changes made 2016,/02/05

(1) Changed the numbering and notation of interpolation points in Gauss—Lobatto quadature.

