
Dear Sue and Ridgway:

I’m teaching multigrid again using the chapter from your book as a reference, and I
have some observations, which you may or may not find relevant (as the final observation
is that the way your book does it is better than the way I’ve been doing it over the years).

Basically, I’ve been lazy, and I didn’t want to write a separate direct solver.
So the code in the package my students use for projects is:

MG(k, z0, g):
Presmoothing Step. For 1 ≤ l ≤ m1, let

zl = zl−1 +
1

Λk

(

g − Akzl−1

)

,

where Λk = ‖Ak‖∞ satisfies λmax ≤ Λk ≤ Ch−2

k , where λmax is the largest eigen-
value of Ak.

Error Correction Step. If k > 1, then let ḡ = Ik−1

k

(

g − Akzm1

)

and q0 = 0, and
for 1 ≤ i ≤ p, let

qi =MG(k − 1, qi−1, ḡ);

then

zm1+1 = zm1
+ Ikk−1qp.

Otherwise, zm1+1 = zm1
.

Postsmoothing Step. For m1 + 1 < l ≤ m1 +m2 + 1, let

zl = zl−1 +
1

Λk

(

g − Akzl−1

)

.

Finally. Return zm1+m2+1.

So, at the coarsest level I don’t do a direct solve and just smooth m1+m2 times and leave
it at that.

For full multigrid I do

Let û0 = 0. For k ≥ 1 do

uk0 = ûk−1,

ukl =MG(k, ukl−1, fk), 1 ≤ l ≤ r,

ûk = ukr .

Again, I don’t do a direct solve for k = 1, I just do r multigrid steps with initial guess 0.
(And here I’m using the convention Ikk−1

ûk−1 = ûk−1.)
Now we want to prove things for the W cycle (I don’t do the V cycle in class).
The statement of Theorem 6.5.9 is the same, you just need a different proof for k = 1.

Recall that m1 = m, m2 = 0, and p = 2.

1

2

But that’s not hard—if you let the eigenvalues and associated eigenvectors of A1 be
λi, ψi and λmin = mini λi and λmax = maxi λi, and expand e0 =

∑

i ǫiψi, then

z −MG(1, z0, g) =
∑

i

(

1−
λi
Λk

)m

ǫiψi

and

‖z−MG(1, z0, g)‖
2
E =

∑

i

(

1−
λi
Λk

)2m

λiǫ
2
i ≤

(

1−
λmin

Λk

)2m ∑

i

λiǫ
2
i =

(

1−
λmin

Λk

)2m

‖e0‖
2
E .

So one need only choose m large enough that

(

1−
λmin

Λk

)m

≤ γ.

And λmin/Λk ≥ C/κ(A1), where κ(A1) is the condition number of A1.
I had been wondering why the condition numbers of Ak didn’t show up anywhere in

the chapter, but this is why—you finesse the issue by using a direct solver in MG(1, z0, g)
instead of iterating the smoother. Advantage one for your book’s approach, but Theorem
6.5.9 is still true with my “lazy” approach.

At this point I used to tell the class, OK, so the proofs go through (again lazy, but
now at another level!), but I realized last night that Theorem 6.7.1 does not work with my
code. Let’s try to go through the proof.

The problem is here:

‖êk‖E ≤ C̃

{

γrhk|u|2 + γ2rhk−1|u|2 + · · ·+ γkrh1|u|2 +

{

0, book,

γkr‖u1 − û0‖E , code

}

.

The problem, if you don’t use a direct solver to compute û1, is that you have the extra
term

γkr‖u1‖E = γkr‖P1u‖E ≤ γkr‖u‖E ≤ Cγkr‖u‖1

as the last term in the sum. So if γr < 1/2, you end up with a bound of Chk(|u|2+‖u‖1) =
Chk‖u‖2 instead of Chk|u|2 as the bound.

And, of course, you see this in real life. The code deals with Neumann and Robin
boundary conditions, and when the solution is u(x, y) = x+y, for example, your multigrid
solution is exact for any k and any value of the parameters (because |u|2 = 0), while mine
decays at an rate that is optimal.

So using a direct solver for k = 1 is essential for full accuracy of what you call “Full
Multigrid”, but not necessary for MG (but then the number of iterates m depends on
κ(A1) in addition to whatever dependencies are in your chapter).

Anyway, it was fun to work out the consequences of my laziness.
With best wishes, Brad

