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Abstract. In this paper we present certain results about the com-
pression of images using wavelets. We concentrate on the simplest
case of the Haar decomposition and compression in L2. Further
results about compression in Lp, p 6= 2 are mentioned.

§1. Introduction

Transmitting digital images at video rates requires tremendous transfer of
information. For example:
• If we assume that an image has 512 rows, each of which consists of 512

picture elements, or pixels, then we have 512× 512 = 262,144 pixels.
• If the image is monochrome, and there are 256 different intensity levels

with 0 ≡ black and 255 ≡ white, then each image requires 262,144× 8 =
2,097,152 bits.

• In color, if each of the red, green, and blue components requires a mono-
chrome image, we have 6,291,456 bits per image.

• Full motion video requires at least 24 frames a second, or 150,994,944 bits
per second.

• High definition television (HDTV) may display four times as much infor-
mation, requiring 603,979,776 bits/second.

For comparison, the familiar Ethernet networks commonly used to connect
groups of workstations have a peak transfer rate of 10,000,000 bits/second;
common fiber-optic networks have transfer rates of 140,000,000 bits/second.

Thus, algorithms that compress the information used to represent images
are of great interest to engineers. One set of algorithms attempts to recreate
at the receiver the precise image sent by the transmitter; these algorithms are
known as lossless. Other compression algorithms are willing to lose certain
features of the images that will be little noticed by the human observers
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(who, after all, are the consumers of these images) in the hope of gaining
higher compression ratios. Wavelet methods of image compression lie within
the class of lossy algorithms.

Rather than attempting to give a summary or an outline of the use of
wavelet transforms in image compression, we will present almost completely
the arguments used to analyze compression in L2(Ω) of functions in certain
smoothness classes called Besov spaces after applying the well-known Haar
transform. This study discusses the basic ideas of wavelet decompositions,
compression of wavelet decompositions, error, quantization, and smoothness
of images. Perhaps the only thing new here, beyond the presentation, is the
observation that the error of compression in L2(Ω) does not depend on any
unknown constants, mainly due to our choice of the norm used to measure
the smoothness of images. Otherwise, the results here are known.

Our particular view of image compression using wavelets is taken from
the paper [2]; the survey paper [4] indicates an approach to wavelets that
motivates both [2] and this paper. Further information about wavelets can
be found in, for example, the book by Meyer [9] and the papers by Mallat [8]
and Daubechies [1]. The paper [10] surveys rather broadly the application of
wavelets to signal and image processing, including image compression.

§2. Wavelet Decomposition of Images: The Haar Transform

In this section we present a particular way to view the well-known Haar trans-
form. We hope that this simple presentation will introduce the reader to the
more general wavelet transforms used in image compression.

To be specific, we consider images with 512 rows and 512 columns of
pixels, each of which can take an integer grey-scale value ranging from 0
(which represents black) to 255 (which represents white). As described, it
takes 218 = 262144 8-bit bytes of information to store the image. With a
natural scaling of both the domain and range variables, we consider the image
to be a function f that maps the unit square Ω := [0, 1]2 into [0, 1). We write

f = P9f =
∑

1×1 I

pIφI , (1)

where the sum is over all (1× 1 blocks of) pixels I, pI is the pixel value at I,
and φI is the characteristic function of I, i.e., φI(x) = 1 if x ∈ I and φI(x) = 0
otherwise. There are 29 × 29 such pixels, hence the notation P9.

One achieves a certain amount of compression simply by averaging the
values of the pixels over 2 × 2 blocks of pixels and storing or transmitting
only the block averages rather than the values of the individual pixels. We
therefore introduce

P8f =
∑

2×2 I

pIφI ,

where now pI is the average of the pixel values on I. (This definition is
consistent with what we used in (1).) There are 28× 28 blocks of 2× 2 pixels,
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which is why we used P8. This process achieves a compression ratio of 4 to 1,
i.e., a mildly distorted version of the image is specified using only one fourth
as many numbers as before.

There is no reason to stop this process, and we calculate P7f , P6f , all
the way down to P0f , which is specified solely by the average intensity of the
pixels over the entire image. We now write the image itself as

f = P9f = (P9f − P8f) + (P8f − P7f) + . . . (P1f − P0f) + P0f

=
∑

1×1 I

dIφI +
∑

2×2 I

dIφI + · · ·+ P0f

=
∑

I

dIφI + P0f,

where the final sum is over all dyadic blocks of pixels. The coefficients dI are
obtained from the differences of the approximations at adjacent levels.

We began with 218 pixels pI , and we now have 4/3 as many coefficients
dI , but this redundancy is easily removed as follows. At the finest level, it is
clear that we have subtracted from each pixel value the average over the 2×2
block containing it. Therefore, we organize each set of 4 coefficients dI into
blocks as

a b
c d

= α
+ −
+ −

+ β
− −
+ +

+ γ
− +
+ −

, (2)

since a+ b+ c+ d = 0; here + denotes +1 and − denotes −1. By combining
the coefficients dI and their corresponding characteristic functions φI into
groups of 4, we come up with a new representation using only 3 coefficients
and the alternating basis functions indicated by the boxes on the right side of
(2). In this way we remove 1/4 of the coefficients, i.e., we have removed the
redundancy.

We let the set Ψ consist of the three functions

ψ(1) = φ[0,1/2)×[0,1) − φ[1/2,1)×[0,1),

ψ(2) = φ[0,1)×[0,1/2) − φ[0,1)×[1/2,1),

ψ(3) = φ[0,1/2)×[0,1/2) − φ[0,1/2)×[1/2,1) − φ[1/2,1)×[0,1/2) + φ[1/2,1)×[1/2,1).

For each ψ ∈ Ψ, k ≥ 0, and j = (j1, j2) with 0 ≤ j1 < 2k and 0 ≤ j2 < 2k

(we denote this set of j by Z2(k)), we introduce the function ψj,k(x) :=
2kψ(2kx−j) = 2kψ(2k(x−j/2k)) for x ∈ Ω. This is the scaled (by 2k) dyadic
dilate (by 2k) and translate (by j/2k) of ψ, and it has support on the dyadic
square 2−kΩ + j/2k. By applying the rewrite rule (2) to the coefficients dI ,
we write the image f in terms of the functions ψj,k as

f =
∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

cj,k,ψψj,k + P0f ; (3)

here cj,k,ψ = 0 if k > 8. This is the Haar decomposition of the image f .
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§3. Image Compression in L2(Ω)

Although we have argued in [2] that one achieves better compressed images
when attempting to minimize the error in L1(Ω) rather than L2(Ω), the L2

theory is simple enough that a complete presentation can be made in the
following paragraphs.

The collection of functions {ψj,k | k ≥ 0, j ∈ Z2(k), ψ ∈ Ψ} is orthog-
onal. This is easily checked—if the supports of two such functions do not
intersect, then their inner product is zero; if the support of one is strictly
contained in the support of a second, then the inner product is zero because
the integral of each ψj,k is zero and the second function is constant on the
support of the first; and one can check by hand what happens when the sup-
ports of two such functions coincide. Because of the scaling by 2k, each ψj,k
has L2(Ω)-norm one, i.e., the entire set is orthonormal. Adding the charac-
teristic function φΩ to this set preserves this orthonormality; the resulting set
of functions forms a complete orthonormal basis for L2(Ω). Thus, any f for
which

‖f‖L2(Ω) :=

(
∫

Ω

|f(x)|2 dx

)1/2

<∞

has an expansion of the form (3), with cj,k,ψ =
∫

Ω
fψj,k. Therefore,

‖f‖2L2(Ω) =
∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

‖cj,k,ψψj,k‖
2
L2(Ω) + ‖pΩφΩ‖

2
L2(Ω)

=
∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

|cj,k,ψ |
2 + |pΩ|

2.

We wish now to find an approximation f̃ to f with the form

f̃ =
∑

(j,k,ψ)∈Λ

cj,k,ψψj,k + P0f,

where Λ is a finite set, say with no more than N elements. We want to do
this in a way that minimizes the L2(Ω) error,

‖f − f̃‖2L2(Ω) =
∑

(j,k,ψ)/∈Λ

|cj,k,ψ |
2.

Because we have an explicit expression for the error, we see immediately that
the best choice is to put the triples associated with the N largest values
of |cj,k,ψ | into Λ. Thus, we have found an exact, explicit solution to our
minimization problem.

This choice of Λ implicitly defines another parameter ǫ, which is

ǫ := inf
(j,k,ψ)∈Λ

|cj,k,ψ |.
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One can start with ǫ, and put into Λ only those triples for which |cj,k,ψ | ≥ ǫ.
This is known as threshold coding. The number of terms N in Λ is not known
until one is finished, but this method does not require one to sort the set
{cj,k,ψ}, which takes more time than to calculate the coefficients themselves!
In fact, it is better to calculate quantized coefficients

c̃j,k,ψ = round(
cj,k,ψ
2ǫ

) 2ǫ,

where round(x) is the nearest integer to the real number x. In this way we
store or transmit the code round(cj,k,ψ/(2ǫ)) and reconstruct

f̃ =
∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

c̃j,k,ψψj,k + P0f. (4)

Two important properties that all these methods of calculating c̃j,k,ψ satisfy
are

|cj,k,ψ − c̃j,k,ψ | ≤ ǫ (5)

and

if |cj,k,ψ | < ǫ, then c̃j,k,ψ = 0. (6)

§4. Error, Smoothness, and Quantization

In this section we investigate the connection between the quantization param-
eter ǫ, the error in our approximation (4), the number of nonzero quantized
coefficients c̃j,k,ψ, and the smoothness of the image in suitable function spaces.
The results we describe are special cases of results in [5] and [3] about non-
linear approximation using wavelets.

To measure the smoothness of images, we use the Besov spacesBαq (L
p(Ω))

for α > 0, 0 < p < ∞, and 0 < q < ∞. Roughly speaking, these spaces have
α derivatives in Lp(Ω), with the parameter q indicating finer gradations of
smoothness. A precise definition of these spaces can be found, for example,
in our paper [2]. The scale of spaces Bατ (L

τ (Ω)), α > 0, 1/τ = α/2 + 1/2 is
important for compression in L2(Ω). It is a special case of results in [6] or [7]
or . . . that one can define the Besov space norm of a function in Bατ (L

τ (Ω))
in terms of the size of the Haar or wavelet coefficients of that function. In
particular, if the cj,k,ψ are given by (3), then one can define

‖f‖τBατ (Lτ (Ω)) :=
∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

|cj,k,ψ |
τ + |pΩ|

τ (7)

for 0 < α < 1, i.e., for 1 < τ < 2. (The equivalence holds for higher values of
α when one uses smoother wavelets, e.g., the wavelets of Daubechies [1].)



396 Bradley J. Lucier

Several interesting things follow immediately from (7). Most importantly,
it follows that Bατ (L

τ (Ω)) is embedded continuously into L2(Ω), because

‖f‖L2(Ω) =

(

∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

|cj,k,ψ |
2 + |pΩ|

2

)1/2

≤

(

∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

|cj,k,ψ |
τ + |pΩ|

τ

)1/τ

= ‖f‖Bατ (Lτ (Ω)).

With these preliminaries we can prove the following theorem.
Theorem 1. Assume that f ∈ Bατ (L

τ (Ω)) for some 0 < α < 1 and
1/τ = α/2+1/2, and that cj,k,ψ are the coefficients of the Haar decomposition
(3). Choose an ǫ > 0, and define c̃j,k,ψ by any method that satisfies (5) and

(6). Let f̃ be given by (4). Then
(1) The number, N , of nonzero coefficients c̃j,k,ψ satisfies

N ≤ ǫ−τ‖f‖τBατ (Lτ (Ω)). (8)

(2) The error f − f̃ satisfies

‖f − f̃‖L2(Ω) ≤ 21/τN−α/2‖f‖Bατ (Lτ (Ω)). (9)

Proof: We let γj,k,ψ := cj,k,ψ − c̃j,k,ψ for ψ ∈ Ψ, k ≥ 0, and j ∈ Z2(k). Then

f − f̃ =
∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

γj,k,ψψj,k,

each |γj,k,ψ | ≤ ǫ, and either c̃j,k,ψ = 0, in which case |γj,k,ψ | = |cj,k,ψ |, or
c̃j,k,ψ 6= 0, in which case |cj,k,ψ | ≥ ǫ ≥ |γj,k,ψ |. Therefore,

∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

|γj,k,ψ |
τ ≤

∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

|cj,k,ψ |
τ ≤ ‖f‖τBατ (Lτ (Ω)). (10)

We note that for each nonzero c̃j,k,ψ , |cj,k,ψ | ≥ ǫ. Therefore, (10) implies
that

Nǫτ ≤ ‖f‖τBατ (Lτ (Ω)),

so (8) follows.
The coefficients γj,k,ψ can be partitioned into sets Λ1, . . . ,ΛM , with

M ≤ ǫ−τ‖f‖τBατ (Lτ (Ω)),

such that
∑

γj,k,ψ∈Λn

|γj,k,ψ |
τ ≤ 2ǫτ , n = 1, . . . ,M. (11)
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This is accomplished simply by sorting |γj,k,ψ | in decreasing order and adding
γj,k,ψ to Λ1 until the sum in (11) is greater than ǫτ . The process is repeated
with the remaining coefficients added to Λn, n = 2, . . . ,M . Because each
term is individually less than ǫτ , (11) follows. Because each sum is at least
ǫτ , the bound on M is immediate.

It follows from (11) that if we define

fn :=
∑

γj,k,ψ∈Λn

γj,k,ψψj,k,

then
‖fn‖L2(Ω) ≤ ‖fn‖Bατ (Lτ (Ω)) ≤ 21/τ ǫ,

the set {fn} is orthogonal, and f − f̃ =
∑M
n=1 fn. Thus

‖f − f̃‖2L2(Ω) =
M
∑

n=1

‖fn‖
2
L2(Ω)

≤ ǫ−τ‖f‖τBατ (Lτ (Ω))2
2/τ ǫ2

≤ 22/τ ǫατ‖f‖τBατ (Lτ (Ω))

since 2− τ = ατ . Thus, using our previous bound,

ǫατ ≤ N−α‖f‖ατBατ (Lτ (Ω)),

and we have
‖f − f̃‖2L2(Ω) ≤ 22/τN−α‖f‖ατ+τBατ (L

τ (Ω))

= 22/τN−α‖f‖2Bατ (Lτ (Ω))

since ατ + τ = 2. Taking square roots of both sides yields (9).

We remark that the proof given here is a variant of a proof in [2]. Note
also that because of the way we expressed the Bατ (L

τ (Ω)) norm of f , there
are no unknown (or unknowable!) constants in (8) and (9).

§5. Compression in Lp(Ω), 1 < p <∞

In this section we outline the results when one tries to minimize the Lp(Ω)
norm of the error instead of the L2(Ω) norm of the error.

If f ∈ Lp(Ω) for 1 < p < ∞ we still obtain the Haar decomposition (3)
for f . To ensure that an approximation f̃ of the form (4) has small error in
Lp(Ω), one chooses a positive parameter ǫ and coefficients c̃j,k,ψ that satisfy

‖(cj,k,ψ − c̃j,k,ψ)ψj,k‖Lp(Ω) ≤ ǫ (12)

and
if ‖cj,k,ψψj,k‖Lp(Ω) < ǫ, then c̃j,k,ψ = 0. (13)
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It is immediately seen that properties (12) and (13) reduce to (5) and (6)
when p = 2.

When approximating in Lp(Ω), the scale of Besov spaces Bατ (L
τ (Ω)),

where now α > 0 and 1/τ = α/2 + 1/p, is most important. Again, one can
show that the norm

‖f‖τBατ (Lτ (Ω)) =
∑

k≥0

∑

j∈Z
2(k)

∑

ψ∈Ψ

‖cj,k,ψψj,k‖
τ
Lp(Ω) + |pΩ|

τ

is equivalent to the usual norm for the space Bατ (L
τ (Ω)) when 0 < α <

min(1, 2/p). It is not so obvious that Bατ (L
τ (Ω)) is embedded in Lp(Ω), but

this is true; see [6]. One can prove the following theorem; see [2] or [3]:
Theorem 2. Assume that f ∈ Bατ (L

τ (Ω)) for some 0 < α < min(1, 2/p)
and 1/τ = α/2 + 1/p, and that cj,k,ψ are the coefficients of the Haar decom-
position (3). Choose ǫ > 0, and define c̃j,k,ψ by any method that satisfies (12)

and (13). Let f̃ be given by (4). Then there exists a constant C, independent
of f , such that
(1) The number, N , of nonzero coefficients c̃j,k,ψ satisfies

N ≤ ǫ−τ‖f‖τBατ (Lτ (Ω)).

(2) The error f − f̃ satisfies

‖f − f̃‖Lp(Ω) ≤ CN−α/2‖f‖Bατ (Lτ (Ω)).

One can ask whether these methods, and these estimates, are optimal. If
one asks the question in an asymptotic sense, then the answer is yes. In other
words, if for a particular f there is a constant C and best approximations f̃N ,
N > 0, with ≤ N nonzero Haar coefficients such that

‖f − f̃N‖Lp(Ω) ≤ CN−α/2

for some 0 < α < min(1, 2/p), then f is in the Besov space Bβσ (L
σ(Ω)) for all

0 < β < α and 1/σ = β/2 + 1/p. In fact, one has the equivalence

( ∞
∑

N=1

[Nα/2‖f − f̃N‖Lp(Ω)]
τ 1

N

)1/τ

<∞ ⇐⇒ ‖f‖Bατ (Lτ (Ω)) <∞ (14)

and the left side of (14) is an equivalent norm for ‖f‖Bατ (Lτ (Ω)) (modulo con-
stants); see [3]. Thus, our approximation algorithms are as good as any

algorithms that use wavelets.
By calculating explicitly ‖ψj,k‖Lp(Ω), one sees that (12) is equivalent to

|cj,k,ψ − c̃j,k,ψ|2
2k( 1

2
− 1

p
) < ǫ.

The parameter p determines the relative importance of errors in intensity
(given by 2k|cj,k,ψ − c̃j,k,ψ |) and the spatial frequency of the functions ψj,k
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(this influence is measured by the term 22k/p). Thus, varying p allows one to
vary the relative importance of contrast and frequency in the introduction of
errors to f to obtain f̃ . One can use this flexibility to attempt to match the
high-frequency response of the human visual system itself. We claim in [2]
that when one follows this approach, one obtains that p = 1 roughly matches
the high-frequency response of the human visual system.

The attentive reader will note that the above theorems were stated for
1 < p, and, in fact, the theorems are false when using Haar wavelets, or any
other orthogonal wavelets, when p ≤ 1. These algorithms can be modified,
however, to use redundant, non-orthogonal representations (using, e.g., the
φI) to work in Lp(Ω) for 0 < p ≤ 1; see [2] and [3]. Alternately, one can work
in the Hardy spaces Hp(Ω).

§6. Examples

Here we present two figures to illustrate the use of the compression algo-
rithms. Figure 1 is the green component of the commonly used color image
lena. Figure 2 is lena compressed using the L1(Ω) compression algorithm and
a modified Haar transform. The compressed image uses 12,068 nonzero coef-
ficients, which occupy 8,925 bytes; see [2] for complete details. Thus, we have
achieved a compression ratio of 29.37 to one.

Figure 1. The green component of the color image lena.

Acknowledgements: This work was supported in part by National Science
Foundation Grant DMS-9006219, Office of Naval Research Contract N00014-
91-J-1152, and the Army High Performance Computing Research Center.

References

1. I. Daubechies, Orthonormal bases of compactly supported wavelets,
Comm. on Pure and Appl. Math. XLI (1988), 909–996.



400 Bradley J. Lucier

Figure 2. Lena compressed in L1(Ω) at 29.37 to one.

2. R. DeVore, B. Jawerth, and B. Lucier, Image compression through
wavelet transform coding, IEEE Trans. Information Theory, to appear.

3. R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompo-
sitions, Amer. J. Math., to appear.

4. R. DeVore and B. Lucier, Wavelets, Acta Numerica, to appear.
5. R. DeVore and V. Popov, Free multivariate splines, Constr. Approx. 3

(1987), 239–248.
6. R. DeVore and V. Popov, Interpolation of Besov spaces, Trans. Amer.

Math. Soc. 305 (1988), 397–414.
7. M. Frazier and B. Jawerth, A discrete transform and decompositions of

distribution spaces, J. of Functional Analysis 93 (1990), 34–170.
8. S. Mallat, Multiresolution approximations and wavelet orthonormal bases

of L2(R), Trans. Amer. Math. Soc. 315 (1989), 69–87.
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