CLASSIFYING THE SMOOTHNESS OF IMAGES:
THEORY AND APPLICATIONS TO WAVELET IMAGE PROCESSING*

RONALD A. DEVORE!, University of South Carolina, AND BRADLEY J. LUCIER?, Purdue University

Abstract

Devore, Jawerth, and Lucier have previously intro-
duced a definition of the smoothness of images that
is directly related to the performance of wavelet com-
pression schemes. In this paper we survey previous
results on the equivalence between smoothness, rate
of decay of the wavelet coefficients, and efficiency of
wavelet compression techniques applied to images. We
report on other applications including deciding how
many pixel quantization intervals are needed to pre-
serve smoothness, and the fast solution of variational
problems that arise naturally in several areas of image
processing.

1. Introduction

The authors of [3] ask the following natural ques-
tion: “How can one classify or determine which images
can be compressed well by various methods of image
compression, and specifically by wavelet compression
methods?” After this question is made precise, the an-
swer is suprisingly direct—an image can be compressed
well if and only if it is contained in certain smoothness
spaces called Besov spaces. Whether an image is con-
tained in a smoothness space depends on (a) the rate of
decay of a quantity called the modulus of smoothness
of the image, or (b) the rate of decay of the coeffi-
cients of a wavelet expansion of the image. Because
good compression rates are equivalent to membership
in these smoothness spaces, images in these smooth-
ness spaces have the minimal smoothness necessary to
be approximated well by wavelet compression methods.
Furthermore, it has been shown [8] that for images in
these smoothness classes, no “stable” method of image
compression can achieve a higher rate of compression
than wavelet-based methods.

Using information theory one can define certain
classes of images and determine the average perfor-
mance of certain compression schemes over all images
in a given class. The performance of a compression
algorithm on a particular image in a given class may
differ widely from the average. In our framework, the
performance of wavelet compression schemes on a par-
ticular image is determined by the smoothness of that
image in a particular smoothness space.
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Once one takes the point of view that we should
characterize images by membership in these minimal
smoothness spaces, several applications arise. For ex-
ample, one can determine how to increase the num-
ber of pixel quantization intervals as the spatial res-
olution increases so that the digitized image retains
the smoothness of the original intensity field. One can
devise wavelet compression methods using scalar quan-
tization that achieve the optimal rate of compression.
One can determine how quantization strategies relate
to error metrics. And one can solve many variational
problems related to image reconstruction and noise re-
moval directly and simply using wavelets [6].3 In this
paper we give an overview of these and other applica-
tions of our view of the smoothness of images.

2. The Size and Smoothness of Images

We begin with a real-valued intensity field F' defined,
for simplicity, on the unit square I = [0,1]2. We use
the L,(I) spaces, 0 < p < oo, to measure the size of
an image. A function f isin L,(I) whenever the L,(I)
norm of f,
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is finite. (The notation := is to be read “defined as.”)
For example, p = 2 is the root-mean-square norm,
p = 1 is the mean-absolute norm, and p = oo is the
maximum norm. These spaces are nested—if p > p’
and f € L,(I), then f € Ly (I), and, by Holder’s in-
equality, || fllr, ) < I fllr,n)-

Whenever p < 1, || - ||z, does not satisfy the
triangle inequality, so it is not, strictly speaking, a
norm, but a quasi-norm, for which there exists a con-
stant C > 1 such that for all f and ¢ in L,(I)
1f+ 9lle,y < CUlflle, ) + l9llz,@); in our case,
C = 25!, We shall not distinguish further between
norms and quasi-norms in this paper.

We measure the smoothness of images in smoothness
spaces called Besov spaces. Here we begin with rth
differences of the function f. The rth difference of a
function f at a point = (x1,22) in the direction of a
vector h = (hy, ho) is defined recursively as A9 (f,z) =
f(z) and

AL (f,x) = A;fl(f,:v—i—h) — Azfl(f,x), r > 0.

3Note added after publication: See also the paper by S. Osher
and L. Rudin in this Proceedings, Vol. I, pages 31-35.



When applied to functions f in P,, the polynomials
in two variables of total degree less than r (e.g., Ps
consists of linear combinations of 1, x1, o, ¥, ¥122,
and x3), we have A7 (f,z) = 0; derivatives have the
same property. Heuristically, if f is “smooth” then f
is close to a polynomial of degree < r, and both the rth
derivatives of f and the rth differences of f should be
“small”. Besov spaces are one way to make this idea
precise.

We use the L,(I) spaces to measure the size of the
rth differences of f; the resulting functions

wr(f,t)p = sup [|AL(f, )L, 1m)
|h|<t

are known as the moduli of smoothness of f. (The
interval I,, consists of all x € I for which x + rh is
in I, i.e., the set of « for which A} (f,x) is properly
defined.) The supremum is over all vectors h of size
less than ¢ with any direction.

As t gets small, w,(f,t), tends to zero. We measure
the smoothness of f by measuring the rate at which
wr(f,t)p tends to zero. For example, a function f is in
the space BE (Ly(I)), 0 < o < r, whenever w,(f,t), =
O(t*), and we can define the B (L,(I)) semi-norm of
f to be

|f1Be (L,(1)) = supt™ “wr(f, t)p-
t>0

(This is a semi-norm because |f|pa (1, (1)) = 0if, e.g., f
is a constant.) In applications, one needs a more di-
verse family of spaces that measure more carefully the
decay of t~%w,(f,t), as t — 0. The general Besov
space Bg(Lp(I)), 0 < a < r, 0 < p < oo, and
0 < ¢ < oo is defined as the set of f for which
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0 < ¢ < oo, is finite; the semi-norm for ¢ = oo is
defined above. One can show that the set of functions
in By(Ly(I)) does not depend on r as long as r > a.
The By (Ly(I)) norm is given by

£l Be L,y = fBe @, ) + 1 l2,n)-

An equivalent semi-norm for Bg'(L,(I)) is

o0

1/q
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i.e., the £, norm of the sequence {2%*w,(f,27%),}%,,
with the usual change to a supremum when ¢ = oco.
Simple properties of L,(I) and ¢, give properties
about B (Ly(I)). For example, since Ly(I) C Ly (1)
if p > p', one has By(L,(I)) C By (Ly (1)) if p > p'.
Similarly, since £, O £y if ¢ > ¢, one has Bg(L,(I)) D

Bg(Ly(I)) if ¢ > ¢'. Since it is easily seen from (2)

that B (Ly(I)) C BY (Ly(I)) if & > o, one has im-
mediately that Bg(L,(I)) C Bg‘,/ (Lp(D)) if @ > & or
a=dad and g < ¢.

3. Wavelets

There are by now many introductions to wavelets;
we recommend the book by Daubechies [2], or, for an
introduction motivated by approximation theory, our
survey article [7]. In this space we consider a par-
ticular family of biorthogonal wavelets discovered by
Cohen-Daubechies-Faveau and Herley-Vetterli that are
described in [2].4

For the present, we restrict our attention to one di-
mension with I := [0,1]. The construction of the sim-
plest wavelet, the Haar wavelet, begins with the scaling
function ¢ = xy, which satisfies the rewrite rule

(3) ¢(r) = ¢(22) + ¢(2z — 1),
i.e., the characteristic function of [0,1) is the sum of

the characteristic functions of [0,1/2) and [1/2,1). The
associated wavelet, ¢ is given by

P(z) = ¢(27) — ¢(22 — 1).
Because we want to think about average intensity of
images over square pixels, we introduce (;3 = ¢ and
7,/; = 1) and the two different scalings

(4)  Pir(x) = 225w — j), djn(x) = B(2"z - j)
fork>0and 0<j < 2k similarly, we define

(5) jklw) =292 = j), jn(x) = (22 - j).
These are the (scaled) dyadic dilates (by 2¥) and trans-
lates (by j/2F) of the scaling function ¢, its “dual” (see
below) ¢, the wavelet v, and its dual 1.

We can define piecewise constant approximations

Py f to any locally integrable function f on the intervals
L = [3/2%,(5 +1)/2), 0 < j < 2", by

Pofi= > ([, k)i

0<j<2F

Here, (f, ¢;1) == [, [;x is the average of f on I, and
®;.x is the characteristic function of I; ;. If f € Lo(I)
then f = limg_, o Pxf, so

= POf+Z(Pk+1f_Pkf)-

k>0

Because

Poyrf — Pof = Z (f, 056085k

0<j<2F

4Note added after publication: The derivation of biorthogo-
nal wavelets in this section owes much to algorithms like ENO
in computational fluid dynamics that incorporate in an essen-
tial way reconstruction from cell averages. Ami Harten seems to
have been the first to make this connection, and we regret not
having cited this previous work.



the set {¢, ¥, | k>0, 0 < j < 2*} forms a complete
orthogonal basis for Lo (I), and, because of our scalings,
we have for any f € Lo(I),

6)  f=(foe+ Y D (i)

0<k 0<j<2k

To describe the Haar wavelet as one of a family of
biorthogonal wavelets, we ask the following question.
“If f is constant on [0, 1) and we know the average of f

n [0,1), can we calculate the average of f on [0,1/2)
and [1/2,1)?” The answer, of course, is yes, the average
of f on each subinterval is the same as the average of
f on the big interval. This implies (3).

A more interesting question is the following: “If f =
ar?+bx+con [—1,2), and we know the average of f on
[-1,0), [0,1), and [1,2), can we determine the average
of f on [0,1/2) and [1/2,1)?” A moment’s reflection
shows that we can determine a, b, and ¢ from the data,
and then we can easily calculate the averages on [0,1/2)
and [1/2,1). One can continue with this procedure,
calculating averages on [0,1/4), [1/4,1/2), etc., and
it has been shown that this procedure converges; in
the limit one obtains a function ¢ that satisfies ¢(x) =

10(2042)+ 2¢(2x+1)+¢(22) + ¢(2x— 1)+ 122 —
2) — 2¢(2z — 3). If we now define ¢; (z) = ¢(2"z — j)
and keep the same ¢ and ¢; 1 as for the Haar wavelet,
we have

Ppf = Z<f7 ng,k>¢j,k-

This formula does not hold near the boundary, and
one must construct special boundary wavelets and dual
functions, as in [1] and [11]. We ignore such technical-
ities here.

We have constructed ¢ and gz~5 that satisfy

(7) & Zaj(b (2z—7) and(b ijgb (2z—37)

for certain finite sequences (a;) and (b;). The formulas
for the scaling function and its dual lead to formulas
for the associated wavelet ¢ and its dual ¥:

Y(x) = (~1)b1_;¢(2z — j) and

®
P(@) = (1Y ar_;6(2z — j).

J

One can show that for any f in L,(I), 1 < p < o0,

formula (6) holds for these functions ¢, ¢, ¥, and .
(Again, we ignore technicalities at the boundary of
[0,1].) This formula uses only function averages on the
intervals I;;, for its data, and it reproduces quadratic
functions exactly. There is a family of such approx-
imations, which reproduce polynomials of higher and
higher (even) degree; details can be found in [2].

In two dimensions, we take ¢(z1)@(22) for the scal-
ing function, ¢(x1)¢p(x2) for its dual, and

U = {¢p(21)d(2), p(x1)p(w2), P (21)h(22)}

for the set of wavelets, with the obvious duals. For
eachk>0andj€Z2 = {(j1,72) €ZF |0 < j; <
2F 0 < jo < 2%} we take

¢jk(z) = ¢(2Fx — j) and ¢; 1 (z) = 2% 6(2Fx — j);

similarly for 1 and ;5. The biorthogonal wavelet
decomposition for f in two dimensions is then

(FD)0+Y D Y cimuthins Crw = (Frbik).

k>0 jez? yev

How does this relate to the original intensity field
F defined on [0,1]?? First, since the duals 1, are
piecewise constant, all the coefficients can be calcu-
lated ezxactly from piecewise constant pixel data. Fur-
thermore, given values for 2% x 2% pixels, there are
fast wavelet transforms, based on (7) and (8) that gen-
erate (9) with k& < K. Finally, this approximation
to F' has convergence properties similar to a piecewise
quadratic approximation; i.e., we obtain a third-order
approximation to F' from piecewise constant data.

4. Wavelets and Smoothness Spaces

One can determine whether an image f defined on
the square I = [0, 1]* is in a Besov space B (Ly(I)) for
many values of the parameters «, g, and p by examining
the coeflicients in the wavelet expansion of f. This is
discussed in [12] and [10] on all of R? and in [11] for
the framework in this paper. In particular, given (9),
one has

£l g L) = I, DBl )

- 1/q
+ (Z > RIS %,k)%,khp(z)]q)

k>0 jezg vev

where A(f) ~ B(f) means that there are two posi-
tive constants C; and Cy such that for all relevant f,
Cy < A(f)/B(f) < Cs. This equivalence holds for
large ranges of p and ¢ whenever the scaling function
¢ is in a slightly smoother space than By (L,(I)). This
relationship between function smoothness and wavelet
coefficients is most important.

If we consider the space By (Ly(I)) with the special

value of the parameters
1 o 1

(11) - ==+ )
qg 2 p

then we can tranform (10) into

£l Bo (Lo = (S, ) llz,

) 1/q
(12) n (Z SO %,ij,kH%p(I))

k>0 jez2 yeT

a>0,1<p<oo,



by using the scaling (5). Any function f in Bg(Ly([))
satisfying (11) is also in L,(I); if ¢ is reduced or «
is reduced, then this is not necessarily the case. In
this sense, the spaces Bg(L,(I)) satisfying (11) have
minimal smoothness to be embedded in L, (I).

5. Wavelets and Image Compression

How can one characterize images by how well they
can be compressed using wavelets? The mathematical
theory in [5] and [3] poses this question in the following
way.

We consider only lossy compression schemes, so we
must make precise how we measure error and compres-
sion. For simplicity, we measure the error betweem
the original image and the compressed image in the
L,(I) spaces. We consider approximations f to f with
wavelet expansions

Fn = o000+ Z Z Z Cikw Vi

k>0 jez2 pev

with at most N nonzero coefficients ¢;j ; we use N

as the measure of the size of the compressed image fy.
Leaving the question of algorithms aside for a moment,
we consider the error of best approximation

En(f)p = le,lvf If = fwlle, o

and ask how that least error decreases as N increases.
It may happen for a particular image that, as N in-
creases, the error decreases as a negative power of N:

(13) En(f), < CN™/2,
This is obviously equivalent to
NQ/QEN(f)p <Cor {NQ/QEN(f)p}})VO:O € loo.

One cannot yet characterize functions f for which (13)
holds, but in [5] it is shown for a large variety of
wavelets and for many values of «, p, and ¢ such that
(11) holds,

(14)  {2°"2Ex(f)p}i0 € by = [ € By (Lq(I)).

The left-hand side of (14) is equivalent to

D 122 Ep(f),]7 < oo

k

Thus, there is a precise characterization of images for
which one can achieve certain rates of compression us-
ing wavelets.

It is pointed out in [3] that if f is in B (L,(I)) such
that (11) holds, large classes of algorithms allow one
to calculate for any f € B(L4(I)) approximations fn
that achieve

(15) If = fnllz,a) < CN_O‘/2Hf|\Bg(Lq(1))-

In fact, any algorithm that chooses compressed coeffi-
cients ¢; . that satisfy

[(¢jke = Cikp)VskllL, ) <€

for some parameter €, with a guarantee that ¢; ., =0
if ¢j k. < € will achieve (15). Such algorithms in-
clude progressive transmission of coefficients (in an or-
der that depends on p), threshold coding, and scalar
or vector quantization. Since ||¢; k|1, (1) &~ 272/P, we
see that ¢; 5, = 0 if

|Cj k272K < € or |cjpp| < 22F/Pe.

Thus, the threshold depends on the dyadic dilation 2%
and the space L, (I) with which one measures the error,
but not on the particular space By (Ly(I))—it doesn’t
matter what smoothness space the image belongs to,
these algorithms give near-optimal rates of approxima-
tion.

Because (14) is an equivalence, the spaces By (Lq(I))
must arise as soon as one is interested in rates of ap-
proximation like (13). For the same reason, images in
Bg(Lq(I)) have the least smoothness to be approxi-
mated to order (13) by wavelets.

We now investigate properties of images in By (L4 (1))
and their applications.

6. Pixel Quantization and Image Smoothness

Perhaps the first question that one might ask is how
the smoothness of an intensity field F is reflected and
preserved in the pixel data, which we assume to be the
average intensity of I’ on each of 2% x 2K square pixels
in 1.

We can answer this question readily for the special
family of biorthogonal wavelets discussed in §3. Since
the wavelet duals 1), ;, are piecewise constant on dyadic
subsquares of I with 25" pixels on a side, we can cal-
culate ezactly the wavelet coefficients c; 4 of F' for
k < K; thus, we have the finite-frequency approxima-

tion
(Fd)o+ > D) (Rt

0<k<K jez? Y€V

caused by spatial averaging of the intensity data over
pixels. Because of (12), this approximation is at least
as smooth as F' in Bg(Ly([)).

But the intensity is not only averaged over pixels;
an extra error is introduced when these averages are
rounded to one of 2" integer values (typically 256 or
4096) that record the quantized pixel values. If we as-
sume that the maximum intensity is normalized to be
1, then one can show in the same way as in [3] for the
Haar wavelets that the error introduced by this pixel
quantization has smoothness in B (Ly(1)) bounded by
C2°K2=™  Thus, the smoothness of the quantized ap-
proximation to F' is bounded by

CUIF oL,y + 20K,



This shows that if one wants to preserve the smooth-
ness of a quantized image, one needs to increase the
number of grey scales, 2™, in a way that depends both
on the presumed smoothness a and the number of pix-
els in a row, 2. This makes perfectly good sense, since
one can imagine that increasing the spatial resolution
without increasing the number of grey scales will lead
to contouring in the image. Typically, a ranges be-
tween .3 and .7 for natural images [3].

7. Image Processing and Variational Problems

Image processing algorithms are often couched in
terms like the following: One is given some data derived
from an image f (either pixel values, noisy pixel val-
ues, integrals along certain lines in tomography, etc.),
and one wants to construct an approximation to the
image (a compressed image, a noise-reduced image, a
reconstructed image, etc.). Often there is not enough
data to reconstruct the image exactly (in tomography)
or the data is corrupted (by Gaussian noise, say), or
one does not want to calculate the image exactly but a
good approximation to it that takes fewer parameters,
as in image compression. Some approaches to each of
these problems can be posed in the following way: Find
a smooth image g whose data approximates the data
for f. Using wavelets and smoothness spaces one can
make precise the words “smooth” and “approximates”
and the balance between them. We give an overview
here; the details can be found in [6].

We assume we have an approximation space X
(e.g, an Ly(I) space) and a smoothness space Y (like
the Besov spaces By (L4(I)) or the Sobolev spaces
W™ (L,(I))) and we look for a function g that approx-
imately minimizes

(16) If —gllx +Alglly

for a positive constant A. The first term in this expres-
sion measures the approximation error between f and
g, while the second term measures the smoothness of g.
The parameter A determines the relative importance of
error and smoothness.

In [6] we show that if one takes X = Lo(I) and Y to
be one of the Sobolev spaces W*(La(I)) of functions
with a derivatives in Lo (I), then one can use the equiv-
alence between smoothness norms and sequence norms
(10) to recast (16) in terms of sequences of wavelet coef-
ficients, that, in fact completely decouples: one solves a
scalar problem for each wavelet coefficient of g with the
corresponding wavelet coefficient of f as data. In par-
ticular, one can approximately minimize (16) by taking
a wavelet projection that corresponds to a low-pass fil-
ter, with a frequency limit that depends on A. This
acts both to compress an image or to smooth a noisy
image.

If one insteads takes for Y the minimally smooth
spaces By (L4 (1)) satisfying (11) with p = 2, then (16)
again decouples, only now the solution is to keep for

g only those wavelet coefficients of f that are larger
in absolute value than a certain threshold e that again
depends on A. This is associated with threshold cod-
ing in image compression and with “wavelet shrinkage”
technique in noise removal [9].
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